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Diffusion and reaction in a lamellar system: Self-similarity with finite rates of reaction
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The evolution of an imperfectly mixed system —mimicked in terms of a distribution of
lamellae —is studied. Two reactants A and B, initially placed in alternate striations, diffuse and un-

dergo a reaction A+B~2P with intrinsic rate r=k„(c„c&) . Simulations, scaling analysis, and
space-averaged (fractal) kinetics are used to study the evolution of the system for different values of
a and k„. For a =1 and short times, a model based on the dynamics of reaction for a single lamella
with infinite neighbors predicts the overall rate of reaction. For a &2.5, diffusion takes control of
the dynamics for moderate to large times, and the kinetic parameters become irrelevant. Under
these conditions, critical self-organization determines the behavior of the system, and the spatial
structure evolves into a self-similar form that is independent of both k„and initial conditions.
En route to scaling, the system undergoes two independent transitions: (i) from intrinsic chemical
kinetics control to diffusion control, and (ii) from a system with several characteristic lengths to a
system with only one characteristic length; these transitions might occur in any order, depending on
controlling parameters. A combination of both short- and long-time regimes gives an efficient pre-
diction for the average concentration of reactants for all times.

INTRODUCTION

Most of the essential aspects of mixing of miscible
reacting Auids can be modeled by a one-dimensional ar-
ray of striations, undergoing stretching and folding—
capturing the Quid-mechanical aspects of the problem-
and superposed to this fabric, diffusion and reaction. '

This approach is the backbone of the lamellar model
which assumes that at time t =0, the reactants are ar-
ranged in a one-dimensional lamellar structure previously
generated by the fiuid mechanics (Fig. 1). After that,
Quid motion stretches the striations, reducing the
diffusional distances and increasing the contact area. In
the most general case, both the evolution of the concen-
tration field and the overall rate of reaction depend on
mechanical mixing (stretching and folding), as well as on
molecular diffusion and chemical kinetics.

In previous work, ' we developed an algorithm that
simulates lamellar systems undergoing an infinitely fast
reaction. We found that the system organizes itself into a
self-similar, time-invariant structure characterized by a
scaling striation-thickness distribution (STD) which be-
comes asymptotically independent of the initial condi-
tions. In this paper, we use a similar algorithm to simu-
late systems with finite rates of reaction; we explore the
effects of the initial conditions mimicking imperfect mix-
ing, the rate of reaction, and the reaction order on the
evolution of the system. For simplicity, we uncouple the
fiuid mechanics from diffusion and reaction: the only
role assigned to the fiuid mechanics is to generate the ini-
tial lamellar structure. However, as has been noted in the

past, Quid mechanical stretching can also be incorporated
into the model simply by introducing a transformation of
the time scale. '

The problem is quite rich and several types of evolu-
tion are possible, depending on the relative rates of
stretching, diffusion, and reaction. The simplest situation
occurs when the rate of diffusional mixing is much larger
than the intrinsic rate of reaction; in such a case, the sys-

tem becomes homogeneous before much reaction occurs,
and the overall rate of reaction is determined only by
chemical kinetics. [It is important to distinguish between
the intrinsic (local) and the overall (global) rates of reac-
tion: while the intrinsic rate of reaction is determined

FIG. 1. Initial condition of an idealized one-dimensional
lamellar system with distributed thicknesses; the thicknesses
obey a prescribed distribution, but their sequence is random.
Black and white regions represent alternate lamellae of A and
B.
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Bc, Bc;=D +r, i=A B,
Bt

where c; is the concentration of either A or B at a given
position and time, z is the spatial coordinate in the direc-
tion transverse to the interfaces of the lamellae, and r is
the local rate of reaction. In this paper, we consider rates
of reaction of the form

r = —k„(c„c~)

where k„ is the reaction constant and a ranges from 0.5
to 3. The initial conditions for A and B lamellae are, re-
spectively,

c„(z,O)=C„O, c~(z, O)=0,

c„(z,O) =0, cz(z, O) =Czo,

(3a)

(3b)

and for simplicity we use periodic boundary conditions.
Most of the work in this paper considers bimolecular ki-
netics, that is, +=1.

Equation (1) can be expressed in terms of the dimen-
sionless variables r=t /T, g=z/L, and y, =c; /Co, where
T, L, and Cp are time, length, and concentration scales as
yet undefined. Substitution of Eqs. (2) for a= 1 into Eq.
(1) and transformation of variables yields

only by chemical kinetics, the overall rate of reaction de-
pends also on the spatial distribution of reactants. ] How-
ever, in cases where the rate of reaction is similar to or
larger than the rate of diffusion, it is necessary to simul-
taneously account for mixing and reaction.

Systems involving diffusion and reaction have attracted
considerable attention in recent years within the physics
community. ' Most studies to date can be grouped
into two categories: (i) simulations of particles undergo-
ing a given type of motion and reaction, and (ii) theoreti-
cal studies in terms of correlation functions in Fourier
space. However, from the point of view of investigating
the effects of mixing, both approaches are somewhat im-
practical: in the first approach it is impossible to consid-
er enough particles to be able to characterize in detail
effects such as the initial spatial distribution of reactants,
whereas in the second approach information is lost when
the system is represented in Fourier space. The lamellar
model is able to overcome most of these difficulties; since
this method is based on a direct simulation of the concen-
tration field, it retains a full description of the state of the
system at all times.

