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A very simple model is designed to understand dynamical states and bifurcations ranging up to
chaos in thermal lens oscillations and associated hot-wire experiments. The present system is

governed by partial-derivative equations in the case of bulk liquid and also at a free surface which is

a boundary of the liquid. It is reduced to a set of three nonlinear ordinary differential equations

with two control parameters to be studied within the framework of the theory of nonlinear dynami-

cal systems. The model may evolve to chaos in three domains of the parameter plane. Metric and

dynamical properties (generalized dimensions and entropies, and associated singularity spectra) of a

(presumably) strange chaotic attractor produced by the model are determined. The overall good
and sometimes striking agreement between the model and previously reported experimental results

shows that we have reached a fair understanding of the experimental phenomena, much better than

what has been hitherto possible.

I. INTRODUCTION

The study of nonlinear dissipative dynamical systems
exhibiting a rich variety of behaviors, from equilibria and
limit cycles, to chaos and turbulence, has been a subject
of increasing interest. A rather comprehensive back-
ground may be acquired from textbooks such as those by
Guckenheimer and Holmes, ' Thompson and Stewart,
Devaney, Berge, Porneau, and Vidal, and from an in-
creasingly prolific literature.

Among hydrodynamic instabilities pertaining to the
above framework such as Rayleigh-Benard and Benard-
Marangoni e6'ects, this paper is devoted to a new
phenomenon, namely, thermal lens oscillations (which we
also call optical heartbeats, or "coeur d'anneaux" in
French), observed for the first time by Jakeman, Pike,
and Vaughan to our knowledge, rediscovered indepen-
dently within our group, and systematically investigated
since then.

Optical heartbeats can be produced when a laser beam
propagates horizontally below a free surface, or vertically
upwards. ' In associated hot-wire experiments, heating
is carried out with a hot wire instead of a laser. ' '" Com-
plex behavior may be observed, including steady states
(equilibrium), limit cycles, quasiperiodicity with mode
locking s, Feigenbaum cascades, hysteresis associated
with the coexistence of multiple attractors, and chaos.

Rigorous equations of the system are coupled partial-
derivative equations (PDE's) governing the liquid bulk
and the free surface, supplemented by boundary condi-
tions at rigid walls. PDE's at the free surface play a two-
fold role: they have to be solved as a part of the problem
but they simultaneously introduce boundary conditions
for the bulk. The resulting problem is of tremendous
difficulty increased by a lack of symmetry.

The orbit of the system evolves in an infinite-

dimensional phase space associated with PDE's. Howev-
er, due to dissipation, the long-term recurrent motions
settle down on finite-dimensional objects embedded in
finite-dimensional phase spaces. Then, we may in princi-
ple replace PDE's by a finite set of coupled first-order or-
dinary differential equations (ODE s), i.e., by a dynamical
system of the form X=F(X), in which X is a vector
evolving in an n-dimensional phase space, the How being
generated by vector field F.

In this paper we design a simple model of thermal lens
oscillations [heartbeat experiments (HBE's)] and associat-
ed hot-wire experiments (HWE's) by reducing the prob-
lem defined by PDE's to an ODE's dynamical system.
Nevertheless, the implementation of a systematic reduc-
tion procedure (Galerkin method, reduction to normal
forms' '

) is in practice forbidden or at least excessively
difficult due to the lack of symmetry we mentioned above.
We shall rather rely on another approach by using
several ingredients including a qualitative understanding
of phenomena, dimensional analysis, and simple concepts
from dynamical systems theory. The final outcome is a
two-parameter three-dimensional vector field represent-
ing a nonlinear coupling between a mechanical oscillator
associated with a free surface and a thermal "oscillator"
associated with a heat source. Comparisons between the
model and experimental results will lead us to the con-
clusion that we attained a precise understanding of
HBE's and HWE's, at least much better than hitherto
possible.

The paper is organized as follows. Section II is devot-
ed to a brief review of our present knowledge concerning
HBE's and HWE's. Section III establishes the model in
two main steps, leading first to a one-parameter two-
dirnensional dynamical system to understand a supercriti-
cal Hopf bifurcation observed in both HBE's and HWE's,
then to a two-parameter three-dimensional dynamical
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system to understand secondary instabilities in HBE's.
Model numerical results and comparisons with experi-
mental data are provided in Sec. IV. Finally, for the pur-
pose of later comparisons with experiments, Sec. V is de-
voted to the metric and dynamical characterization (gen-
eralized dimensions and entropies, and associated singu-
larity spectra) of a (presumably) strange chaotic attractor
generated by the model.

II. HBE'S AND HWE'S:
EXPERIMENTAL SECTION

This section is a brief summary of a recent review pa-
per concerning HBE's and HWE's. ' Thermal lenses

may be produced when a laser beam propagates in an ab-
sorbing liquid contained in a cell. They provoke a diver-
gence of the beam and the creation of a ring pattern re-
sulting from optical aberrations of a thermal lens. When
a laser beam of power P propagates horizontally at a dis-
tance d below the free surface, the outgoing beam may
exhibit various oscillatory behaviors in a domain of the
control parameter plane (P,d }. These luminous phenom-
ena are called optical heartbeats and result from oscilla-
tory convection in the cell (thermal lens oscillations) asso-
ciated with propagating waves at the free surface. Opti-
cal heartbeats may also be produced with the laser beam
propagating vertically upwards, but this case has not
been extensively investigated because it exhibits only one
bifurcation from steady to oscillatory states. ' Typical
laser powers for quantitative experiments are between
100 and 500 mW in Refs. 9 and 15 but thermal lens oscil-
lations may already be obtained at small laser powers of

W 11,16

References 9 and 15 extensively report on quantitative

HBE's in the case of an argon-ion laser propagating hor-
izontally below a free surface in a cell filled with a Rho-
dorsil silicon oil colored with a dye. A photodiode tracks
the variations of the luminous intensity of the outgoing
beam. The signal is observed in the time domain or in
the frequency domain by using a fast-Fourier-transform
(FFT) spectrum analyzer. The state diagram obtained in
the control parameter plane (P,d ) is shown in Fig. l.

Outside curve BL1 (bifurcation line number one), the
system is steady (zone S). It is unsteady inside (zone US).
This bifurcation line indicates the onset of oscillatory be-
havior through a supercritical Hopf bifurcation (although
a small amount of subcriticality revealed by hysteresis
phenomena might exist, mainly for a large value of d, ac-
cording to more recent unconfirmed experiments in
HWE's). In the unsteady zone (US}, several kinds of be-
havior are observed: periodic with one fundamental fre-
quency (zone P), periodic with subharmonics correspond-
ing to Feigenbaum cascades in zone PD (period dou-
bling), and quasiperiodic with two fundamental frequen-
cies in zones QP1 and QP2 which are probably connected
together (measurements have not been performed for P
between about 200 and 300 mW). Frequency lockings are
also observed when the two fundamental frequencies of
the quasiperiodic signals become commensurable. In the
hysteresis zone (H}, the system may be attracted either to
a periodic or to a quasiperiodic state, depending on
whether we proceed by decreasing or increasing d for a
given P. Chaos may be observed although it does not ap-
pear in Fig. 1 (Ref. 8, and unpublished observations}.

In HWE's laser heating is replaced by hot-wire heat-
ing. ' ' '" Most of the experiments have been carried out
by using a temperature-controlled hot wire. ' '" Driving
measured thermal force is then hT, the temperature
difference between hot-wire temperature and ambient
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FIG. 1. HBE's state diagram in control parameter plane (P,d ).
face.

P is laser power, d is a distance between laser beam and free sur-
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temperature. When AT is increased from 0, we observe a
steady convection and a steady deformation of free sur-
face up to a critical value AT, for the onset of oscillatory
behavior. Measurements of critical quantities (critical
b, T, 's and associated critical frequencies f, 's) have been
carried out for four silicon oils. Critical quantities versus
d depend on the oil but, when appropriately presented in
terms of dimensionless values, the different profiles col-
lapse reasonably well to single "universal" curves. '

There also exists a quantitative similarity between
HWE's and HBE's for the first bifurcation from steady to
periodic.

