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Nonequilibrium indentation simulations for two-dimensional crystals composed of up to
1036800=720X1440 atoms are described. The forces used include smoothly truncated Lennard-
Jones force laws, both with and without added embedded-atom contributions typical of copper or
nickel. Both low and intermediate temperatures are considered over a wide range of indentor
speeds. Typical microhardness yield strengths for these two-dimensional materials, force divided by
projected area, exceed 10% of the shear modulus. For the most part these simulations were carried
out on the 64-transputer SPRINT computer at Livermore.

I. INTRODUCTION

Molecular dynamics is now a mature Geld' and a
fiourishing worldwide enterprise. The subject began
with Fermi, Pasta, and Ulam's dynamical studies of one-
dimensional anharmonic chains, Alder and Wainwright's
detailed hard-sphere studies, and Vineyard's crude simu-
lations of radiation damage in metals. In those days, be-
tween 30 and 40 years ago, 1000 atoms was a very large
system. Today, with low-cost transputer technology and
parallel processing, million-atom simulations are
feasible on a college or university budget. Billion-atom
simulations are on the near horizon. Such large-scale
simulations make it possible to model the dynamical be-
havior of micrometer-sized samples of real materials on
an atomistic basis.

Million-atom simulations are already large enough to
be of use in understanding applied problems in nanome-
ter processing technology. The real challenge today is
the accurate shaping of contoured surfaces on a scale of
nanometers. State-of-the-art precision machining has
progressed from relative accuracies of 10 m (1930), to
10 m (1948), to 10 m (1970), to today's ultimate limit
of nanometer technology in just 60 years. Today it is
possible to machine precise contours with a depth of cut
of only two or three atomic spacings. More typically,
contour accuracies of a nanometer are achieved with cut
depths of order 1 pm. Because such atomic-scale pro-
cessing is slow, with production rates measured in square
meters per year, the incentives for understanding are
economic as well as intellectual. Simulating such pro-
cesses is becoming a reality as the length scales of atomis-
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tic simulations and laboratory measurements overlap '

over an increasingly wider range of length scales.
Atomistic simulations require a phenomenological
description of atomistic interactions. The relative ex-
pense of three-dimensional simulations and the difficulties
in visualizing the results make it mandatory first to carry
out thorough exploratory two-dimensional studies.
Two-dimensional studies are described in this paper. The
present work is a substantial step toward the near future
of molecular simulations, three-dimensional simulations
involving billions of atoms.

It has long been understood that dynamical simula-
tions, as opposed to arbitrary Monte Carlo selection
rules, are essential to understanding nonequilibrium sys-
tems. ' Previous dynamical work on simulating the
nonequilibrium deformation of "simple metals, " such as
copper, dates back to Vineyard's radiation-damage stud-
ies at the Brookhaven Laboratory. There is no shortage
of papers" ' discussing the qualitative simulation of
material failure but comprehensive quantitatiue agree-
ment with experiment on the basis of a fundamentally
sound model has not yet been achieved. The theoretical
world of one-electron atoms and dislocations governed by
linear elastic forces bears little resemblance to engineer-
ing practice. Nearly ten years ago we began to study the
steady plastic flow of solids at high rates of strain. ' '
These studies emphasized isothermal plane Couette flow.
Extrapolating from computer-generated flows at
terahertz and gigahertz strain rates to reach "high-
strain-rate" laboratory data at megahertz strain rates
suggested overall agreement with the steady shear stress
varying as a temperature-dependent power of the strain
rate. Similar investigations have been carried out since
that time, but without a systematic investigation of rate
dependence, size dependence, force-law dependence, and
temperature dependence. The transputer technology
available today provides a qualitative change in the tools
available for solving state-of-the-art problems in compu-
tational physics. Because engineering practice has
reached the atomic scale this is an appropriate time for a
reinvestigation of the fundamentals of material failure at
relatively high strain rates and on relatively small scales.

In the past decade new simple models for interatomic
interactions have been developed, greatly improving our
capability for representing the nonadditive properties of
metals. Pair potentials cannot describe metals. There is
typically a severalfold disparity between the energy bind-
ing a single metal atom to a crystal and the energy associ-
ated with a vacant lattice site. Likewise, the disparity be-
tween the two elastic constants C»22 =—C,2 and

C,2,2=—C44 in cubic crystals can only be reproduced by
phenomenological models incorporating nonpair interac-
tions. The "embedded-atom" concept invented by Foiles,
Baskes, and Daw, ' provides simple, inexpensive, and
flexible many-body potentials to model at least some of
the nonadditive properties of relatively simple metals
without the computational complexity of explicit angle-
dependent or long-ranged Coulomb forces. This
enhanced capacity for realism, coupled with the still-
rapidly-increasing size of simulations, promises revolu-
tionary gains in understanding processes fundamental to

metal cutting and deformation. The main outstanding

gap is a simple flexible model consistent with the high
strength of body-centered-cubic materials such as iron
and tungsten.