A detailed description of the method can be found in a
previous publication. At t =0, two reactants A and B
are placed in alternate lamellae (Fig. 1). The lamellae
have thicknesses distributed according to a prescribed
STD f (s, O), which gives the frequency of occurrence of
lamellae of thickness s at time t =0. The reactants
interdiffuse and undergo a reaction A +B~2P, where P
is an inert product. The diffusion coefficient D is the
same for all species, D =1 in units of length squared di-
vided by unit time.

The evolution of such a system is given by the
diffusion-reaction equation

DT
(4a)

DT ~ ya +k„Cp TypyL2 g(2 " J'g (4b)

In a system where k„=~, species react as soon as they
meet, and the reaction occurs only at reaction planes (in-
terfaces between regions of different reactants). The
overall rate of reaction is given by the product of the
number of reaction planes and the average magnitude of
the concentration gradient of the reactants at the reac-
tion planes. The distribution in striation thickness adds
complexity to the problem: subparts of the system are
stoichiometrically imbalanced, and the planes move. The
motion of the planes causes the spatial structure to evolve
in time; thin lamellae are consumed by thicker neighbors,
which merge into even thicker lamellae.

The spatial distribution of reactants determines the
overall rate of reaction, which obeys two different kinetic
regimes for short and long times.

(i) For short times, most lamellae are much larger than
the diffusional length scale 5(t)=(Dt)', and the concen-
tration gradients at both sides of each reaction plane are
the same as if the lamellae were semi-infinite. The overall
rate of reaction is given by

where the dimensionless quantities DT/L and k, CpT
can be used to define the

diffusion

a time scale
T~ =L /D and the reaction time scale T~ = 1/k„Cp.
The evolution of the system is determined by the values
of Tn and Ttt. systems with the same f (s, O) and the
same second Damkohler number, 2)» = To /T~
=k„CpL /D, evolve in identical manner. '

Because of the initial segregation of A and B, the prod-
uct of c„(z,O) and cz(z, O) is zero everywhere and very
little reaction occurs for short times. The initial evolu-
tion of the concentration field is governed by diffusion,
and during this stage the overall rate of reaction is con-
trolled by the chemical kinetics. If 2)» =0, the system be-
comes homogeneous before significant reaction occurs,
and the chemical kinetics control the overall rate of reac-
tion for all later times. On the other hand, if $»~ ao, A

and B react as soon as they meet, and diffusion controls
the overall rate of reaction for all times. However, for
the wide intermediate case, a characterization of the sys-
tem based on the initial conditions might be misleading
(see also Table 9.1 in Ref. 1.) As time increases, varia-
tions of concentration over small length scales are erased
by diffusion, and the characteristic length scale of the
concentration field increases with time. Simultaneously,
the average concentration of reactants
C[=f c (z, t)dz/f c (x,O)dz] decreases due to the reac-
tion (the conversion X is defined as 1 —C). As a result of
the diffusion-reaction process, both DT/L and k„CoT
decrease with time, and it is uncertain whether diffusion
or chemical kinetics determines the evolution of the sys-
tem for long times.

INFINITE RATES OF REACTION:
SELF-ORGANIZING SCALING BEHA VIOR
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C = —k, C(0)N(t)t
dt

(5a)

where k, =9X10 is a "short-time kinetic coefficient, "
obtained from numerical results, and which is indepen-
dent of the initial conditions. The number of reaction
planes, which is equal to the number of surviving larnel-
lae N ( t ), is given by

s, {t)
ln[N(t)]=ln[N(0)] — f f (s,0)ds,

0
(Sb)

dC(t) N(t)C(t)
dt S(t) (6a)

where k2 =7X 10 is a "long-time kinetic coefficient, "
also a numerical result, and N(t) is given by

N(t)=k, t (6b)

where k3 =0.216 is another numerically determined
coefficient. Substitution of Eq. (6b) into Eq. (6a) pro-
duces

dC(t) ()+k4)/k4
dl'

(7)

a fractal kinetic expression, where k4=k2ki [i.e., C(t)
decays as t r, where y is a "critical" exponent].

In many applications, the rate of reaction is of the
same or smaller magnitude than the rate of diffusional
mixing, and the occurrence of a scaling regime is in ques-
tion. The main objective of this paper is to determine
whether or not scaling survives for k, & ~. We seek to
establish the necessary conditions for the occurrence of
scaling and to quantify the effects of the kinetic parame-
ters a and k„[see Eq. (2)] on the evolution of the system.
In the final section, we develop a model that predicts the
overall rate of reaction for all times.

THE SIMULATION ALGORITHM

The system is simulated by a large array of nodal
points, divided into pieces corresponding to alternating A

lamellae and 8 lamellae. The thicknesses of these lame1-
lae obey the initial STD f (s,0); however, since the lamel-
lae are placed in random order, the thicknesses of neigh-
bors are uncorrelated. At time t =0, nodes in A lame11ae
are assigned c„=1,c~ =0, and nodes in B lamellae are
assigned c„=0, c~=l. The initial concentration scale

Cp is therefore Cp=Cgp=Cgp=1, making c~ =y„and
c&=y&, since c~ and cz are dimensionless and initially
unity, we drop Cp from all subsequent expressions. The

where s; =(tl0 274.7)' Th. e constant 0.2747 is the root
of the transcendental equation erf[s;/(4t)' ]= ,' (—see

Ref. 6).
(ii) For long times, the system has only one indepen-

dent length scale, 5(t) =(Dt)'/, and its structure is
characterized by scaling behavior. The STD evolves into
a self-similar, scale-invariant form that is independent of
the initial conditions. In this regime, the average concen-
tration gradient at the reaction planes is approximately
given by C(t)IS(t), where S(t) is the mean striation
thickness, and the rate of reaction is given by

initial amounts of A and B are identical, and due to the
stoichiometry of the reaction, they remain identical for
all times; nonstoichiometric cases are left for future work.