Exemplifying results are displayed in Fig. 2 showing
critical frequencies f, versus critical temperature
differences hT, . These values are obtained by varying d.
There exists a 1=d;„atwhich b, T, has a minimum
b, T, (dm;„). In each curve of Fig. 2, the values
b T,(d;„)correspond to a sharp separation between a
nearly horizontal branch and a rather vertical branch.
This fact strongly suggests that two different mechanisms
may be at work, depending on whether d is smaller or
larger than d;„,and will be used in designing the model.
It is also confirmed by the observation that, prior to the
onset of oscillations, the free surface is depressed for
d (d;„(typical of the Marangoni effect) while it is
elevated for d )d;„(typical of buoyancy-driven convec-
tion). '

The qualitative analogy between HBE's and HWE's is
obvious. In each case, oscillatory instabilities are trig-
gered by heating below the free surface. As mentioned
before, there is also a quantitative similarity for the onset
of oscillatory behavior concerning both P, (d ) and f„(d),
in which P stands for either P (HBE's) or b T (HWE's).
However, no secondary instabilities after the Hopf bifur-
cation are observed in HWE's. The reason for this
difference of behavior between HBE's and HWE's will be
discussed later when the model is developed (Sec. III I).

III. MODEL

A. Generalities

A rigorous solution of the problem can only be gained
from numerical simulation. This task has been undertak-
en for HWE's (Ref. 20) but is not completed. In a second
approach, we examined a possible analogy between (a)
HBE's and HWE's and (b) the case when a horizontal
liquid layer loses its stability, evolving from a motionless
conducting state to an oscillatory convective one, under
simultaneous surface tension and coupled buoyancy
effects. ' The simultaneous effect of shear has been in-
cluded in the analysis later on. Although this approach
provided significant results for the case of the horizontal
liquid layer in its own right, it has been found disappoint-
ing in understanding HBE's and HWE's. Furthermore,
in any case, the aforementioned approaches heavily rely
on lengthy algebra and intense computer programming,
hiding the essence of the physics. Now, we instead devel-
op a simple illuminating model reducing the original
PDE's to a nonlinear dynamical system in R . In doing
so, we shall be inevitably forced to progressively intro-
duce some arbitrariness. Therefore we shall sometimes
have to be content with a resemblance between the model
and the experimental results. This notion of resemblance
may be given a precise formulation by invoking the con-
cepts of structural stability and topological equivalence of
attracting sets in phase space (see Ref. I, Sec. 5-4, and
Ref. 2, Sec. IV-7).

B. Marginal condition for the onset
of oscillatory behavior

We set that heat is transported from the heat source to
the free surface with a characteristic time t, . When a hot
blob reaches the surface, it is disrupted by the Marangoni
effect with a characteristic time t2. The condition
t, ))tz is sufficient for the process to take a cyclical char-
acter, with upward heat transport followed by heat dis-
ruption at the surface and convective cooling below.
Marangoni disruption results in waves which propagate
on the surface in the direction parallel to the wire. Con-
versely, if t, &(t2, heat is rapidly supplied to the surface
and gently removed. We may then expect the appearance
of a steady balance.

We therefore introduce the ratio of characteristic
times:

5- 47 V10

R =ti /t2

and set that the marginal condition for the onset of oscil-
latory behavior is given by a critical value of this ratio:

LL L

50 ~ho 2bo ~T~(K)
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~47V100

CXh 0
1ho

R~ =y,
in which the precise value of g is unknown.

C. Characteristic times

(2)

FIG. 2. HWE's. Critical frequencies f~ vs critical tempera-
ture differences AT~ for four silicon oils. 47Vi are oil labels.

Evaluation of characteristic times is different whether
d is small or large (remember the comments of Fig. 2).

(a) For d small (free surface depressed), we assume that
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t, is a conduction time:

t] =k]d /Kz, (3)

k] ~r~bTd k] k]
JVM, = VM, small d

k2 pKr k2
'

k2

in which Kr is the liquid thermal diffusivity and k& an

unknown dirnensionless constant.
For the Marangoni disruption time we have

&] /r/ ST
K2 d I a2rp622 KT

gard'po
exp

pKr

~~
—k~d /VM, ,«3 exp( —JVz, ), large d (12)

where k2 is another unknown dimensionless constant and

V~ is a Marangoni velocity:

/r/aT
M

p
Here, I is the derivative of surface tension with respect

to temperature T, p the liquid dynamic viscosity, and hT
is the temperature difference between heat source temper-
ature and ambient temperature above the free surface.
Hence

t2=k2pd/(iI ib, T) . (6)

(b) When 1 is large (free surface elevated), we assume

that heat transport is essentially convective. Then t, is

d /U in which U is a velocity convection. Both in HBE's
and HWE's, heating sources produce hot blobs going up-

ward due to buoyancy. We consider that these blobs are

physical entities on which a downward drag force is ex-

erted by the surrounding Quid and assume that this drag

may be approximately evaluated by using Stokes's law.

Velocity convection U is then evaluated as the result of a
balance between upward buoyancy lift and downward
Stokes drag. Detailed discussion is, however, a bit longer
than for d small. We obtain

D. Another dimensionless formulation

Although the formulation above is dimensionless, it is

not appropriate to a later comparison with experiments
because it contains four unknown elements in evaluating
characteristic times and a fifth one which is the critical
value of ratio R. We therefore need another dimension-

less formulation. Fur the prupose, we introduce

A= (13)

arpog

pKr

leading to

(14)

in which V]]r = VMt] /d is Marangoni velocity V~ made
dimensionless by using d as a unit of length and r] as a
unit of time. Consequently, R may be expressed in terms
of thermophysical properties or, alternatively, in terms of
the two dimensionless groups (JVM„JVR,} relevant to the
problem.

1 I
arpog

' 1/3
d

K ATz&3 ]&3 exp( —JVR~) ~

g 2/3

JVM, = ]~, ITd,
A

(15)

in which ar is thermal expansivity, po is density at refer-

ence temperature To, g is gravity modulus, K, a new un-

known dimensionless constant, and JVz, is the Rayleigh
number defined by

gard pohT

pKr
(8)

t2 is still a Marangoni time which is, however, now given

b 25

JV'a, =Bb,Td (16)

Equations (15) and (16) express the two main dimen-
sionless groups (JVM„JVz,) in terms of A and B (depend-

ing on thermophysical properties) and of the two control
parameters hT and d driving the instabilities.

The condition for marginal stability may then be
rewritten for large d as

yb T,' 'exp( Bd'b, T, }= A ' '—d,

' 1/3
arPogP d

t2=K2
rC, ST'

(9)

in which the critical R, =g has been absorbed in y ac-
cording to

K)'
K2X

pKr
(10)

we then readily find that the ratio R of characteristic
times is given by

in which we introduced a last unknown dirnensionless
constant Kz.

Introducing the Marangoni number

Equation (17) has no solution for d & d,„,where d
is given below. For d &d,„,there are two critical values

hT,' and hT, limiting a hT domain in which oscillatory
behavior will occur, in agreement with experiments (see

Fig. 1 in which hT is actually linked to P). When 1 in-

creases, the difference
~
5T» —6T, ~

decreases down to 0
at d =d,„.For d larger than d,„,the steady state is al-

ways stable. We readily find that d,„and b, T, (d,„)
are given by
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v't

1/2

b, T„(d,„)=
(19)

(20)

quency f simply given by

1

t1+t2
(27)

Using t, as a unit of time, dimensionless frequencies are

x =d/d, „,
y =ET/b T, (d,„)=P/P,(d,„).

