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Scaling and vortex dynamics after the quench of a system with a continuous symmetry
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We study the dynamics of a system with a nonconserved complex order parameter, following a
deep quench. In contrast to the case when the order parameter has a discrete symmetry, we observe
an effective value of the dynamical exponent at early times of /=0. 375+0.005. In this regime,
finite-size scaling of the scattering function is observed. At later times, we observe a crossover to
/=0. 5+0.02. Our results indicate that any renormalization of the kinetic coefficient must be small.

I. INTRODUCTION

The ordering dynamics of a physical system after a
deep quench below its transition point is believed to de-
pend upon the dimension of the system, its internal sym-
metry group, and the presence of conservation laws. '

During spinodal decomposition of a binary alloy, for ex-
ample, the system proceeds to its final state of two-phase
coexistence through the development of a pattern charac-
terized by a single time-dependent length scale A, . It has
been found that k varies with time t according to
A, (t)-t ~, where the dynamical exponent /= 1/3 for the
case of a conserved order parameter and /=1/2 for the
case of a nonconserved order parameter. ' These results
do not seem to depend upon the dimension D of the sys-
tem. Furthermore, the dynamical scattering function is
found to obey a scaling law:

S(k, t)=A(t)D@(kA(t)) .

The purpose of this paper is to investigate the dynam-
ics of the phase transition when the Hamiltonian has a
continuous rather than a discrete symmetry. Although
the low-temperature phase is unique when the Hamiltoni-
an has a continuous symmetry, the phenomenological
description of the approach to equilibrium should not
differ from that in the case of the discrete symmetry; in
both cases, the order-parameter evolution is determined
by the chemical potential. We are interested in the fol-
lowing questions: (i) If the order-parameter symmetry is
continuous rather than discrete, the system cannot sup-
port the domain walls that are believed to be responsible
for the power laws, observed in systems with a discrete
symmetry. How, then, are the scaling laws changed in a
system with a continuous symmetry? (ii) How do the de-
fects present in the case of a continuous symmetry affect
the dynamics after a quench?

Previous studies have concentrated on systems whose
effective Hamiltonian has O(n) symmetry. Mazenko and
Zannetti, and de Pasquale and Tartaglia have con-
sidered the n =ao case. Both papers find a Gaussian
form for the scaling function 4(x) and an exponent
/=1/2. Toyoki and Honda studied the complex non-
conserved order-parameter case in D =3 using the defect

dynamics picture proposed by Kawasaki. Also in this
case it was found that /=1/2. Nishimori and Nukii
have studied numerically the dynamics of line defects in
the same system (n =2, D =3). They found that the
length of defect line decreases with time as
l(t)-t — . A molecular-dynamics study of an-
nihilating vortex points in D =2 is consistent with a
dynamical exponent P = 1/2.

More recently, Bray' has proposed a general argu-
ment to predict P for the conserved order-parameter case
using an analogy with critical dynamics. In his argu-
ment, the long-time behavior of the system is controlled
by a zero-temperature fixed point, whose characteristics
do not differ significantly from the Wilson-Fisher fixed
point, which controls the critical dynamics of model B."
In particular, the absence of renormalization of the kinet-
ic coefficient M is justified' by using the conventional ar-
gument valid for the critical dynamics of model B.
Bray's argument has been criticized' in the case n =1
for not properly taking into account the domain walls.
Goldenfeld and Oono' have argued that one of the
effects of the domain walls is to introduce a renormaliza-
tion of the kinetic coefficient in the conserved case but
not in the case of a nonconserved order parameter. This
result, if correct, would be quite different from the situa-
tion in critical dynamics. In principle, then, one of the
key assumptions of Bray's argument could be tested, if it
can be determined whether or not the kinetic coefficient
is renormalized in the nonconserved case. For n ~2,
when there are no domain walls, the criticism of Golden-
feld and Oono does not seem to apply, and the argument
may be extended to the nonconserved case to give

/ =1/2, n ~ 2, D =2. In making this naive extension, we
have assumed that it is not necessary to renormalize the
kinetic coefficient. ' Any renormalization of the kinetic
coefficient would give a value for P diff'erent from 1/2.
We will find that our nurnerica1 simulations are con-
sistent with the value /=0. 5+0.02, implying that the re-
normalization of the kinetic coefficient, if present, must
be very small. In contrast, the critical dynamics of model

does require a renorrnalization of the kinetic
coefficient.