By contrast with the infinite rate of reaction case, the
STD becomes meaningless once the diffusion-reaction
process starts. As time increases, the reactants
interdiffuse, the striations become blurred, and it be-
comes necessary to characterize the structure of the sys-
tem in a different way. At any given time, the system is
completely described by the concentration profiles
c„(z,t) and ctt(z, t); let us consider one of them, i.e.,

c„(z,t). The profile has a set of local maxima at locations
zl(t) and a set of local minima at locations z (t). We
use zM(t) and z (t) to divide the array into portions
denoted domains, bounded by subsequent maxima and
minima of cz(z, t) Fo. r t =0, zl(0) and z (0) are at the
centers of the lamellae, and the domains can be con-
structed from the striations by adding the contiguous
halves of each pair of neighboring striations. The
thicknesses of the domains, which are the distances be-
tween subsequent maxima and minima of c„(z,t), are
denoted the domain widths w. The values of w are distri-
buted, and we denote this domain width -distribution
(DWD) as h (w, t) Note . the difference between striation
thicknesses (distances at t =0 between locations where

cz =cii =0) and domain widths [distances at any time be-
tween minima and maxima of c„(z,t)]. In the same way
as the STD was used to characterize the structure of sys-
tems with infinite rate of reaction, we use the DWD to
characterize the evolving structure of systems where the
rate of reaction is finite. The mean value of w,

W(t) = f wh ( u), t)du) f h ( u), t)du)
0 0

(8)

is denoted the mean domain width and is used as one of
the characteristic length scales in the system; the other
characteristic length scale is the diffusional length scale
5(t)=(Dt)' . In order to be able to compare simulations
involving different initial STD s, we define the initial
length scale L =S(0)=8'(0)=1 unit length, therefore
making To =L /D =1.

To achieve enough accuracy at the small length scales
initially present in the system, we need to use a large
number of nodal points and a very small time step. Be-
cause of this, the common numerical approaches would
require large amounts of CPU time. Following our previ-
ous work for the infinite rate of reaction case, we use an
algorithm based on the fractional-step method, ' which
solves the diffusion-reaction equation using a two-step
procedure; the first step considers only diffusion and the
second considers only reaction.

In order to complete the simulations within reasonable
computer time, we continuously monitor W(t). Each
time W(t) doubles its initial value W(0), we divide the
system into pairs of nodes, and substitute each pair of
nodes by a single node, which is assigned values of c~, cz,
and cp that are the average of the pair; this operation is
called a contraction. Since each contraction reduces the
thicknesses of all diffusional domains by half, in order to
preserve a consistent time scale, we multiply At by four.
These contractions allow the system to achieve conver-
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sions of 95% and times t = 100 after about 10' iterations.
After vectorizing and optimizing of the code, each simu-
lation is completed in about five hours of CPU time in a
Convex C210. The entire set of calculations reported in
this paper was completed in less than 500 hours of CPU
time.

We check the algorithm in two ways: first, we run
simulations for increasingly large values of k„; as k„ in-
creases, the results from these simulations asymptotically
verify previous results for infinite rate of reaction, a case
for which the split time-step algorithm has been
thoroughly checked. Second, we simulate the system us-
ing a different method where the entire right-hand side of
Eq. (1) is evaluated at once using a fourth-order Runge-
Kutta algorithm (RKA). The results produced by the
RKA are nearly identical to those obtained using the
fractional-step method; the relative errors in the average
concentration obtained by the different methods are
smaller than 1X10 for all times. However, although
the same contractions were implemented in both
methods, simulations using the RKA usually required
about 40 times more CPU time than those using the
fractional-step method. The algorithm reported here en-
abled us to efficiently simulate a very large system under-
going diffusion and reaction, making it possible to consid-
er a distribution of length scales in the imperfectly mixed
initial state.

time for each value of k, and L. In order to compare the
effects of different initial thicknesses for the lamella, for
these simulations we define 1 unit length as equal to 30
nodes.

In the third type of simulation, we consider the effects
of the reaction order on the evolution of the system: for
k, = 100, we explore values of a in the range 0.5 —3.0. Be-
cause of the stiffness introduced by a&1, we integrate the
reaction step in the split time-step algorithm by means of
a RKA. In this case we consider systems composed of
only 200 lamellae (these simulations consume a consider-
able amount of CPU time —20 to 100 hours each —and
the results are based on one simulation for each value of
a). For a(1.0, stiffness is a serious problem; we deal
with it by using an inverse transformation
g;(z, t)= 1/c;(z, t) and solving the reaction step in terms
of y, (z, t).

SCALING BEHAVIOR:
EVOLUTION OF THE DWD

At t =0, the structure of the system is characterized by
the initial DWD, h (w, O). Since a domain of width w is
composed of two half-lamellae whose combined initial
thicknesses add up to 2w, the initial frequency of domains
with width w is given by —,

' f 0 f (s, O)f (2w —s, O)ds. The
normalized h (w, O) is then related to the initial STD by

THE SIMULATIONS

The results in this paper correspond to three types of
simulations. In the first group of simulations we consider
systems composed of 1200 lamellae, undergoing a reac-
tion with bimolecular kinetics. We use three different ini-
tial conditions: (i) a linearly decreasing initial STD
f (s, O)=a bs, (ii) a ra—ndom initial STD in which all
thicknesses between five and 500 nodes occur with the
same frequency, and (iii) a normal (Gaussian) initial STD
with standard deviation of 125 nodes. In order to im-
prove the accuracy of the results, we run several simula-
tions for each set of parameters: for the linear case, we
run ten simulations for each value of k„=1, 10, 100, and
1000; for the random and normal cases, we run ten simu-
lations for k„=10and one for k, =1,100, 1000. Different
simulations corresponding to each initial STD and each
value of k„have the same list of thicknesses ordered in a
different random sequence. We measure the average
concentration C, the total number of domains X, the
mean domain width W, and the DWD as a function of
time. Results presented in this paper are the average for
all the simulations corresponding to each initial STD and
each value of k„.