(21)

(22)

Equations (19) and (20) provide us with two well-
defined scales to make d and AT dimensionless. In
HBE's, hT, hT, are replaced by laser powers P,P,
which is justified by the quantitative analogy between
HBE's and WHE's. We consequently introduce

+ t1 R
r, +t, R+1 (28)

x
(y+ 1)t,, (29)

At marginality on BL1, R =R, =g. Consequently,
critical dimensionless frequency f„is y/(y+1), i.e.,
critical frequencies f, are

E. Critical y+ 's and matching

Expressed in terms of the dimensionless x and y, the
marginal stability condition is

' 1/3
9

y, =5 — /x, small d
e

( ey )
1 /3

(23)

exp( —
—,'y, x )=1, large d (24)

X

in which we have

k, k, K,
k2 k2Ei

(25)

y„(dsmall, x =x~)=y,'(d large, x =xl) . (26)

Matching is nonanalytic because derivatives dy, /dx at
x =xM are not equal. xM is chosen to be

x;„=d;„/d,
„

in which we recall that d;„is the value
of d at which hT, or P, has a minimum. From Ref. 9
(see also Fig. 1), we have xl=x;„=0.57. From rela-
tion (25), we conclude that 5 is indeed the natural match-
ing constant needed to satisfy condition (26). We obtain
5 =0.0264.

F. Critical frequencies

When the steady state loses its stability to a time-
dependent state, oscillations occur at a given basic fre-

We observe that (23) and (24) do not contain the un-
known g any more and that the other four unknown ele-
ments are now incorporated in a single unknown element
5. Also, thermophysical properties have been eliminated
in the process. Hence our model leads to a universal
profile for the onset of oscillatory behavior, in agreement
with the experiments carried out so far. ' We notice
that (24) is implicit and must be solved numerically, lead-

ing to two critical values y „' and y, (y,' (y„)for a given

x, up to x=1 (d=d,„)where y,' =y, =1 [AT,
=b,T„(d,„)].

The model relies on two different analyses depending
on whether d is small ((d;„)or is large (d )d;„).
Hence, matching is required. For the sake of simplicity,
we accept a nonanalytical matching at a chosen value of
x =XM defined by the condition

in which t, + is the value of t, on BL1.
For later comparisons with experiments, we again need

a new dimensionless frequency variable that we define by
using critical frequency f, at d =d,„:

z=f/f, (d,„). (30)

max
( +1) (d )

~e 2/3

(q+1)Z, C)
(31)

in which C= ~I ~/(arpogKr) contains thermophysical
properties. It is then easy to establish that critical re-
duced frequencies z, are given by

1/3
3 5

small d (32)

2
( )1/3

large d .
X

(33)

In (33), z, is a double-valued function of x as y, (x).
In establishing (32), constant 5 is first actually found to be
E, /k„ i.e., a matching constant for frequencies. In
practice, we did not find it useful to introduce a second
matching constant and simply set K, /k& =5. Again, we
observe that the unknown y has disappeared and that
(32) and (33) no longer contain thermophysical proper-
ties, thus providing again universal functions as
confirmed by experiments. '

G. A linear oscillator to model bifurcation on BL1

The above model agrees with experiments to describe
the BL1 bifurcation (Sec. IV). To understand secondary
instabilities inside BL1, the use of ODE s, i.e., of a
dynamical system, is required. We first need a linear
differential equation which must be equivalent to the de-
scribed model. In writing this equation, we observe that
we are interested in reduced critical quantities y„/z, [re-
lations (23), (24), (32), and (33)] which do not contain the
unknown quantity g any more, i.e., we may set g= 1.

We associate a mechanical oscillator with the free sur-

Expressing t, versus x and y for large d's, then specify-
ing that x and y are linked by (24) on BL1, and by using
(29), we determine
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face and call g the deformation of the free surface above
the heating source, the vertical axis oriented positively
upwards. The linear equation of the mechanical oscilla-
tor may then be written as

y =0 and 2.3 (the largest y value considered in HBE's ex-
periments ). The limit cycle amplitude is here defined as
r„=lirn, „r& in which r& is the value of r in the
Poincare section X=

[ r ER+
~
r =0 ] .

dg dg—p +co (=0,
dt

(34) I. The model for secondary instabilities

with

1 1p= R —1
(35)

2'
t]+t2

(36)

In Eq. (34), p is a bifurcation control parameter. For
p&0 (R &1), the system evolves to a fixed point. At
ju=0, eigenvalues of (34} are a pair of conjugated com-
plex numbers A, , z=( —co )'~. When p changes from
negative to positive, the pair of eigenvalues of the stable
focus for p &0 crosses the imaginary axis to produce an
unstable focus, from which oscillations grow without any
limit. The marginality condition is then @=0,i.e., R =1,
preserving our conclusions concerning critical y, 's. Re-
lation (36} ensures that the frequency of the system is

1/(t, +t~), preserving also our conclusions concerning
critical z, 's.

With d as a unit of length and t, as a unit of time, we
introduce r =g/d and an overdot to designate dimension-
less time derivation t

&
/(d /dt ). Equation (34) then be-

comes
'2

2mR'r' —(R —1)r+' r=O,R+1 (37)

which is equivalent to a one-parameter R (x,y ) two-
dimensional dynamical system in phase space
(r, r ) = (y &,y& ).

H. A nonlinear oscillator (Hopf bifurcation)

Actually, nonlinearities must be added to (37) to
prevent oscillatory motion to grow without any limit
when R & 1. Due to a large degree of arbitrariness, we do
not give extensive details but present our result as an an-
satz:

y& =y2

yz = (R —1)yz —R '(sinhy& —
yz )—

'2
2mR

R+1 sinhy, ~

(38)

We may check that the added nonlinear function
f(y „yz) tends to zero when y „ye~0. When instability
occurs (R ) 1), the system evolves to an attracting limit
cycle. At R =1, the fixed point loses its stability through
a supercritical Hopf bifurcation. Prefactor R' accounts
for the fact that we expect the nonlinear cornplernentary
damping term to depend on R as does the linear term.
Exponent a could be taken as equal to 1 but has been ac-
tually adjusted to 1.4. This value leads to a matching of
cycle limit amplitudes inside BL1 at x =xl (Sec. III E)
and y =1.15 which is the arithmetic mean value between

Tst
(39)

in which T„is the steady temperature in the absence of
instability, T, the ambient temperature above the free
surface, and T the actual time-dependent temperature. s
ranges from 0 (steady case) to — 1 (T= T„maximal
cooling by Marangoni convective flow).

The steady temperature difference ET=T„—T, must
be replaced by a time-dependent temperature difference
AT'= T T„which is also—, from (39), b T(1+s). For d
small, R is proportional to ATd [relation (11)]. For large
d, it is proportional to AT' with also an exponential
term containing d hT which further decreases the value
of R [relation (12)]. Hence correction (1+s) intervenes
as 1+s for d small but only as (1+s )' with exponential
correction for d large. We may consequently expect that
secondary instabilities are more likely to occur for small
d than for large d. As a matter of fact, the structure of R
for large d even limits the occurrence of the primary in-

System (38) is basically a model for HWE's in which
the temperature at the heating source is fixed. In the pla-
nar phase space (y, ,yz), nonwandering sets may only be
fixed points, closed orbits, heteroclinic and homoclinic
cycles (Ref. 1, Sec. 1.8), i.e., secondary instabilities ob-
served in HBE's cannot be produced by this model. At
first, we believed that this fact also explained the absence
of secondary instabilities in HWE s because hot-wire tem-
perature is controlled at a fixed value. Afterwards, we
realized that the HWE's geometry is rather particular in-
sofar as the hot-wire is a one-dimensional (1D) singular
line embedded in a 3D fluid, and that, even if the temper-
ature is fixed on this 1D line, it is allowed to change in a
3D neighborhood of it. Consequently, we could expect
similar secondary instabilities both in HBE's and HWE's.
More recent HWE's and interpretation (unpublished)
showed that actually the range of y, 's investigated in
HWE's is too small to reach the domain of secondary in-
stabilities. In both cases (HBE's and HWE's), the maxi-
mal value of investigated y, 's was limited by phenomena
such as boiling or production of bubbles. However, the
spectroscopy cell used in HBE's was sealed while the
HWE's were carried out at atmospheric pressure. Due to
the increase of pressure in the sealed spectroscopy cell,
higher y, 's would be allowed in HBE's than in HWE's.
More experiments are planned to check the validity of
this discussion.

