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The dynamics of the classical XYZ model with uniform interaction is investigated by the recur-
sion method and, in part, by exact analysis. The time evolution is anharmonic for arbitrary X(num-
ber of spins); only the cases X =2 and ~ are completely integrable. For the special (uniaxially sym-
metric) equivalent-neighbor XXZ model, the nonlinearities in the equations of motion disappear in

the limit N~ 00, and the spin autocorrelation functions are determined exactly for infinite tempera-
ture: The function (S;(t)S ) exhibits a Gaussian decay to a nonzero constant, and the function

(S,"(t)S,") decays to zero, algebraically or like a Gaussian, depending on the amount of uniaxial an-

isotropy. For the general XYZ case, the T = ~ dynamical behavior includes four different univer-

sality classes, categorized according to the decay law of the spectral densities at high frequencies.
That decay law governs the growth rate of the sequence of recurrents that determine the relaxation
function in the continued-fraction representation. The four universality classes may serve as proto-
types for a classification of the dynamics of classical and quantum many-body systems in general.

I. INTRODUCTION

Equivalent-neighbor spin models are familiar objects in
the statistical mechanics of phase transitions, where they
play a role as microscopic realizations of mean-field
theory. ' Consider an array of N spins interacting via
some model-specific spin-pair coupling of uniform
strength J'. In order to ensure that the free energy is ex-
tensive, the coupling strength must be scaled like
J'=J/N. The thermodynamic properties of the mean-
field model are in general reasonably good approxima-
tions to those of lattice models with short-range interac-
tions, provided the lattice dimensionality is sufficiently
large. Discrepancies are most pronounced near critical
points, but even the mean-field critical-point exponents
turn out to be exact for lattice models whose dimen-
sionality exceeds some value d„known as the upper mar-
ginal dimensionality. ' For the spin models discussed
here, that value is d„=4.

In forcing the equivalent-neighbor spin model to be
thermodynamically well defined at all temperatures, the
price to be payed is the loss of intrinsic dynamics. For
classical spins, the right-hand side of Hamilton s equation
for individual spins, 1St /dt = —St Xt)H/r)St, vanishes in

the limit N~ ~. For quantum spins, the same effect re-
sults from more subtle properties. However, a nontrivial
intrinsic dynamics (for N~ OD) can be restored, at least in
the paramagnetic phase, if the spin coupling is scaled
differently: J'=J/&N. The two scaling regimes are
best understood by noting that the thermodynamic prop-
erties of the equivalent-neighbor model are governed by
the mean value of the magnetization vector (which is the
basis for Landau theory), whereas the dynamical proper-
ties are determined by the Auctuations about the mean
value. A meaningful description of time-dependent
correlation functions for equivalent-neighbor spin models
based on intrinsic dynamics is then restricted to infinite
temperature.

The point of emphasis in the analysis of such correla-
tion functions as reported in the following will primarily
be the properties of their spectral densities at high fre-
quencies and only to a lesser degree the long-time asymp-
totic behavior. We shall demonstrate four different types
of decay for co~ ~ in spectral densities:
C&0(co) -exp( —co "), X =0 (compact support), A, = l

(Gaussian decay), k =2 (exponential decay), I,= 3
(stretched exponential decay), which can be interpreted in
terms of basic notions of classical dynamics, and for
which we borrow the term "universality class" from the
theory of critical phenomena. We shall point out that a
classification of dynamical behavior in terms of the ex-
ponent k is useful in the context of general many-body
dynamics, and that the integer-valued exponents realized
by the equivalent-neighbor XYZ model play a role similar
to the "classical" critical-point exponent values in the
theory of phase transitions as realized by thermodynamic
equivalent-neighbor model systems.

II. DYNAMICAL PROBLEM

The classical equivalent-neighbor XYZ model is
specified by the Hamiltonian

N

g (J„S,"S"+J S~S&+J,S,'S'. ) . (2. l)
Z&N „,

with aPy equal to any cyclic permutation of xyz, hence-
forth denoted by aPy=C(xyz). The collective-spin vari-
able

No= —gS,&N, ,
' (2.3)

The equations of motion for the classical spin variables

S, (three-component vectors of unit length) read

S;=J,a, S,t' J,ag, ,
~ — (J' —,,S~'S,t3 J,S,t'S,r ), (2.2)—1
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represents the vector of instantaneous magnetization fluc-
tuation. Anticipating the result to be demonstrated in
Sec. II C that the length of o is of O(1), it follows that the
I /&X terms in (2.2} become negligible in the limit
N~ ~. The dynamical problem then reduces to a Ham-
iltonian system with two degrees of freedom.

B. Individual spin motion

For a given solution of cr(t), the equations of motion
(2.2) for individual spins are then (for N~~) linear
first-order ordinary differential equations (ODE s) with
time-periodic coeScients:

S, =Jro r(t)SP J—ticrti(t)S,r, ccgy=C(xyz), (2.13)

c» =(Jr Jti—)crro&, ccPy=C(xyz) . (2.4)

These equations describe an effective single-spin model,
an autonomous Hamiltonian system with a single degree
of freedom:

(2.5}

H= —
—,'(J„o„+J»o»+J, o, )=const,

cr=(cr, +cr +cr, )'r =const .