We present here results from our two-dimensional
study of indentation from an atomistic viewpoint. We
characterize the dependence of indentation microhard-
ness on force law, size, indentation rate, and temperature.
We believe that such a systematic study is much more
useful than isolated special simulations designed to model
some aspect of single experiments. Indentation was
selected here as the simplest fundamental measure of ir-
reversible plastic yielding. The extension of these simula-
tions to three-dimensional billion-atom cutting and pol-
ishing processes requires the efficient manipulation and
analysis of large data files. We expect to contribute to
this capability by laying a groundwork in two dimensions
where the observed phenomena and the corresponding
analyses are considerably simpler.

The plan of the present work includes an outline of the
problem, in Sec. II; a description of the atomistic models,
in Sec. III; a description of the computational implemen-
tation, in Sec. IV; with the results and conclusions de-
rived therefrom making up Secs. V and VI.

II. INDENTATION

The behavior of linearly elastic materials follows
Hooke's law, ' with the stress proportional to the strain:
o,"= g C„«e«, or, in a more-abbreviated notation,
o.=C:e. In three dimensions stress and strain are sym-
metric second-rank tensors with six independent com-
ponents. In two dimensions the corresponding tensors
have just three independent components, xx, xy, and yy.
The proportionality constants making up the fourth-rank
tensor C are the "elastic constants" and can range over
about seven orders of magnitude, from the shear modulus
of rubber, about 1 bar, to the longitudinal modulus of di-
amond, about 10 Mbar. Nonlinearly elastic materials fol-
low a reversible stress-strain relation 0 =o(e j without
the hysteresis and irreversible heating associated with
plastic yielding and permanent deformation.

It is usual, in continuum mechanics, to distinguish be-
tween rate-dependent "viscous" or "viscoelastic" flows
and rate-independent "elastic" or "plastic" flows. These
are useful idealizations for distinguishing the flow proper-
ties of brittle and ductile materials and reflect traditional
engineering tests measuring the elastic moduli and the
plastic yield strength. Idealized elastic and plastic behav-
ior is illustrated in Fig. 1 for the inelastic elongation of a
bar. The initial elastic response is described by Young's
modulus, o., /e . Typically, at strains of order 0.001,
the linear behavior changes, and the bar sufters "plastic
strain, " retaining a permanent deformation when the
load is removed. Such plastic deformation is irreuersible
in a thermodynamic sense, and is characterized by the
conversion of work to heat as well as by strain-induced
hardening. Although permanent deformation is funda-
mentally dependent on both rate and temperature, the
idealization of a constant yield strength, independent of
strain and strain rate, is a useful conceptual and compu-
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Force = Stress x Ar FIG. 2. Typical indentation geometry, shown here for a
3200= 80X40 atom workpiece. The indentor radius is 4d where
d is the cold-crystal interparticle spacing. The bottom row of
atoms is fixed and the left and right boundaries of the workpiece
are joined with periodic boundaries. The time-dependent inden-
tor speed and displacement are shown in the insets.

FIG. 1. Idealized elastic and plastic variation of stress 0„„
with strain e,

„

in the measurement of Young's modulus 0„/e,
„

and Poisson s ratio —eyy/E by extending a cylindrical rod.
The unloaded residual strain, relative to the original rod length,
indicates plastic deformation.

tational model. We keep this simple model in mind while
studying the more complicated phenomena associated
with indentation.

When a macroscopic prismatic indentor is pressed into
a mass of material, the resulting area of deformation is
proportional to the applied load. The load per unit pro-
jected area is a phenomenological yield stress or "mi-
crohardness. " For such a measure of yield we use the
symbol Y. In our exploratory two-dimensional simula-
tions Y is a load per unit length rather than a load per
unit area. Our indentation geometry is shown in Fig. 2.
We chose a circular, rather than triangular, indentor
shape in an effort to simplify our results by minimizing
singular stress gradients in the vicinity of the indentor
tip. The indentor diameter was chosen to be a factor of
10 less than the zero-temperature system width in order
to reduce the inAuence of the boundary image forces on
the energy. Our two-dimensional circular indentor would
correspond, in three dimensions, to pressing a cylindrical
indentor into a half space of test material. The continu-
um description of such a deformation corresponds either
to a problem in "plane strain, " with no displacements in
the direction normal to the picture plane of Fig. 2, or to a
problem in "plane stress, " with no forces in the direction
normal to the picture plane.