In any case, to produce a model with secondary insta-
bilities as observed in HBE s we must increase the dimen-
sion of phase space. The new dimension is 3 by adding a
new variable linked to temperature at the heating source
which is not fixed any more. This variable s =y3 must be
dimensionless and is defined by
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stability (Hopf bifurcation) since for d )d,„,the system
is always steady. When d is large, the distance between
the free surface and the heating source leads to the ex-
istence of a screening effect. These remarks are in agree-
ment with experiments because secondary instabilities
have only been observed for d srna11. Then, only this case
rs now discussed.

When oscillations of the free surface occur in HBE's,
distance d becomes d(1+r) and temperature difference
becomes b T(1+s). Since R =Atd, the new mechanical
oscillator is simply deduced from the old one in (38) by
changing R to

R'=R(1+r)(l+s) . (40)

It remains to model a third equation y&
=f3(r, r', s) for

what we shall call, perhaps improperly, a thermal oscilla-
tor. This is the most diScult task in which some arbi-
trariness will be again introduced. We start from the
temperature equation

r}T+U dT ~ 8 T+S
t}t i gx gxzJ J

(41)

with classical notations, S being the laser heating source
term. We note that no source term S appeared in the
previous model in 2D phase space because it was ex-
pressed in terms of b, T/AT, (d,„)or P/P, (dm, „).The
explicit introduction of S is, however, now required. We
also remark that the heat transfer to the liquid in HWE's
is expected to depend on fluid velocity while in HBE's
there is a constant heat production in the liquid when the
system is steady. For such a steady state (r}T/t}t=0),
with d small (convection neglected, t, is a diffusion time),
we may evaluate source S by

(42)

In the oscillating case inside BL1, the convection term
must be preserved due to the cooling Marangoni convec-
tion and the source term must be modified because
modifications of temperature T associated with
modifications of temperature gradients BT/Bx influence

the focus of the laser beam (thermal lens effect). The
source term consequently becomes time-dependent:

S'=H(t)S . (43)

Equation (41) may be rewritten as

B2T
+C, =Kz. +H(t)S,

X~

(44)

where C, is a convection term. The diffusion term in (44)

may be evaluated as

T T—K~
d (1+r)

in which the appropriate length scale is now d(1+r ) in-

stead of d.
From (44}, (45), and (42), we obtain

—C, . (46)

Introducing in (46) the definition (39) of s, and taking
t, =d /Kz- as a unit of time to express the dimensionless
time derivative (overdot), (46) is translated into

1+ss= H(t)—
(1+r )

(47)

The evolution (47) of the thermal oscillator is then con-
trolled by a net source term (laser heating minus diffusion
loss) and a cooling Marangoni convection term. To mod-
el the convection term C2, we note that it must have the
form [see convection term in (41)]

uf(s)
2 (48)

Further justifications for this proposal are as follows.
If ~R —l~ and 'r~ were made dimensional again, (49)
would ensure that ~ is a velocity, not (for instance) the
square of velocity. R —1 is used rather than R to better
ensure that scale ~~ decreases to zero when we approach
Hopf bifurcation on BL1. The choice of modulus ~R

—
1~

instead of R —1 enables us to observe the approach to the
fixed point when R (1. Finally, introduction of ~r'~ in-

stead of r' produces a real positive o in agreement with
the fact that the liquid is driven upward by Marangoni
effect.

To model f(s), we rely on a picture of convection ob-
tained from numerical integration of the full PDE's (Ref.
20) (which is, however, in agreement with a common
sense of physics). Streamlines leave the heating source to
move upward, split to a double eddy when approaching
the surface, and return to the heating source location
from below. Cooling occurs along streamlines and the
fluid returning to the heating source is cold. Hot fluid at
the heating source being very eSciently swept by convec-
tion and replaced by cold fluid at temperature
= T, (s = —1), ~

As
~

on the streamline is of the order of 1

when T is about T„.Conversely, when efBcient cooling
has occurred and T=T„i.e., s = —1, further cooling is
ineScient because it mainly results from heat diffusion.
This discussion suggests that we may propose

f(s)=1+s (50)

in which m must be odd to ensure f(s ) (max
~
hs

~

= 1 and

in which ~ is a dimensionless velocity scale (associated
with UJ }, X a dimensionless length scale (associated with
derivative with respect to x ), and f(s ) a dimensionless
function of s (associated with quantity T to be derived).

For ~, we own two relevant scales. The first one is the
dimensionless Marangoni velocity VM=R [relation (11)
with k~/kz= 1] representing a constant overall convec-
tion velocity due to drag exerted by the free surface on
the underlying liquid. It must be modulated by a second
time-dependent velocity which is simply the free surface
velocity r. A good candidate is then

(49}
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1+s p pp

( I+r )
(51)

in which again the exact value 0.70 of the exponent is not
critical. It simply controls the location of fatal bifurca-
tions in the control plane (see Sec. IV F).

Assembling all the results of this subsection, we obtain
the following two-parameters (R,y) three-dimensional
dynamical system in phase space (r, r', s ) =(y „y2,y3 ):

very large to ensure efficient cooling except when s ap-
proaches —1. In practice, m has been set equal to 5001,
essentially providing a sharp cutoff. The precise value is
not essential. When m decreases, we simply numerically
observe that the richness of secondary instabilities pro-
gressively disappears. When s =0 ( T=T„),f(s ) = 1

and cooling convection is the most efficient. Even for
s = —0.999, this efficiency is only decreased by less than
1%. Finally, for s = —1 (T= T, ), no cooling occurs at
all.

For scale length X, our qualitative picture of convec-
tion leads to X =1 with d as a unit of length, completing
the modeling of C2 [relation (48)].

We still have to discuss H(t) in relation (47). We
found the task of modeling H(t ) rather difficult. In this
paper, we shall be content with a very approximate solu-
tion to this problem. We note that we expect H=H(y )

since focus and loss of focus effects are expected to de-
pend on laser power and also H & 1 due to a better focus
when s decreases. Neglecting the fact that BH/BtAO,
the above remarks are approximately satisfied if we
abruptly propose to replace the source term of (47) by

HBE's

Model
BL1

2

matching

location

0.2 0.4 0.6 0.8 1.0 x

FIG. 3. Critical thermal constraints y~ vs reduced distance x
for Hopf bifurcation. Comparisons between model and HBE's.

B. Critical z + 's for Hopf bifurcation

C. Oscillation amplitudes inside BL1

Similarly, experimental results from Refs. 9 and 15 are
reexpressed as z, (x) with f, (d,„)=0.51 Hz. Theoreti-
cal values are obtained from (32) and (33),y„'sin (33) be-
ing previously computed from (23). Comparisons are
shown in Fig. 4 and found again to be very satisfactory.
Agreement with HWE's would also be satisfactory due to
similarity between HBE's and HWE's. '

y& =y2

yz=(R' —1)y2 —R' ' (sinhy2 —y2)—

in which R ' is given by relation (40).

2
2mR

'

sinhy, ,

(52)

Neglecting secondary instabilities inside BL1, this sub-
section and the next one examine whether nonlinear
dynamical system (38) correctly reproduces experimental
data concerning oscillation amplitudes and frequencies
inside BL1, in order to test whether our proposal for non-
linearities is acceptable.