(2.6)

(2.7)

For the XXX model, the case with full rotational sym-
metry (J„=J =J, ), the collective spin is stationary,
a =const. In the presence of uniaxial anisotropy
(J,AJ„=J—:J, XXZ model), the vector o undergoes
uniform rotation about the symmetry axis,

cr„(t)=o icos(II, t+$0),
cr (t) =

seri i(Qn, t+P )0,

cr, =const,

(2.8)

with cri=o„+o and frequency II, =(J—J, )o, . In the
presence of biaxial anisotropy (XI'Z model), the periodic
motion of cr(t) is anharmonic. For 0&J„&J & J, the
general solution reads

cr„(t}=a„cn(At+go,k },
cr (t)=a sn(Qt+((o, k),
cr, (t) =a,dn(IIt+Po, k),

with amplitudes, frequency, and modulus given by

(2.9)

J,o —2e
a

J, —J
J,o. —2e

a

A. Collective spin motion

Summing Eq. (2.2) over all sites i, dividing by i/X, and
taking the limit N ~ ~ yields the equations of motion for
the collective spin:

which proves that the original many-body system (2. 1) is
integrable in the limit N~ ~. For finite N, integrability
is, in general, destroyed by the I/v'X corrections in Eq.
(2.2).

The solution of (2.13) is especially simple for the XXX
model (J„=J=J, =J). ' Here the vector cr is a con-
stant of the motion (for arbitrary N). Each spin S;
precesses uniformly about the direction of a with fre-
quency A=Jo. Hence all spin configurations with zero
magnetization are frozen.

For the XXZ model (J,WJ„=J» =J), the time-
dependent coefficients cr (t) of Eqs. (2.13) are the har-
monic oscillations (2.8). The general solution can be ob-
tained by standard methods and is given in Ref. 11, Eqs.
(3). The motion of the S;(t) is again harmonic, now
characterized by the two independent frequencies

Q, ={J—J, )o, , Q=Jcr . (2.14)

In the general XYZ model, the time-dependent
coefficients cr (t) entering Eqs. (2.13) are given by the
anharmonic oscillations (2.9). The motion of the indivi-
dual spins S, (t) is then still characterized by two funda-
mental frequencies, one of which is (2.11), but the associ-
ated intensity spectra now include lines at their multiples,
sums, and differences.

C. Distribution functions

P, (S,")= —,
' 6( 1 —S; ~ ), (2.15)

For the direct evaluation of the dynamic spin correla-
tion functions in Sec. III, we need to know not only the
rotational motion of cr(t) for given initial values, but also
the distribution of initial values, specifically the joint
probability distributions P(cr, cr, ) (XXZ model) or P(o, e)
(XI'Z model) of the two integrals of the motion which
guarantee the integrability of the effective two-spin sys-
tem (o, S, ). For a canonical ensemble at T= ~, these
distributions are readily determined by an application of
the central limit theorem. The distribution function for
any Cartesian component S; of an individual spin is rec-
tangular,

0'=(J, —J )(2e —J,o );
J J Jo. —2e

J, —Jy 2e —J o-'

(2.10)

(2.11)

(2.12)
P (o„)=Cexp( —3o /2), C:&3/2~, —(2.16)

with variance ((S, ) ) =
—,'. In the absence of any instan-

taneous correlations between individual spins, the distri-
bution of the collective-spin variable o. is then a Gauss-
ian with the same variance,

The initial conditions are expressed in terms of the two
invariants cr and e= ~H ~, where J„o /2 & e &J,o /2, and
a phase Po. ' P(cr) =4nC o exp( —3o. /2) . (2.17)

and the distribution function for the length of o. is a
Maxwellian,
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These distributions are model independent. Note that
the collective spin has the same mean-square length
(cr ) =1 as the fixed-length individual spin. For the
XXZ model, the joint probability distribution P(cr, cr, )

can be constructed from (2.17) and the conditional proba-
bility distribution

P( cr, I cr ) = 8(cr —
I cr, I )

1
(2.18)

III. DYNAMIC CORRELATION FUNCTIONS
AND SPECTRAL DENSITIES

Given the explicit solutions for the dynamical variables
o (t) and S, (t) pertaining to arbitrary initial conditions,
and given the joint distribution functions for the invari-
ants which specify individual solutions, it is then possible,
at least in principle, to evaluate dynamic correlation
functions for these variables directly. In this section we
pursue this road to the extent that we find it practical,
viz. , for the XXZ model. An alternative approach, the
recursion method, is taken in Sec. IV for the general XYZ
case.

A. Collective-spin autocorrelation functions

for the XXZ model

For J =J =J, it is straightforward to evaluate the
functions (cr (t)o ) from the exact solution (2.8). In the
expression

(cr„(t)cr„)= —,'((o —o, )cos(Q, t) ), (3.1)

we have already performed a time average over one
period of the dynamical variable. The ensemble average

I

via the relation P(cr, cr, ) =P(o,
I
0')P(o)as'

P(cr, cr, )=2rrC cr exp( —3o /2)8(cr —Icr, I) . (2.19)

In the general XYZ model, 0., is no longer conserved and
must be replaced by the energy e = IH I

as defined in (2.6).
The same argument then yields an explicit expression for
P(o, e).

is completed by averaging over the invariants 0. and 0.„
using the joint probability distribution (2.19). The result
is a pure Gaussian:

3(cr„(t)cr ) =exp[ —
—,'(J —J, ) t ] .

The associated spectral density

( o (t)cr„ )
(f)xx(~ ) dt e 1ssst

QC (cr„cr„)

is then also a pure Gaussian:

(3.2)

(3.3)

(3.4)

In (3.4) the width of the spectra-weight distribution goes
to zero if J —J,~0, which is consistent with the fact that
0. is conserved in the XXX case. Naturally, we have
(cr, (t)cr, ) =—', for all XXZ cases.