The second type of simulation concentrates on the dy-
namics of reaction at short times and small length scales.
We study the evolution of a single lamella of one of the
reactants (i.e., A) surrounded by much larger regions of
the other reactant. The local rate of the reaction is again
r = —k„c~cz, and we run simulations for k„=0.3—3000
and for initial thickness L =15—960 nodes. We follow
the evolution of the concentration profiles c, (z, t), and
also measure the overall rate of reaction as a function of

J f (s, O)f (2w —s, O)ds
h (w, 0)= j dw f f (s,0)f (2w —s, O)ds

0 0

(9)

w h(w, t)=g(w/W(t)), (10)

where g (y) is the scaling solution and y =w/W'(t) is the
scaling argument. This scaling technique requires that
some moments of h (w, t) converge. (For further details,
see the Appendix, which has been included for complete-
ness. )

The scaling hypothesis is verified by results from the
simulations: Fig. 3(a) shows that the curves in Fig. 2(a)

However, as time increases, the spatial structure of the
system evolves, and the DWD changes: small domains
disappear; large domains grow and merge into even
larger domains. As the diffusion-reaction process goes
on, the frequency of small domains decreases, the DWD
develops a tail in the large m region, the number of sur-
viving domains decreases, and W ( t ) increases.

This complicated evolution shows the symptoms of
self-organization: the long-time DWD's in Figs. 2(a)
(linear initial STD), 2(b) (random initial STD), and 2(c)
(normal initial STD) all look very similar (all three figures
correspond to k, =10). Systems having different initial
DWD's seem to evolve into a universal distribution of
domain widths that is independent of the initial condi-
tions. Following our previous development for infinite
rate of reaction, we assume a universal, time-invariant
scaling solution for the DWD at moderate to large con-
versions, and test this hypothesis using scaling tech-
niques. ' ' We postulate that
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overlap when plotted in rescaled form. As time increases,
the curves asymptotically enter a master curve, and the
scaled DWD becomes time invariant. A11 DWD's corre-
sponding to X 0.4 are indistinguishable from one
another; the divergences between them are due to the
limited size of the system.

The universality of the scaling solution with respect to
the initial conditions is demonstrated in Fig. 3(b), where
long-time DWD s corresponding to different initial
STD's overlap when plotted in scaled form. This scaling
behavior seems to be independent of the value of k„as
well; the same type of data collapse is observed for any
fixed value of k„ in the range k„=1 —1000. As Fig. 3(c)
shows, long-time DWD's corresponding to diferent
Ualues of k„overlap when plotted in scaled form.

The universality in the long-time dynamics of the sys-
tern can also be observed in Fig. 4(a), which shows the
evolution of the number of surviving domains N(t) for
different initial STD s. Similarly to the infinite rate of re-
action case, for long times N(t) becomes independent of
the initial conditions. Figure 4(b) shows that, for long

enough times, N(t) has a very weak dependence on k„:
increasing k„at any fixed time by a factor of 1000 de-
creases N(t) by a factor of 2. In all cases, for long times
N(t) decays as N(t)=t '~ (as was the case for k„=~),
and therefore the main domain width W ( t ) = I /N ( t ) in-
creases with time as W(t)=t' . This is particularly im-
portant because it clearly shows that for long times the
system has only one independent length scale, the
diffusional length scale 5(t)=(Dt)', and W(t) differs
from 5(t) only by a multiplicative constant.

For long enough times, as diffusion takes control of the
dynamics and 5(t) becomes the only independent length
scale, the evolution of the system becomes asymptotically
identical to that of a system where k„=~. The evolution
of the average concentration of reactants, which is the
focus of the next section, also demonstrates that diffusion
is the dominant process for long times.

EVOLUTION OF THE AVERAGE CONCENTRATION
OF REACTANTS

Figure 5 shows the evolution of C(t) for systems with
linear initial STD, bimolecular kinetics, k, =1, 10, 100,
1000, and ~. As k„decreases, the decay of C(t) is de-
layed; however, as time increases, the value of C (t) corre-
sponding to a particular value of k, eventually becomes
identical to the value of C(t) corresponding to k„=oo.
For times t ~ 20/k„, the offset between the values of C (t)
corresponding to a particular k„and to k, = ~ is less
than 0.05. The same behavior is observed for systems
with random and normal initial STD's. In all cases, a
simulation with an infinite rate of reaction (by far the best
known case and the easiest and least expensive to simu-
late) gives an excellent prediction for C (t) for t ~ 20/k„.