Measurements in HBE's have been carried out for
several P's, from 34 to 400 mW. To limit the number of

IV. MODEL RESULTS AND COMPARISONS
WITH EXPERIMENTS

A. Critical y ~ 's for Hopf bifurcation

We refer to HBE's. ' In this case, the meaning of y,
is P, /P, (d,„).Experimental values for d,„,P, (d,„)
are 2.72 mm and 173 mW, respectively (see Fig. 1). Re-
sults froin Refs. 9 and 15 expressed as P, (d) are then
reexpressed as y, (x). Theoretical values are obtained
from (23) and (24). Comparisons between experimental
and theoretical values are shown in Fig. 3. Agreement is
very satisfactory.

Furthermore, having shown in Ref. 9 that experimen-
tal data for HBE's and for HWE's with oil labeled 47V5
are similar and in Ref. 18 that all data for HWE's, what-
ever the oil, are also similar, it follows that the model
correctly explains both HBE's and HWE's simultaneous-
ly.

~ HBE s
model

matching location

Q5

FIG. 4. Critical reduced frequencies z~ vs reduced distance x
for Hopf bifurcation. Comparisons between model and HBE's.
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figures, we only discuss measurements for P = 140
m%, " i.e., y=0. 8092. For this value, we compute R
for d small and d large according to readily established
formulas:

AdB,

"code

0-

-10-

~ oe
~ ~+ +C ~ ~ ~ ~

~ ~
~ ~

1/32
e

x
R=

( )1/3
x

xy, small d

exp( —
—,'yx ), large d (54)

-20-

-30-

y -0.8092
~ A, HBE s
—model

r„=r„(1—x)+r„x. (55)

Results are shown in Fig. 5 exemplifying the good
quality of matching in nonlinear domain generated by ex-
ponent a=1.4 in (38) and averaging process (55). To
compare with experimental data, we use r„(afree sur-
face deformation). Comparison cannot, however, be
direct because free surface deformations could not be
measured. The amplitudes of oscillations were measured
through amplitudes A ~& of the fundamental frequency in
Fourier Transform spectra of signals obtained by track-
ing variations of laser light intensities beyond the cell. It
makes sense to compare r „(actually r „~a= 10 log, or ~ )

and A~~ because oscillations of the laser beam originate

in which we specify y= 1 (Sec. III G). Also, computing
R

„

from (53) by using (23), we find that (k
&

/k& ) = 1, i.e.,
the unknown constants k, , kz disappear from (53).

With the obtained R values, (38) is integrated by using
a fourth-order Runge-Kutta algorithm and limit cycle
amplitudes are measured by r

„

in Poincare section
X=Ir&R+~r =0I, 'see Sec. IIIH. We call r„and r„,r„val ues obtained for small d and large d, respectively.
Matching in nonlinear domain inside BL1 is defined by
considering the natural average:

-40-

-50-

0.1 0.3
I

0.5 0.7 0.9

FIG. 6. Amplitudes of limit cycles inside CT1. Comparisons
between model (2D dynamical system) and HBE's.

D. Frequencies inside CT1

Integrating (38), we also obtain T„=lim, „Tin
which T is the dimensionless return time to Poincare sec-
tion X. With variable z defined in Sec. III F, relation (30),
we readily show that theoretical z's are given by

from oscillations in the fluid which are strongly correlat-
ed with free surface oscillations. After applying a drift of
30.46 dB to experimental 3&B, the comparison is
displayed in Fig. 6. The similarity between model and ex-
periments is striking. In both cases, increase and de-
crease of oscillations near the frontiers of the Hopf bifur-
cation are very abrupt, with a rather flat plateau in be-
tween.

0.6-

0.5-
I

0.4

y = 0.8092, model

' &a)
d

2 fg)
D

3 matching, r~ zd= '

X+1 ~~

k)

X+1 y
X e

1/3
3 1

small d
T x

exp( —,'yx i
)

large d

(56)

(57)

0.3-

I

0.2-
I

0.1-
'-O~»dO3 Qp andQ3

01 0.5

FIG. 5. Amplitudes of limit cycles inside CTl for 2D dynam-
ical system. There is matching between domains "x small" and
"x large. "

in which we also specify g=1 and recall that I( &/k& is
the matching constant 6. %'e may again define a matched
zby

z =z&(1 —x )+zDx . (58)

Experimental data in Ref. 9 are reexpressed as z(x )

and comparisons are shown in Fig. 7. Agreement be-
tween experimental data and matched z s is very good.
The modifications introduced by secondary instabilities
(SI), not introduced here in model results, are indicated
on experimental data.
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I

I

) ~

I4

y = 0.8092
Q1 zd
Q*o
Q3 z, matched model

HBE s

==. .Q2

I

0.1
I I

0.5 1 x

FIG.G. 7. Reduced frequencies vs reduced distance inside CT1
for 2D dynamical system. Matching between domains "x
small" and "x large. " Comparisons between model and HBE's.

which BL1 (model) is also reported.
After BL1, we successively encounter curves BL2

BL3 BL4 . . ., ~ . . , each one corresponding to a period dou-
blining of limit cycles (notation p, designates a signal of
period i in X ), leading eventually to three chaotic
domains, presumably after infinite Feigenbaum subhar-
monic cascades. Points labeled C designate chaotic sig-
nals characterized by a noisy continuous background in
FFT spectra, on which some periodic peaks may possibly
still remain visible corresponding to inverse cascades and
band chaos as in unimodal maps. Points labeled
P3, P6, P,0, P, 2 indicate the existence of periodic win-
dows. Intermittency can also be observed in chaotic
domains. Figures 9 and 10 show two examples of what
appears numerically to be strange chaotic attractors, the
first one for x =0.2, y=2. 0 in the rightmost chaotic
domain, the second one for x =0.16, y =1.4 in the bot-
tom chaotic domain. We also observe a line FB of fatal
bifurcations discussed below.

F. Fatal bifurcations

E. State diagram for the 3D dynamical system

The 3D dynamical system (52) is integrated by using a
fourth-order Runge-Kutta algorithm again. The state of
the system is determined by examining an asymptotic se-

quence of sz in which sz is the value of s in a Poincare
section X=

[
r' ER, s B [0, —1]

~

r = 0 ] and/or by carry-
ing out a discrete FFT on this sequence. The model state
diagram is displayed in Fig. 8 (restricted to small x) in

When the deformation of the free surface becomes too
large [y(1)( —1], R' in (52) becomes negative and the
system is no longer definite due to the factor R ' ' . This
corresponds to a violent motion of the surface which
would be bent down to expose the heat source in air. We
call such an event "fatal. "

Relying on numerical computations, we found that in-
si e a ine FB fatal events are sure to occur. W t te sae

a the asymptotic state of the system is non definite
with an infinite basin of attraction. Outside FB, two

7

3

0.010 0.050 0.100 0.150 0.200 0.250 X

FIG. 8.. State diagram for the two-control {x,y ) 3D model.
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..o.8O

ext

.;0.84 Q90-

Y2

0.4

Y)

FIG. 9. A (presumably} strange chaotic attractor. x=0.2,
y =2.0.

asymptotic states are possible, definite or nondefinite, de-
pending on initial conditions. The basin of attraction of
the definite state is not infinite. When we approach line
FB from outside, the basin of attraction of the definite
state shrinks to zero and disappears on FB.

Approaching FB, we observe in Fig. 8 that definite
asymptotic states are of the kind p2 in X, with return
times T

&
and T2 ( T, (T2 ). Due to shrinking of the

definite state basin of attraction, the approach to FB is
studied by an adiabatic marching procedure, i.e., we fixed
x and increased y, initial conditions for the nth run being
asymptotic conditions of the (n —1)th run. T, is essen-

tially unaffected when approaching FB while T2 seeming-

ly tends towards infinity, faster than exp(y), leading to
unaffordable CPU's to locate the critical yFB's of fatal bi-
furcations. Critical y„B'sare then evaluated by extrapo-

Y3

Y2.4

FIG. 10. Another strange chaotic attractor. x =0. 16,

y =1.4.

2.40 2.45 2.47 y

FIG. 11. r,„tvs y for x =0.09. Approach to a fatal bifurca-
tion.

lating r,„,(y) to r,„,= —1, r,„,being min(y~ ) during a
run. An example is given for x =0.09 in Fig. 11 leading
to yFB ——2.47.