B.Single-spin autocorrelation functions for the XXZ model

(0 —0, )+ — cos[(Q+ 0, )t ]6
(3.5a)

1 + z — 1 +z2 2 2

(S (t)S;) =— cos(Qt) +—
3 02 3 02

(3.5b)

which depend only on the invariants 0. and 0., in addition
to t. Using (2.19) for the remaining ensemble average, we
obtain the following closed-form results for the single-
spin autocorrelation functions and their spectral densi-
ties:

The evaluation of the single-spin autocorrelation func-
tions (S; (t)S; ) for J„=J =J proceeds along the same
lines, but there are some complications. " Performing the
time average of S, (t)S, (0) over a single orbit followed by
a partial ensemble average yields the expressions

1 0 0z2 2

(S;*(s)S; )=— *costfl, tl)2

3(S,"(t)S;)= exp( —,'J, t )+ —[exp(——,'J, t ) —exp( —
—,'(J —J, ) t ))J —J, 't'

3~C
3 3

erf t ——erf
(J J, )'t' &—6

3(S;(t)S,') =
—,'+ —', (1—

—,
' J't')exp( J't'/6);—

2J —J, i J,
t +—erf -t

&6 2 6
(3.6a)

(3.6b)

Kc 2 3 co40"(u)s = —exp —— +
IJ—J

I
3 2 (J —J)

esp . 3 co
Ei

(J —J )' 2 (J —J, )'

l 2J —J, 2J —J,+—
3 J —J, J —J,

3 co
exp

2 (2J —J)
3 co—sgn(2J —J, )exp
2 J2

(2J —J, )/C
(J —J, )

I
J —J, I

1/2
3 co

erf
2 J,

1/2
3

erf
2 2J —J,

1 CO 3 M+- Ei
2 (J —J, )IJ —J, I

—sgn(2J —J, )Ei
3 co

2 (2J —J, )

(3.7a)
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2 3 2

4IiI'I (a) )s = C 5(~)+ exp (3.7b)

A peculiar property of the function @I'I'(co)s is its in-

dependence of J,. The associated spin autocorrelation
function (3.6b) decays like a Gaussian to a nonzero con-
stant. The spectral density 4p"(co)s, by contrast, does de-

pend on the uniaxial anisotropy. For J=0, expression
(3.7a} reduces to a simple Gaussian,

4Iip"(co)s = (2n C/J., )exp( —3' /2J, ), (3.8)

and (3.6a) reduces to 3(S (t)S,"}=exp( J,—t /6) I.n

fact, the long-time asymptotic decay of (S;(t)S;"} is
Gaussian throughout the regime J, & 2J of easy-axis an-

isotropy. In the regime 0&J, &2J, J,AJ, the spectral
density 4IiIi"(cp)s has a singularity at co=0 of the form
-co In(co), which implies that the correlation function
decays algebraically for long tiines (,S (t)S;")—t . In
the limit J, =0, a stronger singularity in the spectral den-
sity makes its appearance, —

~cu~, implying a slower long-
time asymptotic decay of the associated correlation func-
tion (, S,"(t)S;"}-t

Figure 1 shows the spectral density 4Iip"(co)s for several
cases of the XXZ mode1. Starting out with the Gaussian
(3.8) in the limit J =0 (g =0) and increasing J relative to
J„we observe that the peak at co=0 becomes higher and
narrower, while a second peak at nonzero co emerges. In
the XXX limit (J =J„g=0.25), the peak at co=0
diverges and turns into a 5 function, described by expres-
sion (3.7b). As J, decreases below J, the 5 function at
co=O transforms back into a peak of diminishing height
(g =0.3 and inset), the maximum at co=0 turns into a

IV. RECURSION METHOD

For applications to dynamical problems, the recursion
method' is a modern version of the projection operator
technique designed by Mori and Zwanzig, reformulated
to make it directly accessible to computational methods.
It is applicable with equal ease to models with linear and
nonlinear dynamics, to integrable and nonintegrable
models, to classical and quantum models. For applica-
tions to T= ~ spin dynamics, we shall employ the for-
mulation of the recursion method developed some years
ago by Lee. '

A. Formulation for classical spin dynamics

Given a dynamical system specified by some energy
function H(S„. . . , SIv) and the symplectic structure for
classical spins,

IS, , S,~j =5„+e ti S,I',
y

(4.1)

minimum (g =0.4), and the smooth peak at nonzero co

gradually moves towards lower frequencies; in the limit
J, =0 (g =0.5},it turns into a cusp singularity at co=0.

Note that the decay of the XXZ model spectral densi-
ties for large cu is always Gaussian in character, indepen-
dent of the amount of uniaxial anisotropy. In Sec. V such
behavior will be interpreted as a consequence of the
linear dynamics of that model, and we shall demonstrate
that the nonlinear dynamics of the XYZ model leads to a
different decay law. For the analysis of this particular as-
pect of dynamical behavior, the recursion method
presents itself as a convenient computational tool.