The interpretation of these observations is straightfor-
ward: for bimolecular kinetics and long times, the intrin-
sic rate of reaction eventually becomes much larger than
the rate of diffusion; reaction zones are depleted, and the
reactants segregate again. Subsequently, diffusion and re-
action occur in series, and the overall rate is determined
by the slower process, which in this case is molecular

1.0
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10 &0' 10-

L

FIG. 4. (a) N(t), the number of surviving domains, decays as
N(t) =t ' ' for long times. The results correspond to systems
with linear (circles), random (triangles), and normal (squares) in-

itial STD's, k„=10. A curve corresponding to N(t)=300t
is also included for comparison. The values of N(t) for all ini-

tial STD's seem to enter the same curve at long times. (b) The
long-time decay of N(t) for a system with a linear initial STD,
k„=l (triangles), 10 (circles), 100 (squares), and 1000 (dia-
monds). The value of N(t) has a weak dependency with k„; in-

creasing k„1000 times decreases N(t) by a factor of 2. In all

cases, N(t) decays as t ' for long times; a curve correspond-
ing to N(t) =300t ' ' is included for comparison.
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FIG. 5. Evolution of the average concentration of reactants
C(t). The curves correspond to a system with a linear initial
STD, k„=1,10, 100, 1000; the diamonds correspond to k„= ao.
As k„decreases, the decay of C(t) is delayed. For long enough
times t ~20/k„ the values of C(t) corresponding to a finite
value of k„and to k„=~ become identical.
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diffusion. Since diffusion controls the dynamics of the

system for long times, the evolution of the system be-

cornes asymptotically identical to that of a system with

an infinite intrinsic rate of reaction, which is character-
ized by scaling behavior. For bimolecular kinetics, the
effect of k„ is largely to determine when this "diffusional
takeover" occurs, not whether it occurs or not.

For times t & W(0) /4D, the diffusional length scale
5(t) overrides W(0) (the characteristic length introduced

by the initial conditions), and 5(t) becomes the only
characteristic length in the system; we observe
5(t)=W(t)=t' . It should be noticed that en route to
scaling, the system undergoes two independent transi-
tions: (i) from a system that is controlled by the intrinsic
chemical kinetics to a system that is controlled by
diffusion, and (ii) from a system with several characteris-
tic lengths to a system with only one characteristic length
5(t). These transitions might occur in any order, depend-

ing on the value of 2)».
It should be noted that this "diffusional takeover"

shows some dependency on the reaction order. Figure 6
shows results corresponding to the second type of simula-
tion, which considers systems where r = —k„(c„cs),
k„=100. The curves correspond to 200 lamellae, linear
initial STD, a in the range 0.5-3.0; results corresponding
to infinite intrinsic speed of reaction are also shown for
comparison. The effect of increasing the reaction order is
somewhat similar to the effect of decreasing the reaction
constant: the higher the order, the longer it takes C (r ) to
decay to a given value. Different behaviors are observed
depending on the value of a (i) For a &1.5, for long
enough times the values of C(t) corresponding to finite
and infinite rates of reaction become identical. (ii) For
1.5&a &2.5, the values of C(t) for finite k„and for
k, = ~ do not become identical in the explored range
X(t) &0.95; however, C(t) decays with a power law of
time that has the same exponent for both finite and
infinite k„. (iii) For a & 2. 5, the decay of C(t) still follows
a power-law relationship, but the exponent is equal to
1/(1 —2a), characteristic of the chemical kinetics. This
is consistent with previous calculations ' which indicate
that, for k„= oo, C(t) decays as C(t)=t '~ . Since the
slowest decay law should prevail, the condition for a ki-
netically controlled regime becomes 1/(1 —2a) & —

—,', or
a) 2. 5.

It is apparent that the system can experience at least
two types of evolution, depending on the reaction order.
(i) For a & 1.5, the rate of diffusion decays faster than the
local rate of reaction. Nonuniformities in the concentra-
tion field persist for all times, and eventually determine
the evolution of the system. For long times, diffusion
takes control of the dynamics of reaction, the intrinsic
chemical kinetics become irrelevant, and the behavior of
the system becomes identical to that of a system where
k„=~. (ii) For a) 2. 5, the intrinsic rate of reaction de-
cays faster than the rate of diffusion; the diffusionally
controlled regime is never achieved, and after a period
diffusional mixing in which the nonuniformities of the
concentration field are erased, the decay of C(t) is con-
trolled by the chemical kinetics. The situation is less
clear in the interval 1.5&a&2.5: C(t) decays with the

C
0.3—

oo 0. 1 (

0.03

10- I0' 10-'

FIG. 6. C(t) for systems with the local rate of reaction
r = —k„(c„c&), k„=100. The curves correspond to 200 lamel-

lae, a=0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2, 2.5, and 3.0. Results
corresponding to k„= 00 are also shown (diamonds). As a in-

creases, the decay of C(t) is delayed; however, for a&1.5, all

curves become asymptotically identical to the values corre-
sponding to k„=~ for long enough times. For 1.5&a&2.5,
the curves for finite rates of reaction do not seem to verify the
values for infinite rate of reaction, but C(t) decays with the
same power law that is characteristic of the scaling regime. For
a) 2. 5, the decay of C(t) is still expressed by a power-law rela-

tionship, but the exponent is 1/(1 —2a), characteristic of the
chemical kinetics.

power law corresponding to the scaling regime, but it
does not become identical to the values of C(t) corre-
sponding to k„=~. Our results are not conclusive
enough to make a stronger statement for this range of
values of a; more extensive simulations considering larger
systems appear to be necessary in order to obtain better
bounds for the behavior of the system and to improve the
characterization of the different regimes.