G. Stewart's program

Stewart's program defines criteria for comparing the
asymptotic behavior of a true system (here experimental
HBE's and HWE's) with its model. Most of this program
has been completed in this paper. Both the true system
and its model have a steady state separated from oscilla-
tion states by a supercritical Hopf bifurcation. This bi-
furcation is described in a 2D phase space required for
Hopf bifurcation in normal form with two control pa-
rameters (x,y) which are actually absorbed in a single
one R.

The Hopf bifurcations in the true system and its model
agree not only qualitatively but also quantitatively, as
shown in Figs. 3 and 4 and in Figs. 6 and 7. For secon-
dary instabilities, the model is a 3D dynamical system
with two parameters (x,y ) which explains why they only
occur for small d. Comparison between Figs. 1 and 8
shows a fair degree of resemblance between the model
and the true system. Even something similar to fatal bi-
furcations is observed in the true system. In the model,
fatal bifurcations occur when the laser power increases by
producing too much violent motion of the free surface.
In the true system they occur, for instance, because the
increase of laser power leads to liquid boiling, destroying
the system under study and limiting experiments when y
increases. All these positive results have been obtained
with a remarkable economy of physical and mathemati-
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cal tools, particularly when we consider the complexity of
the true system defined by intricate coupled nonlinear
PDE's with a high lack of symmetry.

Clearly, a model is not a simulation and we do not real-
ly believe that all the model ingredients will resist future
experiments and developments. However, we have cer-
tainly reached a fair understanding of experimental phe-
nornena, much better than what has been hitherto possi-
ble. The most significant disagreement between Figs. 1

and 8 is due to the fact that the model fails to predict
quasiperiodicity and associated hysteresis. Several lines
of research may be proposed to improve the model and
reduce this disagreement. A first one concerns our poor
modeling of H(t ) in which we assumed r}H /dt =0. Qual-
itatively, if we satisfied BH/Bt&0, we should have to in-
troduce a characteristic time of thermal oscillator associ-
ated with relaxation in focusing and defoeusing of laser
beam when s evolves. Quasiperiodicity might then result
from the interplay between this relaxation time and the
period of the mechanical oscillator. Another possibility
is that the local system of mechanical and thermal oscil-
lators could be forced by propagating waves reflected by
cell walls and therefore returning to the space domain
where they have been generated. Dynamical system (52)
would then become a nonautonomous system equivalent
to an autonomous one in R . A last idea might be to in-
troduce a hydrodynamic oscillator coupling with the os-
cillators of (52). The existence of such a hydrodynamic
oscillator is reported by Bazhenov et aL, who observed
in several cases a periodic creation of vortices near the
main jet of flow. Phase space would then become R .
These questions open the way to more research in model
developments and also in experiments.

Although chaos is not observed in Fig. 1, HBE's may
evolve towards it (Ref. 8 and unpublished experiments).
Besides qualitative observation that both the true system
and its model produce chaos, Stewart's program leads us
to ask how chaos of the true system and its model com-
pares quantitatively. For the sake of later comparison
with planned experiments, Sec. V is devoted to metric
and dynamical characterization of the attractor displayed
in Fig. 9. Another interest is the study of system (52) in

its own right.

V. CHARACTERIZATION OF A STRANGE
CHAOTIC ATTRACTOR

A. Generalities

We now consider the object depicted in Fig. 9. Al-
though Lyapunov exponents have not been quantitatively
determined, we rely on the existence of a noisy back-
ground in frequency domain and on sensitivity to initial
conditions in time domain to state that this object nurner-
ically behaves as a strange chaotic attractor.

Among a host of quantities used to characterize such
attractors, we may select generalized dimensions D and
entropies K defined as follows. Attractor A is par-
titioned into boxes of size I numbered from 1 to M(l).
The probability measure of box i is p;. Generalized di-
mensions D are given by

M(E)

D» = lim ln g p,»/1nl
q

—1~ o
(59)

Next, we consider the probability p(i„iz,. . . , ii, ) of
finding the system in box i, at time t, i2 at time
t+b, t, . . . , ib at time t+(b —1)b,t. Generalized entro-
pies K» (or order-q Kolmogorov entropies) are given by

1K =sup lim
a, L~ b- 1 —

q

ln
l

~
«l2«. . . « lb

p(li). . . )lb)

(60)

in which 8 designates a partition. Furthermore, one
proves that

D +D, K ~K, p&q. (61)

fx(dx(q ) ) =qax(q )
—(q —1)X

X=D,K,
(62)

with, however, warning that the required smoothing of
Xq may prevent the detection of phase-transition-like
critical points for nonhyperbolic attractors.

B. A Grassberger-Procaccia-type algorithm

The reconstructed attractor is produced as follows.
We consider a temporal signal X(t) sampled at times
(t+iht), i integer, and build a vectorial temporal se-
quence X(id, t ) =X(i ) in I". The components of vector
X(i) are (X(i ), X(i —p), . . . , X(i —(n —1)p)), in which
a discrete time j is meant for a time jest. i and p are the
discrete time and the discrete time delay, respectively.

We define a local correlation C, (1) at point X(i) by the
relation

n&I j« IIX(i) X(j)ll ~t1
(63)

in which j ranges from 1 to N, N being the size of the

Box-counting algorithms are inefficient when the frac-
tal dimensions become higher than 2 or 3 (Ref. 35).
Furthermore, in experiments, the true attractor 3 of the
dynamical system is generally not accessible. The origi-
nal attractor A may then be projected into 1R" to provide
a reconstructed attractor A~ having the same D 's,E»'s,
for instance, by using the time-delay method. Gen-
eralized quantities may then be determined (on A or A ~)

by a fixed-radius approach to be recommended for q & 1,
a fixed-mass approach to be recommended for q & 1 (ref.
39) or from the knowledge of unstable periodic orbits
which are dense in the attractor. Fixed-mass
(and/or kth nearest-neighbor method) is discussed in
Refs. 4" "7. In this paper, we use a fixed-radius method
with a Grassberger-Procaccia —type algorithm as dis-
cussed in Refs. 48—53.

Once D 's and E 's are determined (and smoothed),
Legendre transforms enable us to determine singularity
spectra fD(aD) and

fir�(ax),

respectively,

ax(q)= „[(q—1)X, l
=d

dq
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temporal sequence (the number of vectors in it}.
~~ ~~

is a
norm to compute the distance between vectors X(i) and
X(j). In this work, we use the oo norm (maximum
among the absolute values of the component differences).

Spatially averaging local correlation moments, we
define the order-q correlations Cq(l ) as

m

C (I }=—g CP '(I), q&1 .
m, .

For q =1, we define the order-1 correlation C&(l ) as
' 1/rnm

C)(l)= g C;(I)

(64)

(65)

Assuming that the measure is ergodic on the attractor,
we then show that

lim C~(I ) =r QD

1~0
(66)

K"= ln[C "(I)/C"+'(I )],1
(67)

in which Q is q
—1 for q%1 and 1 for q = l. In practice,

size N of the temporal sequence and number m of central
vectors are finite (with preferably m ((N ) preventing the
reaching of the limit I ~0 in (66). This scaling relation is
then only observed in a finite domain (I,„,I,, „)of I.
Correlations C are evaluated at discrete values I, of I in

(I;„,I,„),separated by equal distances in logarithmic
scales. Local slopes D (I; ) are computed and averaged to
evaluate D . An insight on the accuracy of the results is
obtained from the standard mean deviation aD of local
slope values, although this value of crD must not be taken
too seriously due, for instance, to lacunarity effects. '

The algorithm to evaluate D 's on the original attrac-
tor A is similar but for the fact that the trajectory vector
X(i) must now be the trajectory vector in the original
phase space [here y, (t ), relation (52)].