3

10.0 I
I

8.0—
l

I

6 0-'

B.O--

'1.0-J =-0 Jz J Jz 0

4p l -, g=p

j
I g=0

/
/'g=-0. 25

o 0-~
0.0 0.5

O 00 0 ZV 0 So

Q 0.0-',
0, 0

g --0

', g=-0, 4

I

Zi

,8 j

L"',
/ g=0.25

1.0 0.0 0.5

0.2 0.4

1.0

G(t}—g Ak«)fk .
k=0

(4.3)

The orthogonal vectors f„are generated recursively via

the Gram-Schmidt orthogonalization procedure with ini-
tial condition fp

= G (0), f I
——0:

the time evolution of any dynamical variable
G(S„.. . , SIv) is governed by Hamilton's equation of
motion,

dG =
I G, H j =iLG, (4.2)

dt

where L =i IH, j is the classical Liouville operator ex-

pressed as a Poisson bracket. The formulation of the re-
cursion method for the autocorr elation function
(G(t)G(0) } is based on an orthogonal expansion of the
dynamical variable under scrutiny:

FIG. 1. Spectral density 40 (m)& of the classical equivalent-
neighbor XXZ model at T= ao. The curves represent the exact
result (3.7a) for six di6'erent values of uniaxial anisotropy, here
parametrized as J=sin( ~g ), J, =cos( mg ). The inset shows the
same function for parameter values g =0.29,0.28,0.27,0.26, ap-
proaching the XXX model (g=0.25), for which case (3.7a)
reduces to (3.7b).

fk+, =iLfk+Akfk I ) k =1,2, . . . ,

~k (fk fk )/(fk —I fk —I )

(4.4)

(4.5)

The inner product used in (4.5) is defined as the canonical
average,

( A, B)=(AB) =—f d q d p e ~ I~'~'A(q, p)B(q,p),1

(4.6)



5858 JIAN-MIN LIU AND GERHARD MULLER 42

where P= 1/kz T and Z is the classical partition function.
For classical spins,

S, = (S, ,sy, S,') = (sin8;cosip, , sin8;sing&;, cos8, ), (4.7)

( 2~„ —1 )!!(2' —1 )!!(2', —1 )!!
(4.8)(2'„+2~ +2x, +1)!!

the phase manifold is a product of unit spheres and a pair
of canonical coordinates for S; are p, =cos8,-, q, =go, .

For energy functions H(S&, . . . , Siv) with a XYZ-type
bilinear (not necessarily equivalent-neighbor) interaction,
all nonvanishing inner products are multispin equa1-time
correlation functions. At T= ~ they conveniently fac-
torize, and each factor can be evaluated in closed form:

B. Application to the equivalent-neighbor XYZ model

In Sec. II we have shown how the many-body dynam-
ics of the classical equivalent-neighbor XYZ model,
which is intractably complicated for finite X, turns
effectively into a physical ensemble of nonlinear two-
degrees-of-freedom Hamiltonian systems as
That transformation can be exploited to increase the
computational efficiency of the recursion method
significantly and to clarify the relation between the dy-
namics of the classical and the quantum equivalent-
neighbor XYZ models.

We rewrite the classical energy function (2.1) in the
form

g JMM+ g QJ(s, )

a=xyz N a=xyzi =1

The sequence of recurrents 6&, if indeed known, con-
tains all the information necessary to reconstruct the au-
tocorrelation function (G(t)G(0) ) as follows. We insert
the orthogonal expansion (4.3) into the equation of
motion (4.2) to obtain a set of linear differential equations
for the coefficients Ak(t):

where

N

M = g S; , a =x,y, z .

(4.14)

(4.15)

Ak(t) = Ak, (t)—6 k+A k&+(t), k =0, 1,2, . . .

with A ~(t)=—0, Ak(0)=5k o, and where

(G(&),G(0)) (G(&)G(0))
(G(0), G(0) ) ( G')

(4.9)

(4.10) [S;,Mp] =pe posy, (4.16)

The Poisson brackets for the two sets of variables S; and
M are

Is;,S~j =5„+e p S7,
r

with a, (z) =—0, can be solved for the relaxation function
ao(z) in the continued-fraction representation:

ao(z):—f dt e "Ao(t) =
0

Z+
2Z+

Z +

(4.12)

The spectral density is obtained from (4.12) via the rela-
tion

+ oc

40(co) = dt e'"'Ao(t) =2 Relimao(e —ice) .
oc e 0

(4.13)

In the absence of any method by which time-dependent
spin correlation functions and their spectral densities for
a given model system can be evaluated on a rigorous
basis, the recursion method can be employed to recon-
struct a more or less accurate approximation of the spec-
tral density. In most practical applications of the recur-
sion method, only a limited number of recurrents A„can
be determined. This makes it necessary to terminate the
continued fraction (4.12) artificially. A simple but quite
powerful procedure to do this was presented in Ref. 14.
Here we shall focus on information which can be extract-
ed directly from the A„sequence.

is the (normalized) autocorrelation function we wish to
determine. Equation (4.9), converted by Laplace trans-
form into a set of algebraic equations,

k(z) ~k, o ak —1( ) ~k+lak+1(

k =0, 1,2, . . . (4.11)

[M,Mp] =pe i3 M

In the recursion method, as applied to the spin autocorre-
lation functions (S, (t)S; ), all inner products to be eval-
uated have the following general structure:

(f„,f„)=N "(b„N"+b„,N" '+ +bo) . (4.17)

Hence all terms except the leading (N-independent) one
represent finite-size corrections. It turns out that only
the M terms in (4. 14) contribute to the dynamics of the
infinite system. Any surviving contribution to the vector
f„ in the orthogonal expansion (4.3) has the general form

N ' " ' S, (M ) '(My) '(M, )
' . (4.18)

All nonvanishing inner products, expanded in inverse
powers of X, factorize to leading order:

with

r =xyz

= ((S;)-') g N™(M,, ' ) [1+0(N ')],
y =xyz

(4.19)

N (M ) =3 (2m —1)!![1+O(N ')] .