It is important to note that, since for a &1.5 we ob-
serve that for long times the system evolves similarly to a
system where k„= 00; in particular, since C (t) = t
and N(t)= I/W(t)=t ', the amount of unreacted ma-
terials in each domain, C(t)/N(t)=t'~, increases with
time, i.e., the system unmixes. A similar result was ob-
served before for infinitely fast reactions between parti-
cles;' these results contradict what is often assumed in
the chemistry and chemical engineering literature, name-
ly, that for reactions of finite speed, after an initial mixing
period, the system achieves homogeneity and from then
on the chemical kinetics dominate the evolution of the
system.

In what follows, we concern ourselves with the first
case, a&1.5, which seems to be the most realistic and
applicable; in particular, we focus on a = 1. For this case,
the system becomes diffusionally controlled for long
times, scaling behavior describes the evolution of the spa-
tial structure, and C(t) becomes identical to the value of
C(t) corresponding to k„=~. The kinetic regimes de-
scribed by Eqs. (5)—(7) can be used to predict the overall
rate of reaction for long times; and our problem is there-
fore reduced to finding a model able to describe the evo-
lution of the system for short times. In order to accom-
plish this, we need to study in more detail the dynamics
of an isolated lamella surrounded by much larger neigh-
bors. These dynamics can be used to predict the short-
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ist
time behavior of the entire array of 1200 1 1arne lae. This
is he focus of the next two sections.

REACTION DYNAMICS OF A SINGLE LAMELLA
WITH INFINITE NEIGHBORS

where 4(t) is the reaction integral

4(t) =2f c„csdz, (12)

and z =0 corresponds to the center of the finit 1e nite amelia.
igure shows the evolution of 4(t) for d'ff

values of k . For shor
or i erent

or s ort times, little reaction occurs h
ever as

curs; ow-
e reaction zoness t e reactants interdiffuse th

build up, and 4(t) increases as t' . H
ra e o difFusion monotonically decreases, 4(t) eventuallases, t eventually

e evolution of 4(t) depends on the value of k . (') F0 „. 1 OI

the r
„, t e reaction is fast compared t d ffo i usion, and
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The maximum
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M „,UIl

gated, and t e
itions, the reactants remain m tlos y segre-g, n t e overall rate of reaction is contr 11 d b

a w ic diffusion can transport materials into the
reaction zone. In the interval t ( t & L /4D
ransport ecays with time as if the lamellae at both sides

of each reaction zone were infinit d dni e, an uring this period

k, increases
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V
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In this section we consider the dynamics of reaction of
a single lamella with initial thickness in

wit dimensionless reaction constant k in
Since concentration gradients vanish at

z =+~, the total rate of reaction is given bn y

acL = —k„4(t),

we observe that 4(t) =t ' At t =L /4D
tration

t t=L /4D, the concen-
n gradients reach the center of the fini

and after that
e nite lamella;

values of k the
a er that 4(t) decays exponentiall . (ii) F'a y. ii or small

of the finit
e concentration gradients reach th

ni e lamella before &b(t) begins to decay. The d-
c e center

namics are much more corn 1 d'ffp ex: i usional mixing and
reaction occur simultaneously d han t e role of the

4 t
i erent parameters is less clear. Howeve f ther, or t is case
( ) also goes through a maximum d h d

an exponential rate.
um, an t en deca s atum d y

The results shownshown in Fig. 7 also represent 4(t) for
lamellae of different initial thicknesses. Th 1e evo ution of

e concentration field depends on three aram
r, andS (=kCL

n ree parameters:
OL /D), and the reaction integral is

given by

4(t)=2 c~ (0~ r»» )ca(g, r»»)dz

=2L c~(0 r»ii)ca((, r»ii)dg

=2LF(t/TD»»),

(13)

(14)

c„((,r, 0)=
—,
'

I erff( —,
' —g)/(4r)' ]

+erf[( —,
' +g) /(4r) '

]I, (1Sa)

where F is a function of t/T and 2)
(14 can be u

D an
&&

only. Equation
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' F' 7,
which has k a

curves in ig. 7,
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e overall rate of reaction is controlled by the rate at
which diffusion can transport reactants into the reaction
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cs = 1 —[1—C„(r,l)„)/2]

X Ierf[( —,
' —g)/(4r)' ]+erf[(—,'+g)/(4r)' ]} .

(16b)

The shape of the profile c„corresponding to k, =0 is
preserved for small, nonzero values of k„; the only
difference between Eqs. (15a) and (16a) is the prefactor
C„(r,2)»), which is the average concentration of A at
time ~. A small rate of reaction changes the total amount
of reactant present at a given time, but not the way in
which this reactant is distributed in space.

Equations (16a) and (16b) are further simplified by re-
calling that, for large enough ~

)po

lp-

6 9

erf[( —,
' —g) /(4r) ' ]+erf[( —,

' +g) /(4r )
'

]

=(mr) ' exp( —
g /4r),

thus obtaining

c„(g, r, T„/TD ) = [(4rrr )
' C„(r,T„/TD ) ]

Xexp( —
g /4r),

cz(g, r, T„/TD ) =1—[2—Cz (r, T„/TD )]

(17)

(18a)

FIG. 8. Evolution of the concentration profile c„(z,t) for an

A lamella, L =30 nodes, surrounded by much larger regions of
B. The curves correspond to k„=0.3, t = 1,2, 3, 5, 10,30,
50, 100,200, 300, 500, 1000. The concentration profile c„(z,t) is

very nearly Gaussian; the observed profile (dots) is accurately
predicted by c„(z,t}=[(4rrr} '~ C„(r ]}exp( —g /4z} (continu-

ous curves), where (=z/L and z =0 corresponds to the center
of the A lamella.