We have performed numerical simulations of a system
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with a nonconserved order parameter in D =2 whose14

effective Hamiltonian has O(n) symmetry, with n =2.
Such a system relaxes to equilibrium not only through
the dynamics of Goldstone modes, but also through the
annihilation of vortices. Although our principal motiva-
tion in studying this problem was to test Eq. (1.1) we have
found that at early times the vortex distribution relaxes
anomalously slowly: P(1/2, a result which we have
been able to relate to the subdift'usive character of the ini-
tial motion of the vortices. This behavior is a transient,
because at long times, the exponent P crosses over to a
larger value of /=0. 5+0.02; of course, we cannot ex-
clude the possibility that some new behavior might arise
at an even later time. We emphasize that these results
constrast with the behavior observed in simulations with
a scalar order parameter. A direct numerical study of the
dynamical evolution of the domain boundaries (the
characteristic defects in a system with discrete symmetry)
indicated that, for a critical quench, the 1/2 exponent is
satisfied from early times. ' We have also made an exten-
sive study of the scaling of the correlation functions of
this system, and have observed a finite-size scaling of the
scattering function of Eq. (1.1). We also observed scaling
behavior of the real-space correlation function of the or-
der parameter and of the vortex-vortex correlation func-
tions. In all cases, the scaling behavior is obeyed even
when P has not yet reached its final value.

In Sec. II we introduce our model and describe some of
the qualitative features of the dynamics. Section III is
devoted to a quantitative analysis of the relaxation dy-
namics in terms of a typical time-dependent length scale.
In this section we compare four possible choices for the
characteristic length scale and discuss the results for the
power-law exponent P. We then discuss, in Sec. IV, the
vortex motion on the lattice. In Sec. V we consider the
dynamical scaling behavior of real-space and
momentum-space correlation functions, including finite-
size scaling. We make a few final remarks and summa-
rize our conclusions in Sec. VI.

During the final drafting of this paper we have received
unpublished work by Newman, Bray and Moore. ' They
investigated analytically and numerically the relaxation
of vector spin systems (2 ~ n ~ 5) in D = 1. For n =2 they
find a Gaussian scaling function and an exponent P = 1/4.
Using a one-dimensional version of the model introduced
in Sec. II we have been able to confirm their findings.

II. MODEL

We consider a complex (n =2), nonconserved order-
parameter field on a L XL lattice in two dimensions; a
physical realization might be the ferromagnetic transition
of a planar ferromagnet in two dimensions. The evolu-
tion of the order-parameter field ql(r, t) =X(r, t)+iY(r, t)—
is governed by the same phenomenological equation as in
the case of a system with a discrete symmetry:

F[+(r, t)I = Jd r lVql(r, t)l —al'P(r, t)l

+ —lq «, »I'
2

(2.2)

+C[(( Y(n, t) )) —Y(n, t)],
where R (n, t) =

l
ql(n, t) l

and

(2.3)

g(m, t) + 1((m, t)
6 (~~~) 12

(2.4)

Here n and m represent the lattice sites, A gives a mea-
sure of the depth of the quench, and C controls the cou-
pling strength. The unit of time is implicitly defined in
terms of A and C. For our simulations we apply periodic
boundary conditions and choose A =1.3 and C =0.5.
These parameters describe the system after the quench
(A ) 1), when the initial high-temperatures configuration
of the order-parameter field becomes unstable, and the
system relaxes to one of its new (infinitely degenerate)
equilibrium configurations. The initial values of the vec-
tor components of + are randomly chosen to be between
—0. 1 and 0.1 of their final equilibrium length (-1).
Thus, initially, the relative orientations of the vectors are
random (uncorrelated) and the average number of vor-
tices (on a square lattice) is equal to 1/3 the number of
lattices sites. '

The growth of the order parameter on the coupled-
lattice sites is slower than it would be on isolated sites
(C =0), because of the initial high vortex density. After
about 30 time steps, over 98% of the vortices have an-
nihilated and most vectors, outside the vortex cores, have
reached their equilibrium length. A qualitative analysis
of the subsequent evolution of the system already indi-
cates the presence of a characteristic time-independent
vortex-core size (g), analogous to the domain-wall thick-
ness of the Ising case (n =1), and of a single-vortex field
configuration extending around each vortex core up to
distances comparable with the average time-dependent
intervortex spacing (defined below).