(4.20)

Exactly the same inner products are obtained from a
physical ensemble of the two-degrees-of-freedom system
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discussed in Sec. II. That system consists of a spin S; of
unit length coupled parasitically (i.e., with no dynamical
feedback) to an autonomous single-spin system, a spin cr

of unit rms length driven by the Hamiltonian (2.6). The
distributions (2.15) and (2.16) yield precisely the right ex-
pectation values,

(4.21)

to simulate the many-body dynamics.
In our computational implementation of the recursion

method the goal is to determine the longest possible 6„
sequences of single-spin and collective-spin autocorrela-
tion functions for further analysis as described in Sec. V.
For finite N, the input consists of the N-body Harniltoni-
an (2.1), the initial condition fo =S;, and the expectation
values (4.8) for the evaluation of inner products. For
N= Oo the input consists of the single-spin Hamiltonian
(2.6), the initial conditions fo =S, or fo =0, and the ex-
pectation values (4.21). For each of the two situations we
have constructed a computer program which evaluates
the recurrents sequentially according to the rules of the
recursion method.

C. Quantum equivalent-neighbor XYZ model

Through minor modifications, the recursion method
can be adapted to the dynamics of the quantum
equivalent-neighbor XYZ model, which is specified by the
Hamiltonian (2.1) or (4.14) with the S, now representing
spin-s operators. We substitute the quantum Liouville
operator L=[H, ] (commutator) into the equation of
motion (4.2), replace the symplectic structure (4.1) by the
commutator algebra for quantum spins
[S;,S~~]=ifiv +re &rS~, and use (for T= 00 only) the
inner product (A, B)=Tr( AB). In spite of the structural
similarity of the elements which go into the classical and

quantum versions of the recursion method, the resulting
dynamics is, in general, quite different for the two cases.

However, the equivalent-neighbor XYZ model is atypi-
cal in this respect. All inner products have the general
structure (4.17) in both the quantum and the classical
cases, and the dynamics of the infinite system is deter-
mined by the leading term alone. The important point to
note is that all terms in f„which contribute to leading
order in (4.17) contain commuting operators only,
specifically operators pertaining to different sites of the
array. The net result is that the recurrents A„of
(S; (t)S; ) for the infinite quantum equivalent-neighbor
XYZ model differ from those of its classical counterpart
only by a multiplicative constant (which depends on s),
amounting to a different time scale in the dynamical
correlation functions. This explains the observation that
our results for dynamic correlation functions of the clas-
sical equivalent-neighbor XXZ model presented in Sec.
III are fully consistent with the results previously ob-
tained by Lee, Dekeyser, and Kim' ' for the quantum
spin- —,

' counterpart of that model. ' Finite-size effects
are, however, dramatically different in the quantum and
classical cases.

asymptotically for large n. The complete h„sequence is
necessary to fully determine any dynamic correlation
function, but its growth rate alone determines the type of
decay of the associated spectral density

4o(co ) —exp( —co ) (5.2)

asymptotically for large u. ' The point we wish to em-
phasize here is that the growth rate of A„sequences can
be used to characterize universality classes of dynamical
behavior similar to the usage of that term in the theory of
critical phenomena. The T= 00 dynamics of the
equivalent-neighbor XYZ model provides realizations for
the universality classes corresponding to integer-valued
exponents A. =0, 1,2, 3, as will be demonstrated in the fol-
lowing.

In integrable classical dynamical systems, the growth
rate of the b, „sequences for specific autocorrelation func-
tions is basically dominated by two factors.

(a) This factor depends on whether the equations of
motion are linear or nonlinear. Each harmonic mode
contributes exactly one 5 function to the spectral density
(at co & 0), whereas each anharmonic mode contributes an
infinite set of 5 functions, at frequencies with no upper
bound. In nonlinear systems, factor (a) is governed by
the large-co decay law of the line intensities for single
modes.

(b) This factor is governed by the distribution of fun-
damental frequencies pertaining to individual linear or
nonlinear modes. That distribution depends sensitively
on whether the size of the system is finite or infinite and
(for infinite systems) on whether the interaction range is
finite or infinite.

The effect of each factor on the large-co decay law of
the spectral density is expressible in terms of a distribu-
tion function: factor (a) by the spectral-weight distribu-
tion P„(n) of individual modes and factor (b) by the dis-
tribution Pn(Q) of fundamental frequencies of these
modes. The large-co decay law of the spectral density is
then obtained from these distributions by the following
construction:

&&o(~)- J dQP„(Q) I dn P„(n)5(cu nQ) . —
0

For distributions with asymptotic decay laws of the form

(5.3)

P„(n)-exp( —n ), Pn(Q)-exp( —Q~), (5.4)

the large-cu decay law of the resulting spectral density as
obtained from (5.3) is given by (5.2) with exponent

k(a, P) =2(a+P) /aP . (5.5)

In the context of the classical equivalent-neighbor XYZ
model, factors (a) and (b) produce a total of four different

V. GROWTH RATE OF lL„SEQUENCES

The growth rate of the h„sequence for a dynamic
correlation function as obtained by the recursion method
is defined as the exponent A. characterizing the average
power-law growth

(5.1)
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TABLE I. Large-co asymptotic decay law of the spectral density 40(co) and growth rate A. of the asso-
ciated h„sequence for the four different universality classes of dynamical behavior realized in the clas-
sical equivalent-neighbor XYZ model, The four classes arise as the product of the two factors (a) and
(b), each represented by a distribution for which there are two distinct realizations.