Evaluation of K 's is obtained by computing correla-
tion C s in phase spaces of increasing dimensions in scal-
ing domains (I;„,I,„).Noting C" for C computed in
IR", we define

analysis). In our work, we use a simple pragmatic ap-
proach relying on the observation that the value of the
window length ( n —1 )p b, t is the determinant parameter
for the quality of the reconstruction. We choose
reasonable values for p and ht, namely, At =0.01 provid-
ing about 250 sampling points per pseudoperiod To =2.5
[remember that time in (52) is dimensionless], and p =6
corresponding to a temporal distance pb, t of about To/40
between two successive components of reconstructed tra-
jectory vectors. These values and the procedure under
discussion have been tested in the case of the Lorentz at-
tractor, leading to perfect agreement with data in the
literature. To determine the window length, we are now
left with the determination of an optimal value of n. Fig-
ure 12 shows local slopes D2(l ) with variable yi for vari-
ous n, computations being carried out with a small reso-
lution (N, m)=(50000, 200). We choose to display Di
because this dimension (the so-called correlation dimen-
sion) is maybe the most typical (and employed). Only
some curves are provided but computations have been
carried out by steps An=5 from n=5 to 100. With
D2—-2 (see below), the so-called Takens criterion states
that n must be at least =2D2+1=5. For n =5, Fig. 12
shows that the reconstruction is poor. For n =10, we ob-
serve a scaling domain of high quality but dimensions are
severely underestimated. Conversely, for n large the scal-
ing domain dramatically deteriorates. An optimal n is
no=25. For this value, however, D2 is smaller than 2, a
fact which will require a specific discussion below, but
note nevertheless that such a value D2 & 2 is also obtained
when D 's are computed directly in I, without any
reconstruction (see Table I). We also checked that the
optimal no =25 is essentially insensitive to q.

D 's are then computed in IR for y&,y2, y3 with
(N, m ) =(10',2000) and also in R on the original attrac-
tor of Fig. 9. Ideally, the chosen values for (I;„,I,„)
should be given. They are not reproduced in order to
avoid overloading the paper with tables but a feeling of
sealing domain quality may be gained from crD (Table I).
It suffices to add that values of D 's are reasonably in-

in which s is an increment in phase-space dimension.
K 's are then evaluated as

lim Kq: QKq
n —+ 00

(6&)

In practice, finite resolution (N, m ) prevents the reach-
ing of the limit n ~ oo. K "/Q are then averaged on a pla-
teau of K"/Q for n in [n;„,n,„]to evaluate K 's, with
an insight on accuracy provided by a standard mean devi-
ation o &. These algorithms are implemented in comput-
er programs.

p (l)
2
400

320-

2AO-

160-

QSO-

n=
*n= 10
+nm25
+n =100

C. Metric properties of a HBE attractor 0 e I 8 ~ 5 w

-2.82 -2-14 OQ~
The attractor A of Fig. 9 is reconstructed in R" by us-

ing X=y&, y2, and y3 successively. Sophisticated pro-
cedures may be used to provide the best reconstruc-
tion ' (singular value decomposition, redundancy

FIG. 12. Local slopes D2(l ) for reconstructed attractor in IR"

for several n's. Determination of an optimal n. Symbols are
used only to identify curves.
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4
D in IR

3
D in IR

Vz

oD e (%)

1

D in R'

D crD D, oa e (%) Dq0

De�(%)

Dq oD e (%) Dq

TABLE I. Dq vs q, evaluated in R', and in R" with y„y2,V3. Columns 1—4 have resolution (10',2000}. Column 5 has

(2X 10,2000). Dq are given with more digits than allowed by era because o-D is a poor representative of actual accuracy. In columns

2-4 e refer to D, 's in column 1. In column 5, e refers to column 2.

2 5

D in IR' Dq in IR

Vl

—25
—10
—5
—1

0
1

2
3
4
5

6
7
8

9
10
20
30
40

2.36 0.4
2.40 0.3
2.32 0.2
2.073 0.05
2.04 0.1

1.895 0.07
1.848 0.07
1.832 0.07
1.825 0.07
1.823 0.08
1.836 0.08
1.835 0.08
1.833 0.08
1.832 0.08
1.830 0.09
1.81 0.1

1.80 0.1

1.79 0.1

2.11 0.4
2.10 0.3
2.08 0.2
1.991 0.06
1.944 0.04
1.882 0.05
1.864 0.04
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sensitive to reasonable choices of (l;„,I,„).
Examples are given for y& in Figs. 13 (q= —25), 14

(q=2), and 15 (q =40). For q= —25, the accuracy is
very poor, as exhibited in the first line of Table I where
O'D /Dq are 17%, 19%, 8%, 17%, and 14% in columns 1,
2, 3, 4, and 5, respectively. Although we might claim
that these results are too inaccurate to make sense, they
are provided as a limit case for q small. This behavior is
typical of a Grassberger-Procaccia algorithm. It is due to
the fact that smaller q's probe parts of the attractor
where the measure is most rarefied, leading to poor statis-
tics with fixed radii. However, evaluation of Dq's (q (1)
appears to be feasible although with poor accuracy. A

summary of D 's results is given in Fig. 16 and Table I.
This table also provides e%, the relative difference be-
tween D 's in IR and D 's in IR . Focusing on q & 1 for
which the algorithm is the most efficient, we conclude
that the best reconstruction has been obtained with y, (by
examining both relative difterences e% and standard
mean deviations a D ).

The Lyapunov spectrum of a 30 continuous dissipa-
tive chaotic system is of the kind (+,0, —). Associat-
ing a partial dimension D z+ = 1 with the positive
Lyapunov exponent of the unstable direction, another
partial dimension D2=1 with the null Lyapunov ex-
ponent associated with the direction tangent to the flow,

0- 25
0)

3.60-

2.80-

lmax

3.33-
4nin 4nax

2 00- 2.00.

1.20-

040-
0 I

-2.82
I S

-2.14
I-1 log &0 -2.82 -2.44 -1 log~I

FIG. 13. D»(l ) for reconstructed attractor in IR
' with vari-

able V l. Vl ~

FIG. 14. D, (l) for reconstructed attractor in IR '. Variable
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I

28

FIG. 15. D4o(1) for reconstructed attractor in IR '. Variable
FIG. 17, Dq vs q in IR

' with yl. High-resolution computa-
tion.

and another one Dz & 1 with the negative Lyapunov ex-
ponent of the stable direction, we might expect
D, =g, DJ &2.

On the other hand, most data in Table I lead to the
conclusion that Dz (2 both in R and in R, except for
columns 3 (variable yz, 1.85 &Dz &2.05) and 4 (variable

y3, 1.61&D& &2.01) but inaccuracies rJD/D are very

high for these columns. The fact that Dz &2 also for
computations in IR prevents us from invoking a poor
determination of the optimal phase-space dimension
no=25. We may, however, invoke an underestimate of
the Dz value. A first reason may be difficulties inherent
to the algorithm. Quantitatively, if we consider data in
column 1, an underestimate by only about 5% would be
enough to explain the discrepancy. But also, indepen-
dently of algorithmic diSculties, we may invoke addition-
al problems inherent to the structure of the attractor.
Figure 9 shows that the attractor rests on two very Hat

Oq

2A-

bands associated with the cutoff relation (50). Visually,
these bands look like a Cantor structure contained in a
plane, i.e., local (pointwise) dimensions could be expected
to be smaller than 2 in these regions. This statement,
however, relies on a visual feeling which is associated
with large scales l chosen to plot the attractor. Due to
the sharpness of the cutoff, we might also think that the
attractor is there highly compressed in the direction per-
pendicular to the bands. It means that pointwise dimen-
sions could be larger than 2 but that the attractor should
be investigated at very small scales to resolve the fractal
structure in the direction perpendicular to the bands. We
remember that D computations ideally require us to
take the limit l~O which is in practice forbidden.
Therefore the existence of highly compressed bands
would enhance the difhculties associated with this ideal
requirement I~O. For this reason, D computations
may have no meaning if we do not specify the scales used
for the evaluation. We are able to determine D (I ) but

2.3-

2.2-

2.1-

4
~ R', column I

~ R", y1, column 2
* R ~2 colLInn
& R, y3, column 4 2.50-

2.0- 200-
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1.8- 4.50-

1.7
-20 -10 02 10 20 30 40 q i.00-

FIG. 16. D vs q, in IR' and in IR
' (Table I, columns 1-4).