The coefficients a and b are positive after the quench. We
performed our simulations using a cell-dynamics scheme,
a computationally efficient coarse-grained description of
the ordering dynamics. ' The evolution of the system is
controlled, in our case, by the local (on-site) nonlinear re-
laxation process and isotropic Laplacian averaging,
which couples nearest-neighbor (( NN ) ) and next-
nearest-neighbor (( NNN ) ) sites. The corresponding
equations in terms of the X(r, t) and Y(r, t) fields read

X(n, t +1)= 3 tanh[R (n, t)][X(n, t)/R (n, t)]

+ C [((X(n, t) )) —X(n, t)],
Y(n, t + 1)= 3 tanh[R (n, t)][Y(n, t) /R (n, t) ]

BV(r, t) BF(4(r, t) )

aq*(r, t)
(2.1) III. DYNAMICS AND POWER-LAW BEHAVIOR

where M is a kinetic coefficient, assumed to be indepen-
dent of + and

We now turn to a detailed discussion of the dynamics.
There are several a priori independent characteristic
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length scales in the system. The first two moments (k,
and k2) of S(k, t), the circularly averaged time-dependent
scattering function, '

f dkk S(k t)
k (t)=, m=1 2,f dk k 'S(k, t}

0

define two characteristic lengths scales, k (t)
=L/(2mk (t}), m =1,2. A.lternatively, we can use the
average intervortex spacing defined as d(t)=L/v'N(t),
where N(t) is the number of vortices remaining at time t
There is also a characteristic length associated with the
real-space correlation function of the order parameter

( +'(r, t)%(0, t) )
(4'(O, t)%(O, t) )
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namely, the halfwidth of the main peak of the correlation
function r, &2( t) defined by the relation C(r «2(t), t) =1/2.

Within statistical error, in the time interval considered
(100&t &6400), A,z(t)/d(t)=1. 88(+.02); this ratio is not
only independent of time, but is also independent of the
system size, as can be seen from the inset of Fig. 1. In
the main body of the figure we plot the two length scales
against each other. The corresponding ranges of varia-
tion are in units of a lattice spacing.

We have investigated the expected power-law decay for
k (t) a: t ~ and N(t) ~ t ~. Our results indicate that
for k2, over the time range considered, there is a small
but measurable deviation from a simple power-law behav-
ior. Initially, P= —,'(20.005), but at later times the ex-
ponent is closer to 0.5+0.02, as shown in Fig. 2. ' New
effects seem to appear toward the end of the run (see Sec.
IV) but statistical uncertainties at this late stage prevent
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FIG. 1. Graph of A,~(t) vs d(t) (see main text for definitions
and units). In the inset is shown a plot of the ratio of k&(t)/d (t)
vs time (on a logarithmic scale) in units of 100 time steps. The
dotted line is a linear interpolation of the data points taken on
512X512 lattices (averaged over 28 initial conditions) and the
(superimposed) solid line interpolates data taken on 256X256
lattices (averaged over 60 initial conditions).

FIG. 2. Inverse of average wave-number square k, vs t. A
straight line is drawn for comparison. In the inset is shown the
graph of log&p(k2) vs log&p(t) in the time interval (50& t & 800).
The solid line in the inset has a slope of —3/8. o corresponds
to data taken on 512X 512 lattices (averaged over 28 initial con-
ditions), 6 corresponds to data taken on 256X256 lattices
(averaged over 60 initial conditions), and Q corresponds to data
taken on 128X 128 lattices (averaged over 60 initial conditions).
Statistical fluctuations are shown whenever larger than the sym-
bol size.

us from reaching a definitive conclusion about the asymp-
totic value of P. These results are in sharp contrast to
earlier findings for the discrete symmetry case, ' where
no such effects are observed. It should be pointed out,
however, that in the scalar order-parameter case, the k2
moment of the scattering function was not considered
since it diverges in the thermodynamic limit, due to the
sharpness of the interface (Porod's law).

Another length scale, which we have considered, is
A, ,(t), the inverse of the first moment of the circularly
averaged scattering function. Each associated domain (of
size A, i) spans over 15—20 vortices (A,f/d ) so that in

measuring its average orientation the single-vortex field
configurations are, to some extent, averaged out. The k,
moment gives us information on the large-scale relaxa-
tion processes. These involve rearrangements of the
vortex-field configurations that can take place even in the
absence of vortex annihilations. In our largest (L =512)
and longest (up to 6400 time steps) simulations, k,
behaves linearly for a11 t & 1000, as shown in Fig. 3. A
small deviation at early times can be observed, but this is
substantially less pronounced than for k2 . This seexns
to indicate that the large-scale relaxation processes do in
fact follow the usual 1/2 power law found in noncon-
served systems. Analogous behavior is found for r&/2,
but our data for this quantity only extends up to 3200
time steps.