Dynamics

linear

linear
nonlinear

nonlinear

Factor (a)

P„(n)

5(n —1)

S(n —1)
-exp( —n)

-exp( —n)

Size of
system

finite

infinite
finite

infinite

Factor (b)

compact
support

-exp( —0')
compact

support
-exp( —0')

40(CO)

compact
support

-exp( —co )
—exp( —co)

-exp( —N ')

decay laws of spectral densities, characterized by four
different integer-valued growth rates A, of the associated
h„sequences. These four universality classes of dynami-
cal behavior are summarized in Table I. They can be
identified as the special or limiting cases A, (oo, oo )=0,
A( oo, 2)=1, A(1, oo )=2, and k(1,2)=3. In the following,
we discuss realizations of each case.

A. Compact support (A, =0)

(co) =F5(ro)+ —/ro/(4J —ro )e(2J —
/ref )

8
(5.7)

has indeed compact support. The trend of the b„se-
quence as determined by the recursion method is to con-
verge to the value J in an alternating approach. See
Table II for the first 12 recurrents as derived from the re-
cursion method. If we consider instead of Ao(t) the func-
tion

Quite generally, b, „sequences with zero growth rate
are realized in linear dynamical systems with a finite
number of degrees of freedom. The finite-N XXX case is
such a system as is evident from our discussion in Sec.
II B. Consider the spin autocorrelation function
Ao(t)—:(S;(t) S; ) for the two-spin XXX case with
J=J/&2. The exact result reads

1
2n

1

2n +1

Ao(t) —Ao( oo )

A o(0)—Ao( oo )

its h„sequence can be expressed in closed form as

(5.8)

(5.9)

Ao(t) =—+ sin(2Jt )—1 3 . — 3+2(Jt )2

2(Jt )' 4(Jt )'

3 —4(Jt)2+ cos(2Jt ),
4(Jt )'

and its spectral density

(5.6)

No. No.

TABLE II. First 12 recurrents b„ for the spin autocorrela-
tion function (S,(t) S, ) at T= oo of the classical two-spin mod-

el H = —JS1 S2 as determined computationally by the recursion
method. Also given is the number (No. ) of distinct terms of the

m

form g,',g „,(S, ) ', which make up the vector f„ in the

orthogonal expansion (4.31).

Let us introduce the sequence

A„=(62„,+62„)/2, (5.10)

which represents partial information on the spectral den-
sity. It is useful to note that the two functions A o(t) and

Ao(t), whose spectral densities differ by an additive 5-
function term at co=0, are characterized by the same A„
sequence (in this case A„=J ), but different b.„se-
quences.

The situation here is represented by the first row of
Table I and by the limiting case (a,P) =( oo, oo ) of Eqs.
(5.3)—(5.5). For the XXX case with X)2 but finite, the
h„sequence of Ao(t) exhibits a more complicated pat-
tern, but still converges to a finite value b „=NJ /4, and
the spectral density is bounded to ~co~ & &EJ. In the lim-
it N= oo, the growth rate of h„switches from X=O to 1

as will be discussed next.

2
3

3
5

32
49
70
99
3
4

112
143

20

340

2244

10

12

4
3

7
5

66
49
128
99
5
4

174
143

61

243

707

1775

3891

B. Gaussian decay (A, =1)

h„sequences with linear growth rate (A, = 1) are com-
mon in many-body systems with linear dynamics. In the
context of the infinite-N XXZ case, the Gaussian decay of
the spectral densities (3.4) and (3.7) arises, via factor (b),
from linear modes with a Gaussian frequency distribu-
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FIG. 2. Sequence of recurrents h„vs n for the single-spin au-
tocorrelation function (S,"(t}S,") at T= ~ of the infinite-)Vclas-
sical equivalent-neighbor XXZ model for three different sets of
parameter values. For 0 & J ~ J,:—1, the A„sequences oscillate
about the (dashed) line n/3. The inset shows the deviations
6„—n/3 vs 1/&n for two cases in which the oscillations die
out as n~00.

tion, a property dictated by the central limit theorem.
For the simplest realization of A, =l, consider the

collective-spin autocorrelation function ( o„(t)a„),
whose spectral density is a pure Gaussian, given by (3.4)
and characterized by the purely linear sequence
A„=(J—J, } n/3. This situation is represented by the
second row of Table I and described by Eqs. (5.3)—(5.5)
with (a,P) =( ~,2).

The growth rate k = 1 is also realized in the single-spin
autocorrelation functions (S; (t)S, ), whose spectral den-

sities, given by expressions (3.7), all exhibit Gaussian de-

cay at high frequencies. In Fig. 2 we show several A„se-
quences (plotted versus n) for (S,"(t)S,") at various values

of J and J„all of which show indeed linear growth rate,

No. No.