A SIMPLIFIED MODEL FOR SHORT TIMES
X (4m') ' exp( g /4r) .— (18b)

As is shown in Fig. 8, the agreement between the ob-
served profile c„((,r, S») and the prediction of Eq. (18a)
is extremely good. Similar agreement is obtained for
cs((,r,2)») (not shown in the figure). Equations (18a)
and (18b) can now be used to estimate 4(t); substitution
of Eqs. (18a) and (18b) into Eq. (13) and straightforward
integration produce

4(r, g)») =LC„( 2r)») [ 1 —(8m r) ' [2—C„(r,2)tt)]]

(19)

and Eq. (19), together with Eq. (11), allow us to predict
4(r,2)») for small values of k„, r & I/8m. For r & I/8m,
4(t) is given, to a very good approximation, by the fol-
lowing interpolation between the 4(t)=t' and the
4(t) = t ' regimes:

A combination of the results from the preceding sec-
tion allows the prediction of the overall rate of reaction
for the whole 1200-lamellae system. Consider a reaction
zone developing between lamellae of initial thicknesses s;
and s, s, (s . The initial rate of reaction is zero; howev-

er, as time increases, the reactants interdiffuse and a reac-
tion zone builds up in the region between the lamellae.
Concentration gradients develop at the reaction zones
and penetrate the lamellae; the depth of this penetration
is proportional to the diffusional length scale,
5(t) =(Dt)'/ Locations .inside the lamellae that are far-
ther away than 5(t) from the center of the reaction zone
remain unaffected by the diffusion-reaction process. For
short enough times 0&t &s; /4D, 5(t) is smaller than

s;/2, and the actual values of s; and s do not affect the

IO

q)(r) =L (87-/77)' 2/(1+2k 7- )'

In Fig. 9, we compare the prediction of Eqs. (11), (19),
and (20) (curves) with results from the simulations (dots).
The "jump" in the curves corresponds to the transition
between Eq. (20) (short times) and Eq. (19) (long times)
which occurs at r= 1/(8m). It is apparent that for thin
lamellae (or for small k„) this prediction works very well

for all times. For thick lamellae, Eqs. (11) and (20) still
give a very good prediction of the evolution of @(t) for
small ~, but the method fails for large ~. However, since
our objective here is to obtain a model for short times
(long-time behavior is predicted by the scaling regime)
this failure is of little consequence.

V5

bQ
V
C ]p0

!

t

10

FIG. 9. Evolution of 4(t) for L =17, 30, 53, 96, 170, 300,
and 530 nodes, for a single lamella with much larger neighbors;
comparison of the prediction of Eqs. (11), (19), and (20) (curves)
with results from the simulations (dots).
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evolution of the reaction zone; Eqs. (11) and (20) alone
will give an excellent prediction of the reaction integral
for this interval. However, this prediction fails as soon as
the gradients reach the center of the smaller lamella in
the pair, well before the reaction is completed. We use
instead Eqs. (11), (19), and (20) to obtain an approximate
prediction of 4(w) in the more extended interval
0(t &s /4D; on average, this prediction is accurate un-

til the gradients reach the center of the larger lamella in
the pair, and if s, &&s, the reaction zone extinguishes be-
fore the prediction fails. Equations (11), (19), and (20)
give a complete prediction of the evolution of the reac-
tion integral for such a reaction zone; in this interval, the
rate of reaction depends only on the value of s, .

The short-time model is based on a statistical descrip-
tion of the system, which is regarded to be composed of
1200 reaction zones, each of them developing between
two lamellae of thicknesses s,. and s.. We characterize
each reaction zone only by the smaller of both
thicknesses, s, In order to compute the overall rate of
conversion for the entire system 4'(t), we calculate 4(t)
for each value of s;, multiply it by the number of pairs of
lamellae where the smaller thickness is s;, and integrate
for all values of s, . The frequency r(s;) of pairs of lamel-
lae where the smaller thickness is s; can be obtained from

f (s, O):

0

V
V

1.0

0

o 0.5
0
V

10 100 10

(b)—

I f (s, 0)ds . (21)
0

(22)

r(s, )=2f(s;,0) I f(s, O)ds

The rest of the model is straightforward: we solve Eqs.
(11), (19), and (20) for 100 evenly spaced values of s, cov-
ering the range of f (s, O). The values of 4(s, , t) are add-
ed as

4'(t)= gr(s;)4(s;, t)b,s,
S

0

1.0

10 10

where 4'(t) is the estimated value of the reaction integral
for the whole system and bs is the spacing between values
of s, . For a widely distributed, randomly ordered STD,
the probability that the lamellae at each side of a reaction
zone have similar thicknesses is small, and in this case the
model works best.

For long times, reaction zones interact and eventually
merge; at some time t = W(0) l4D, Eqs. (11), (19), (20)
fail to predict 4(t) for many surviving reaction zones,
and the short-time model breaks down. However, for
large enough values of k„, the system becomes
diffusionally controlled before the short-time model fails.
The overall rate of reaction for the diffusion-controlled
regime is given by Eqs. (5)—(7), and a combination of the
different predictions gives us the complete evolution of
the overa11 rate of reaction. To estimate the overall rate
of reaction, we use Eq. (22) for conversions X(t) ~0.35,
an average of Eqs. (7) and (22) for X(t) between 0.35 and
0.5, and Eq. (7) for X(t))0.5. Figure 10(a) compares
this prediction with results from simulations for a system
with linear initia1 STD; k, =1,10, 100, 1000. While for
k, ~100 the prediction is very good for all times, for
k, + 10 the prediction remains good for short times, but
becomes poor for long times. This occurs because the