The first moment of the circularly averaged scattering
function reflects the behavior of the long-wavelength fiuc-
tuations in the system and is therefore much more sensi-
tive to finite-size effects than kz. In Fig. 3 we have also
plotted, for comparison, the calculated averages of k, for
smaller systems. The scatter in the data is evident (coin-
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FIG. 3. Inverse of average wave-number square k 1

' vs t.
For the interpretation of the symbols see Fig. 2. We also show
the statistical Auctuations and the best linear fit to the data tak-
en on 512 X 512 lattices.

pare the same averages for k2 in Fig. 2). This suggests
that k& might be an appropriate quantity to exhibit
finite-size scaling (see below).

Another important distinction between the k2 and k,
moments is the character of their fluctuations. The value
of the second moment at any given time is a self-
averaging quantity while the value of the first moment is
not self-averaging. This means that if we take the aver-
age of k 2 ( t ) over the same number of initial conditions
for two systems of linear size L and 2L, respectively, in
D =2, the observed standard deviation of k2 in the larger
system will be reduced by a factor of 1/2 with respect to
standard deviation in the smaller system. On the other
hand, the standard deviation for k& will only decrease by
a factor of about 1/&2. The reason for this discrepancy
is again the different relative weights given to the small-k
components of the scattering function in the two cases.

&p(0)d(0)R. We have numerically verified that this
scaling relation is satisfied in our system also at later
times, for d(t) &R &L.

We now relate this result to the dynamics of the sys-
tern. Since the annihilation process preserves the local
net charge, at time t the number of surviving charges in
the system should be proportional to the initial charge
Auctuation in a domain size of the order of the diffusion
length of vortices. This domain size, 1(t)-t'~, so that

5p(r) - j p(0)d (0)[I(r)] '
l
'"/[I (r)]

for D =2, 5p(t) t -. Thus, we obtain N(t) ~ t
and /=3/8, as found in the simulation. At late times, we
expect that long-range forces (present in our system) will
tend to smooth out the initial fluctuations with a corre-
sponding crossover to mean-field behavior. The crucial
assumptions in the preceding argument are that the sys-
tern is, from the very beginning, in a scaling regime, al-
though not necessarily the asymptotic one, and that the
vortices do in fact diffuse.

To test this latter hypothesis we have performed an ex-
tensive study of the motion of the vortices on the lattice.
The main result is presented in Fig. 4, where we show
that the mean vortex displacement in the time range
(30 & r & 1630) follows a power-law behavior l (t) —t ~

The subdiffusive movement of the individual vortices ap-
pears to be incompatible with our preceding argument.
This seems, therefore, to exclude a predominant role of

IV. VORTEX DYNAMICS

In order to gain some insight about the long transient
observed during the first 1500 updates, we have con-
sidered the possible role of the charge Auctuations in the
initial distribution of vortices and antivortices. In two di-
mensions, these charge Auctuations can be significant,
and could potentially account for the long transient.
Nevertheless, as we show below, this interesting possibili-
ty does not seem to occur, at least in the simplest form
that we have considered.

If vortices and antivortices at t =0 were distributed at
random, the density fluctuations 5p(t), in a planar
domain of linear dimension R, would be proportional to
+p(0)R [d (0) & R & L], where p(0) is the initial average
vortex density and d (0) is the initial intervortex spacing.
In the present system the initial distributions for vortices
and antivortices must satisfy Stoke's theorem: the field
vorticity on a domain boundary is equal to the topologi-
cal charge imbalance (fluctuation) in the domain. This
implies that the initial Auctuations will scale with the
linear dimension R (perimeter) of the domain as

'0 20
(time)

40

oo 7.5
( time) 3/8

l5

FIG. 4. Average displacement per vortex r(t) vs t' ' (a) and
t' ' (b). Best linear fits are also shown. r (t) represents the dis-
placement of a vortex with respect to the position it had 30 time
steps following the initial quench. The origin of the t axis is
chosen here to be equal to the number of times steps minus 30
so that r(0) =0. The average is taken over all surviving vortices
at time t and we further average over 86 initial conditions.
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the charge fluctuations (that is, of a global topological
constraint) in slowing down the annihilation process, and
it suggests that the observed transient might be related to
the dynamics (and therefore to the local environment) of
each vortex.