TABLE III. First 12 recurrents b, „ for the single-spin auto-
correlation function (S,{t}S, ) at T= ~ of the equivalent-
neighbor XXX model in the limit X~~, as determined compu-
tationally by the recursion method. Also given is the number
(No. ) of distinct terms of the form (4.18), which make up the
vector f„ in the orthogonal expansion {4.3).

but now with marked corrections. Only the sequence for
J =0 is purely linear, b,„=nJ, /3, representing expres-
sion (3.8). Throughout the regime 0&J & J, the b, „oscil-
late about the line nJ, /3 (shown dashed in Fig. 2). These
oscillations persist as n ~ ~ if J, /2( J(J, and thus
determine the singularity structure of the spectral density
(3.7a) and the power-law long-time tail of the correlation
function (3.6a). For 0(J (J,/2, on the other hand, the
oscillations damp out as n ~~, which is illustrated for
two cases in the inset to Fig. 2. These h„sequences de-
scribe spectral densities with no power-law singularities
and correlation functions with no power-law long-time
tail.

The exact values of the first 12 recurrents for the spe-
cial XXX case (J, =J) are given in Table III. We observe
that this fairly complex A„sequence yields a very simple
A„sequence A„=(4n+1)J /3, which suggests that, as
in the example discussed in Sec. V A, the spectral density
of 4ii"(co)s consists of the sum of a 5 function at co=0
and a function whose A„sequence has a simpler struc-
ture. This is confirmed by expression (3.7b). Its second
term represents the special case (cuo=2J /3, {M=3) of the
function

2~ —( colco0)
4o(ro) = (ru/coo)" e

cool }tt/2

whose 6, sequence reads'

i=coo(n —1+p/2), b,2„=coon .

(5.11)

(5.12)

C. Exponential decay (){,=2)

Consider the spin autocorrelation function (S,"(t)S,")
for the XXZ case with %=2, specifically the two-spin
model with J, =0. For this case, the anharmonic motion
of the spin components S, was analyzed for arbitrary ini-
tial conditions in a quite different context. ' The solu-
tions are expressible in terms of Jacobi elliptic functions.
These functions have the property that their line intensi-
ties decay exponentially fast at high frequencies [factor
(a)]. For finite systems, the distribution of fundamental
frequencies has compact support [factor (b)]. This situa-
tion is represented by the third row of Table I and by
Eqs. (5.3)—(5.5) with (a,P) =(1,~ ), yielding an exponen-
tially decaying spectral density and a b„sequence with
quadratic growth rate. Figure 3 shows a plot of 6„
versus n for the first 18 recurrents of this case as deter-
mined by our computational procedure. The observed
growth rate is perfectly consistent with A, =2. We might
add as a remark that a purely quadratic growth rate
A„=a n represents a "spectral density" of the form

2
3
10
9
28
17

306
137

12056
4233

36 686
10 545

24

50

90

147

10

12

17
9

137
51

1411
411

17 575
4233
17 063
3515

16

37

71

121

190

4o(cu)+(m/a )sech(mes/2a ) . (5.13)

D. Stretched exponential decay (A, =3)

For realizations of this last universality class, consider
the collective-spin autocorrelation function (o (t)o ) of
the XYZ case with X= ao, specifically the function
(a (t)o ) for J„=(1+y)/2, J =(1—y)/2, J, =O, and
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FIG. 3. Sequence of recurrents A„vs n', n =1, . . . , 18 for
the spin autocorrelation function (S,"(t)S,") at T= ~ of the
classical two-spin XX spin model, H= (S1Sp+S&S2). The
quadratic growth rate (A, =2) for this function is demonstrated

by the excellent fit of the regression line.

FIG. 4. Log-log plot of sequences h„vs n for the collective-
spin autocorrelation function ( trr ( t)err ) at T= ~ of the
infinite-N classical equivalent-neighbor XYZ model for four
different sets of parameter values. The two cases with uniaxial
symmetry (implying linear dynamics) yield linear growth rate
(A. =1), whereas the two cases with biaxial symmetry (implying
nonlinear dynamics) yield cubic growth rate (A, =3). Lines with
slopes A, = 1 and 3 are shown by the dashed lines.

four different values of the parameter y. For the two
cases with uniaxial symmetry y=0 and 1, the dynamics
is linear, whereas for the two intermediate cases with bi-
axial symmetry y =

—,
' and —'„ it is nonlinear and describ-

able in terms of Jacobi elliptic functions (see Sec. II A).
In all of these cases, the distribution of fundamental fre-
quencies of individual (linear or nonlinear) modes is
characterized by a Gaussian decay [factor (b)], but for the
nonlinear cases, the large-e behavior of the spectral den-
sity is further governed by the exponential decay of line
intensities at rnultiples of the fundamental frequencies
[factor (a)]. These situations are represented, for the
linear and nonlinear cases, respectively, by the second
and fourth rows in Table I and by Eqs. (5.3)—(5.5) with
exponent values (a,P) equal to (~,2) and (1,2). Figure 4
shows for the four specified cases A„versus n in a log-log
plot as determined computationally by the recursion
method. The switch from linear to nonlinear dynamics
causes the growth rate to jurnp from X=1 to 3.

VI. MANY-BODY SYSTEMS
WITH SHORT-RANGE INTERACTION

The results of this study suggest that the four different
universality classes of dynamical behavior observed in the
context of the classical equivalent-neighbor XYZ model
may serve as prototypes for a classification of the dynam-
ics of general classical and quantum many-body systems.
The exponent values A. =0, 1,2, 3, which are realized in
this somewhat artificial dynamical model, then play a
role similar to the "classical" exponent values in the
theory of phase transitions, which are also realized by the
equivalent-neighbor model now interpreted as mean-field
approximation to a thermodynamic system with short-
range interactions.