Symbols are placed by starting for computations in I', then for
computations in I ' with yl, y&,y3 successively. Symbols are
omitted when they would overwrite previous ones. Note ex-
panded vertical scales. Smoothing follows results in I and in
R ' fory, .

0.50 1.00 1.50 2.00 2.50

FIG. 18. An evaluation of singularity spectrum fD(aD ) with
artifacts.



42 SIMPLE MODEL FOR BIFURCATIONS RANGING UP TO. . . 5943

(n),
2

'

0.1-

K2 -0.092+0.01

0.02- "max

5 15 25 35 45

1.95 2.40
FIG. 21. K "/Q, q = 2, vs n I =0.0019.

FIG. 19. An evaluation of singularity spectrum fD(aD) after
smoothing of the D, 's. A last artifact branch still appears.

unable to determine Dq =limI oDq(l }. For some attrac-
tors like the one in Fig. 9, this diSculty might be
enhanced by a scale gap between large scales relevant in
most parts of the object and much smaller scales relevant
in squeezed parts like the aforementioned bands. This
discussion can be given another basis by invoking the
concept of effective dimension (Ref. 65, pp. 17 and 18},
i.e., a dimension which is not determined for I ~0 but for
a scale relevant to the location of the observer with

respect to the object or equivalently for a scale relevant
to the visual feeling of the object. The situation might be
similar in the case of the Rossler attractor containing a
spiraling band which appears to remain in a plane near to
and parallel to the (x,y ) plane. For this case, Landa and
Rozenblyum claims Dz =1.88+0.03 for an evaluation
carried out on the original attractor in I . We now
remember that increasing q is equivalent to probe parts of
the attractor where the measure is more concentrated. If
the measure is more concentrated in the cutoff bands,
then D (q) 2) progressively give us a better estimate of
effective pointwise dimensions in these bands (see Table
I). Conversely, for D (q &2), we progressively probe
parts of the attractor outside of these bands and find that
D becomes larger than 2. We must finally also mention

the possibility of a lack of hyperbolicity of the attractor
leading to phase-transition-like phenomena. Such a lack
of hyperbolicity leads to the creation of heavy boxes with
small dimensions. For instance, the smallest singularity
index in the Henon 20 map is n;„=0.85&1. If this
map were lifted to a 3D Row, we would obtain pointwise
dimensions 1.85 (2 for the heaviest boxes. This discus-
sion shows that, due to the existence of sharp cutoff
bands, the attractor in Fig. 9 is an interesting object
which should be more extensively studied in its own
right. Such a study is, however, outside of the scope of
this paper.

Finally, to determine the singularity spectrum fD(aD ),
we compute again D 's with, however, a small step
b, q

=0.25 and very high resolution (X,m )= (2 X 10,2000) for the sake of accuracy. To save
storage, computations are carried out in 1R . We used
the best variable y, as discussed from Table I. The in-
crease of accuracy with respect to the previous run at
small resolution is very apparent for q &1, up to a de-
crease of o D by a factor 4 (see last column in Table I).
The resulting D 's are shown in Fig. 17. We observe
some accidents in which, for instance, relation (61) is not
satisfied. They are associated with modification of the
scaling domains (I;„,I,„)which depend on q. Legendre
transforming these data [(relation (62)], we obtain the
spectrum of Fig. 18 which, however, contains artifacts
produced by accidents in Fig. 17. The overall theoretical
shape of a fD(aD) spectrum is, however, well recog-

2K
1.50

01-

~ K =0.134+0.008
1.50

0.1-

Q02-
min nmax

0.02-

K5 =0.057+ 0.01

nmin "max
5 15 25 35 45

FIG 20. Kq/Q, q=1.50, vs n, 1=0.0Q19.

5 15 25 35 45

FIG. 22. K"/Q, q
= 5, vs n, l =Q. QQ19.
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0.03-
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QOO 0.03 0.06 G09 012 0.15 i~

FIG. 24. Singularity spectrum fl; (az ).

6 q

FIG. 23. Kq vsq.

nized. ' After smoothing data from Fig. 17, we obtain
the spectrum displayed in Fig. 19. There remains an ar-
tifact branch for large a's associated with an excess of
fatness at small q's in Fig. 17. We note that, in both
Figs. 18 and 19, the bisector line is tangent to the spec-
trum as it should be. This occurs for q = 1 with
a n(1)=f n[a n(1)]=D, [relation (62)]. The maximum

fn(an) of the nonartifact convex part of the profile indi-
cates fL, =Dc, the Hausdorff dimension of the set.

D. Dynamical properties of a HBE attractor

K 's are computed in lR for the best variable y, . Dis-
tance l in (67) is taken equal to 0.0054 and 0.0019 for

q ~ 1.25 and q ~ 1.25, respectively, corresponding to the
arithmetic average of logarithms of the scaling domain
frontiers lm;„and lm» in Dq computations at very high
resolution. Increment s is 3. After preliminary runs, a
final run is carried out with hq =0.25, a high resolution
(N, m )=(2 X 10,2000), p =24, ht =0.05 and n increased
from 10 to 45. The window length (n —1) pht then
ranges from about 4TO to 20TO, in which To is again a
typical pseudoperiod.

Figures 20-22 show examples of K"/Q [relation (68)]
for q=1.50, 2, and 5 with l=0.0019. Accounting for
the fact that K computations are notoriously more
diScult than for D 's, the quality of the plateau is not
very bad for q=2 leading to Kq=0. 092 with o.z =0.01.
For q =1.50, an evaluation of K is also possible but be-
comes very insecure for smaller q's. For q & 2, deteriora-
tion of the plateau is very fast as exemplified in Fig. 22
for q = 5. Values of [n;„,n,„]used for averaging K "/Q
are also indicated in figures. Similarly, a few K s

(q ~ 1.25) can be evaluated with 1=0.0054 but only on a
very limited range of q's. Limiting our results to the
cases when o.Q/Kq is smaller than about 25%, we obtain
data given in Fig. 23. Legendre transforming, we obtain

a singularity spectrum fthm(att) shown in Fig. 24. We
omitted an artifact of negative fthm's at sinall ax's associ-
ated with inaccuracies in K 's at large q's in Fig. 23.
Again, the bisector line is tangent to fx(att ) as it should

be, but the right downward branch of the profile is nearly
fully missed.

VI. CONCLUSION

This paper has been devoted to the understanding of a
new dissipative nonlinear thermodynamical system in
which heating a liquid below a free surface by using a
laser (HBE's) or a hot wire (HWE's) produces a rich set
of bifurcations up to chaos. Although too complex to
handle correctly the PDE's defining it, the true system
can be reduced to a model dynamical system with two
controls evolving in a 3D phase space. The agreement
between the true system and the model is very good for
the first bifurcation of the system (a Hopf bifurcation).
For secondary instabilities, the true system and model
show a fair resemblance, leading us to the conclusion that
we have reached a good understanding of thermal lens os-
cillations and associated hot-wire experiments, at least
much better than hitherto possible, with a remarkable
economy of mathematical tools. The lack of quasiperiod-
icity and associated hysteresis in the model, however, in-
dicates that some physical ingredients remain to be
identified. Also, metric and dynamical properties (gen-
eralized dimensions and entropies, and associated singu-
larity spectra) of a strange chaotic attractor generated by
the model have been investigated. Due to the existence
of sharp cutof bands, this attractor appears to be an in-
teresting object for which the interest of an extensive
study in its own right is warranted.
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