We have also considered the effect of free-boundary
conditions on the initial vortex decay. In this case, while
the initial decay exponent (3/8) remains unchanged, the
average number of vortices present at any given time in
the system is somewhat smaller than in the case with
periodic boundary conditions. Comparing the results for
systems of different size we can see that this effect is due
to a "depletion layer" at the system boundaries and that
the layer depth grows as the average intervortex spacing.
No new length scale is introduced in the system.

With regard to the late-time effects mentioned in Sec.
III, we point out that at late times the intervortex in-
teraction is rather weak and pinning effects of vortices on
the lattice could play a role in the dynamics of the sys-
tem, particularly in the absence of thermal noise. We
have not attempted to extend the study of the vortex
motion to this late stage.

V. FINITE-SIZE AND DYNAMICAL SCALING

In order to verify that the results of Sec. III did not
arise from the finite size L of our systems, we performed
a scaling analysis of the data. In general, the scattering
function can be written

S(k, t, (,L)=[k(t)] f(k/k(t), gk(t), Lk(t)) . (5.1)

In the large-L limit we must recover the universal curve;
assuming that g is not a dangerous irrelevant variable, it
may be neglected (valid for a deep quench) to obtain from
Eq. (5.1) the finite-size scaling relation2s
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FIG. 5. Demonstration of finite-size scaling for the scattering
function, at different values of kL. The solid line corresponds to
512X512 lattices, 0 corresponds to 256X256 lattices, and +
corresponds to 128X128 lattices. The data spans three orders
of magnitude on the Y axis and it is shown for clarity on a loga-
rithmic scale.

S(k, t, L)=L 4, (kL, Lk(t)) . (5.2)

We rescaled the data from our three largest simulations
(L = 128,256, 512) using the calculated value of k, (t) cor-
responding to the largest time-dependent length scale
measured in our system, so that there were no free pa-
rameters in our procedure. Results for different values of
k, L are shown in Fig. 5; the finite-size scaling relation
appears to be obeyed.

We have also tested the scaling relation, Eq. (1.1), and
the corresponding relation for C(r, t). We have used
A.2(t) as the rescaling length for the scattering function.
The associated k2(t) corresponds to the ordinary
definition of k for a circularly symmetric S(k, t) in D =2.
The results for the dynamical scattering function are
shown in Fig. 6. They compare favorably with the analo-
gous results for the Ising case. At later times, scaling is
satisfied over a larger range of the rescaled k/k2(t) vari-
able, indicating a tendency of the rescaled scattering
function to approach the universal master curve 4(x).
Qualitatively, we can identify three regions in the
k/k2(t) dependence of the rescaled scattering function.
At very long wavelength [k/k2(t) ( 1] the scattering
function is well approximated by a Gaussian; up to a nor-
malization factor, the same Gaussian fits the data for the
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FIG. 6. Graph of log, k2(t)'S(k, t) vs log, k/k2(t) for lattices
of size 512 X 512 at 200, 800, and 1600 time steps. Also plotted
are the data for lattices of size 256X256 at 200 and 800 time
steps. The data from these different lattices superimpose. The
0 and 6 indicate roughly the breakdown of the scaling region
for the t =200 and 800 curves, respectively, which in both cases
occurs when k-12.5 lattice spacings. The vortex-core size is
roughly eight lattice spacings.
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two largest simulations.
The Gaussian behavior breaks down at wavelengths

shorter than the typical wavelength A,2(t). This is not
surprising, since a characteristic single-vortex field
configuration can be seen around each vortex extending
to distances comparable with the intervortex spacing.
The Fourier spectrum of a (single-) vortex field
configuration decays as k; this introduces a power-
law-bounded correction (-k ) in this intermediate
wavelength region of the scattering function, where scal-
ing still applies.

At wavelengths comparable to the vortex-core size g or
shorter, scaling breaks down. The vortex-core size is a
time-independent length in the system so that any efFect

of the vortex core on the rescaled scattering function will

disappear in the asymptotic limit [gk(t) ~0]. The
domain-wall thickness gives a similar nonuniversal
correction in the Ising case.