H = —y (s;"s,",+s,~s» (6.1)

For that model, growth rates A. =1 and 0 are both real-
ized. ' ' ' The former characterizes the correlation
functions with the maximum degree of complexity for
that model, while the latter occurs as a result of special
circumstances which impose exceptionally stringent
selection rules on transition rates.

(iii) For autocorrelation functions Ao(t) which are en-
tire functions of (complex) time the growth rate A, of the
b,„sequence is expressible as A, =2(p —I)/p in terms of
the growth order p. The latter quantity specifies the

Studies of critical phenomena have convincingly
demonstrated that the values of critical-point exponents
of model systems with short-range interaction are deter-
mined by more subtle properties than is suggested by
mean-field theory. Likewise, the growth rates that
characterize dynamic correlation functions of many-body
systems with short-range interactions call for an interpre-
tation which transcends the classification used in Sec. V.

We wish to conclude this paper with a series of re-
marks, some factual, some tentative or speculative, whose
main purpose it is to highlight some observations made
on classical and quantum spin models with short-range
interactions. '

(i) Dynamic correlation functions of generic quantum
many-body systems appear to be characterized by A„se-
quences with growth rates in the vicinity of A, =1.

(ii) One of very few quantum many-body systems for
which nontrivial dynamic correlation functions can be
evaluated exactly is the one-dimensional (1D) s =

—,
' XX

model,



42 INFINITE-TEMPERATURE DYNAMICS OF THE EQUIVALENT-. . . 5863

H = —g ln(1+S, .S;+,), {6.2)

such singularities even make it to the real t axis, at least
for finite X. The exact result for the T= oo autocorrela-

growth of Ao(t) for large imaginary times:
Ao(ir)-exp(v ). A proof that Ao(t) is entire exists only
for 1D quantum systems with finite-range interaction.

(iv) Some evidence for growth rates A, ) 1 in quantum
many-body systems does exist, namely for the spin auto-
correlation functions at T= ~ of the 1D s =

—,
' XXX mod-

el (Heisenberg tnodel). An extrapolation based on the
analysis of the first 15 nonzero frequency moments (they
determine the b,„up to n =15) suggest a growth rate
k) 1.18 for that case. More systematic studies on
quantum spin models are clearly called for.

(v) Dynamic correlation functions of generic classical
many-body systems with short-range interactions and
nonlinear dynamics appear to have growth rates in the vi-

cinity of k=2. This is in marked contrast to their quan-
tum counterparts [cf. remark (i)].

(vi) Figure 5 shows in juxtaposition the first seven re-
currents b, „versus n (in a log-log plot) for the spin auto-
correlation function (S (t)S,") of the 1D classical XX
model (6.1) and its quantum spin- —,

' counterpart. While

the sequence of the quantum model is an exact realization
of A, = 1 [cf. remark (ii)j, the sequence of the classical
model suggests a growth rate A, =2.

(vii) The growth rate of the A„sequence is an impor-
tant piece of information in approximation schemes used
for the reconstruction of spectral densities from a finite
number of recurrents. Practically all approximation
schemes proposed in the past are based on the assump-
tion that A, =0 or 1, even for situations where this is man-
ifestly not the case. A general procedure that takes the
necessary generalizations into account is given in Ref. 14.

(viii) Note that the growth rate A, =2 represents the
limiting case of infinite growth order (p= ~). A„se-
quences with growth rates A. & 2 do not represent auto-
correlation functions which are entire functions of t. One
case in point is the function (5.13), an exact realization of
A, =2; its Fourier transform is evidently not entire.

(ix) The number of recurrents that we have been able to
compute so far for various cases of the 1D classical XYZ
model is somewhat too small to detect or rule out devia-
tions from the borderline growth rate A, =2 with some
confidence. The b,„sequence of (,S;"(t)S;") for the XX
model suggests A, )2 (see Fig. 5), while the corresponding
sequence for the Heisenberg model (XXX case) indicates
A, &2. Further work with more computational power is
needed.

(x) Time-dependent correlation functions with singular-
ities are not unheard of in otherwise well-behaved classi-
cal many-body systems with Hamiltonian dynamics. For
the case of the completely integrable logarithmic Heisen-
berg model

1.0—

0.0-,
1D s= 1/o XX model

-- 1,0-
Q. () 0.5 1 0

1n(n)

FIG. 5. Log-log plot of sequences A„vs n, n =1, . . . , 7, for
the autocorrelation function (S,"(t)S,") at T= oo of the 1D clas-
sical and quantum spin- —,

' XX model. The sequence for the
quantum model is exactly known, A„=n/2, for arbitrary n.
The (solid) regression line determined for b &, . . . , 57 of the clas-
sical model has slope A, =2. 19. Lines with slope X=1 and 2 are
shown by the dashed line.

tion function for N =2 reads

A, (r) = ,'+ ,'( I-+ ,'-r')cost —r(--,'+ —,', r')sinr

+ t (1+—,', t )ci(t)

= t'(1+
,', t')1nr+ r (t—), (6.3)

where r(t) is regular. Such functions are no longer
describable in terms of A„sequences.

(xi) In the context of the equivalent-neighbor XPZ
model we have found that the growth rate of A„se-
quences is determined in part by the detailed spectral
properties of individual nonlinear modes. It is therefore
conceivable that the manifestly different spectral proper-
ties of chaotic phase-space trajectories in nonintegrable
models have some observable and analyzable impact on
the growth rate of A„sequences.
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