C0

o"

0
V

a5

10 10' 10

FIG. 10. (a) The observed C(t) (single curves) and the predic-
tion of the model (double curves) for a linear initial STD,
k„=1,10, 100, 1000; values for k„=~ (diamonds) are also in-
cluded. For k„~ 100, the prediction of the model is very good
for all times. For k„~ 10, the prediction of the model remains
good for short times, but becomes poorer for long times. (b)
Observed C (t) and the prediction of the model for a random in-
itial STD, k„=1,10, 100, 1000; values for k„=~ are also shown
[symbols as in (a)]. The performance of the model for this case
is similar to the previous one. (c) Observed C(t) and the
prediction of the model for a normal initial STD,
k„=1,10, 100, 1000; values for k„= oo are also shown [symbols
as in (a)]. The magnitude of the errors is considerably larger
than those corresponding to the other two initial STD's.
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short-time model fails before the system becomes
diffusionally controlled. However, for long times, we can
predict C(t) using an alternative procedure: C(t) be-
comes asymptotically identical to the value of C (t) corre-
sponding to a system where k„= ao, which is efficiently
predicted by Eqs. (5)—(7).

The performance of the model depends to some extent
on the initial STD; the amount of error is similar for
linear [Fig. 10(a)] and random [Fig. 10(b)] initial STD s,
but is much larger for normal initial STD [Fig. 10(c)].
The normal STD has less dispersion than the random and
linear STD's; the fraction of reaction zones bounded by
lamellae of similar thicknesses is larger, and Eqs. (11),
(19), and (20) fail at an earlier time. However, in this case
also the system becomes diffusionally controlled for long
times, and the results for k„=~ give a good prediction of
C (t) for all values of k„.
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APPENDIX

Consider a distribution f (s, t) where f is the frequency
of occurrence of a given value of s at time t. This distri-
bution can be represented as a family of curves f versus s
that have t as a parameter; examples of such a distribu-
tion are given in Figs. 2(a) —(c). The distribution is said to
have scaling properties, or to be self-similar in time, if a
simple stretching (shape-preserving) transformation of
variables

CONCLUSIONS f~g =K(t)f,
s ~y =s /cr( t)

(Al)

(A2)
We have shown that a lamellar system with distributed

striation thickness can be efficiently simulated using a nu-
merical procedure that uncouples diffusion and reaction,
computing their effects in a sequential manner. The
efficiency of the numerics depends on the type of reaction
considered, but even strongly nonlinear cases can be
simulated using this approach at the expense of a larger,
but still reasonable, amount of CPU time.

Scaling techniques reveal that the system undergoes
critical self-organization; a universal, time-invariant dis-
tribution of length scales emerges as the conversion in-
creases. Two transitions occur in the system, producing
this critical behavior: (i) the system becomes diffusionally
controlled, and (ii) the diffusional length scale becomes
the only characteristic length. Scaling is observed for a
wide class of chemical reactions and is considerably in-
dependent of the chemical kinetics, which becomes ir-
relevant in the diffusion-controlled regime.

As diffusion takes control of the dynamics, the decay of
reactants becomes much slower than predicted by the
chemical kinetics. In practical terms, this slowdown im-
plies that larger reactors and longer residence times are
required to achieve a given conversion. Since the
diffusional time scale increases with the square of the
characteristic length scale, the initial degree of fluid-
mechanical mixing, measured as the initial value of the
mean striation thickness S(0), has very strong effects on
the evolution of the system.

The importance of self-organized criticality is apparent
throughout this work. This approach to reaction dynam-
ics is relatively unexploited and it is likely that several
other interactions between reaction dynamics, mixing
processes, and critical self-organization remain to be
discovered. Many specific issues related to effects of
stoichiometric imbalances, continuous fluid-mechanical
stretching, multiple reactions leading to selectivity
effects, and mixing of more than two reactive materials,
remain to be explored.

makes the curves overlap, or, in other words, if

g (y) =K(t)f (s, t) (A3)

is time independent. For this transformation to be useful,
we need to be able to determine K(t) and cr(t) a priori.
Let us consider the first moment of such a scaling distri-
bution,

m, (t)= J sf (s, t)ds,
0

(A4)

and assume that m, (t) converges. Replacing (A2) and
(A3) into (A4), we obtain

m, (t)=[cr(t) /K(t)] f yg(y)dy .

Since Jo"yg (y) is equal to a constant C, ,

K (t) =C, o (t)'/m, (t),
and

g (y) = C, cr(t)'f (s, t) /m, (t) .

(A5)

(A6)

(A7)

o (t)' ' I y'g (y)dy
0

o(t)' ' I y' 'g(y)dy
0

o(t) 1 y'g (y)dy
0

I "y' 'g(y)dy

(A9)

(A10)

since the terms in large parentheses are constants, we
conclude that o (t) can (at least in principle) be estimated

In order to determine cr(t), let us consider the ratio of
any two successive (convergent) moments off (s, t)

I s'f (s, t)ds
m, - /m, (A8)

s' ' s t ds
0
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y'g (y ) =g'(y) =C,s'f (s, t) Im, (t) . (A 1 1)

For systems that conserve "mass" (or, in other words,

up to a constant as the ratio of any pair of successive mo-
ments off (s, t) Replacing Eq. (A2) into (A7) and further
rearranging produces

g'(y)=C, s'f (s, t), (A12)

where C2=C, /m, (t). This is the scaling transformation
used in this paper.

that have a constant first moment), Eq. (All) is further
simplified to
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