To rescale C(r, t), the real-space correlation function of
the order parameter, we have used its time-dependent
halfwidth r, zz(t). The results are presented in Fig. 7. We
have also considered the small x [—:r/r, &2(t)] limit of the
rescaled correlation function Px(t))=C(r, t). As shown
in the inset of Fig. 7, we find that I (x)=1—x~, where
/=1. 6+0.05. As expected, P) 1 because of the smooth
boundaries, and Porod's law is violated in this system;
on the other hand, the fact that I( &2 again points to the
presence of nontrivial correction to the Gaussian behav-
ior at short distances. A Gaussian form for the rescaled
correlation function is found in models with continuous
symmetry, which ignore the presence of vortices. ' '

We have also considered the real-space correlation
functions of the vortices. The radial correlation function
for vortices of equal sign is shown in Fig. 8, and the
correlation function for vortices of opposite sign is shown
in Fig. 9. These distributions should go to zero at dis-
tances comparable to, or smaller than, the vortex core.
In practice we chose one lattice spacing as the minimal
intervortex distance. Over distances comparable with the
average intervortex spacing, the behavior of the two
correlation functions is, as expected, drastically different,
reflecting the role of the intervortex potential. The corre-
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FIG. 9. Demonstration of dynamical scaling for

C„~~„=(n(O,t)p(r, t)+p(O, t)n(r, t)). Here we have adopted
the same symbols and conventions of Fig. 8.
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lation functions flatten out for distances larger than one
average intervortex spacing d (t), which can therefore be
identified with the time-dependent intervortex correlation
length. This should be contrasted with the bulk correla-
tion length of the order parameter, which is time in-
dependent and characterizes the size of the vortex core.
We have used d (t) as the natural rescaling length for the
correlation functions. As shown in Figs. 8 and 9, a
reasonable scaling behavior is observed from early times,
but at late times the noise in the data makes a quantita-
tive comparison more difficult.

VI. COMMENTS AND CONCLUSIONS

Our simulation is, strictly speaking, a zero-temperature
simulation. If we wait long enough our system will reach
one of the (infinitely) degenerate uniform ground states,
chosen by the (random) initial condition. As is well
known, in D =2 at nonzero temperature T, such a uni-
form ground state is unstable against spin wave excita-
tions. This process can also be described in related mod-
els with continuous symmetry in terms of the macroscop-
ic diffusion of the "phase" field.

Let us briefly discuss how our results might be
modified for T &0. An important point for our simula-
tions is that at low temperatures the characteristic decay
time to of the ground state becomes extremely large, and
it grows as the area (L ) of the system. In practive, for a
typical noise amplitude =0.1 of the equilibrium modulus
length of the order-parameter vector and L ) 32, to
greatly exceeds the typical observation time scale of our
simulations. The observation time scale corresponds to
the characteristic time-dependent length scale A. ( t )

becoming of the order of the system size I.. At low tem-
perature, for very large system sizes, our results will de-
scribe the initial relaxation of the system controlled by
the intervortex interaction while the thermal noise will
dominate the evolution of the system at later times, desta-
bilizing the increasingly large vortex-free regions. Such a
physical picture should also hold in three dimensions for
systems of finite size below the ordering transition tem-
perature. The crucial difference, as seen in the n = ~
case, is that in D =3 the characteristic time for "phase
diffusion" ~ increases as L, which is much faster than

any other relaxation time r in the system (at most L ).
Thus the ratio r /r diverges with increasing system size
and the broken-symmetric ground state becomes stable in
the thermodynamic limit.

In summary, we have shown that the vortex annihila-
tion dynamics significantly affects the initial ordering
process of a system with a continuous symmetry. Even in
this transient regime, all the correlation functions we
have considered appear to satisfy dynamical scaling.
Finite-size scaling of the scattering function is also
satisfied. We have observed departures from Gaussian
behavior of the correlation functions. This deviation ap-
pears to be related to the presence of vortex
configurations extending over distances comparable to
the average intervortex spacing. The value of the dynam-
ical exponent seen in the late stages of our simulations is
consistent with P = 1/2; but of course, we cannot rule out
further changes in the effective exponent P at titnes larger
then 6400. In particular, the small but measurable
differences in the behavior of different representative
length scales leave open some questions regarding the
true asymptotic nature of the regime investigated. If our
numerical results are taken at face value, then it appears
that the kinetic coefficient is not renormalized, in con-
trast to the situation for the critical dynamics of model
A. We are presently studying the relaxation dynamics of
a system with continuous symmetry and conserved order
parameter. The results of this work are planned to be
presented in a forthcoming paper.
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