Timoshenko and Goodier' describe the linearly elastic
deformation of a two-dimensional isotropic half space by

a point load. Despite displacements that diverge, loga-
rithmically, at both small and large r, the stress field for
this problem is well behaved. The solution shows that
both the mean stress and the shear stress are proportional
to the applied load and fall off as cos(B)lr, where the
direction of indentor travel defines the line 0=0. The
contours of equal shear stress are circles, as shown in Fig.
3. In the quasistatic plastic case, the shear stress cannot
exceed the yield value Y. Thus the stress should closely
follow the elastic solution outside a roughly circular con-
tour about equal to the indentor in size and correspond-
ing to the yield-zone boundary. Within the plastic zone
the shear stress should be relatively constant and approx-
imately equal to the microhardness Y. The linearly elas-
tic solution for the geometry we have chosen, with
periodic vertical boundaries and a rigid boundary at the
workpiece base, can be very nearly described by a super-
position of the half-space solutions, equally spaced in the
horizontal direction, satisfying the periodic boundaries,
and with a set of "image-load" solutions symmetrically

(z = 2

FIG. 3. Contours of equal stress, either compressive

[ —
( +ocr»)/2] or shear [(o„cr»)'/4 —+]o'~', for a point

load applied to an elastic half space in plane stress or plane
strain, from Ref. 18.
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d(cu, )
L p =L pdt d (Lt, /c)

dQ
=pc ' =L [V o(e)]

dt,

=V, o(e),

establishing that the equation of motion, and hence its
solution, is scale independe-nt The onl. y necessary as-
sumptions are that the stress is a definite function of
strain and that the set of boundary Mach numbers, [ v/c)
for any moving boundaries, is scale independent.

The simplest atomistic view suggests a different con-
clusion, based on the idea that plastic flow is the result of
dislocation motion so that the resulting strain rate is a
function of stress. This viscoelastic viewpoint is con-
sistent with studies of dislocation motion carried out over
a wide range of temperatures and system sizes, both in
two and in three dimensions. ' From the atomistic
viewpoint dislocations move at speeds of the order of the
transverse sound speed in acting to reduce the shear
stress. This viewpoint suggests an Arrhenius (exponen-

arranged below the workpiece base, satisfying the rigid
boundary conditions. The analytic elastic solution serves
as a useful overall guide to choosing the workpiece shape
and dimensions. A quantitative description, including ir-
reversible plastic deformation, requires exploring many-
parameter numerical solutions of the corresponding con-
tinuum dynamical equations, with both nonlinear elastici-

ty and rate-dependent plasticity. Such numerical work is
currently underway. '

The simplest continuum models of material behavior
are rate independent. An "elastic" continuum responds
to strain with a definite stress. In the elastic case there is
no explicit dependence of stress on the rate of deforma-
tion. A "plastic" continuum jfows irreversibly in

response to a sufficiently large shear stress, so that stress
and strain are no longer linked by a one-to-one reversible
constitutive relation. But still, in the simplest case of
rate-independent plasticity, there is no explicit depen-
dence of the stress-strain relation on strain rate. Accord-
ing to either of these simple continuum models, elastic or
plastic, or even a combination, there can be no "size
effect;" that is, a sma11-size model of a large-size experi-
ment should deform in exactly the same way, with the
same stresses and strains, provided that these mechanical
variables are functions of the scaled coordinates

[x„y,] = [x/L, y/L j. The predicted dependence of the

energy of deformation on the scale length L is quadratic,
in two dimensions. To see this scaling argument in more
detail, take the equation of motion,

d l' du
p =p =V o(e),

dt2 dt

and introduce dimensionless "scaled" coordinates
(r, =r/L) and a dimensionless scaled time t,:ct/L. —
Both the sound speed c and the density p are characteris-
tic material properties which do not vary with the scale.
If we multiply the equation of motion by L and then ex-
press the result in terms of these new variables, including
the scaled velocity u, —=dr, /dt, and the scaled gradient

V, =L V we have

tial) relation between flow rate and inverse temperature
with enhanced strength for smaller samples and higher
rates of deformation. In this paper we describe our
efforts to compare the results of direct numerical simula-
tion with these simple models.

III. ATOMISTIC DYNAMICS

We consider regular close-packed "triangular-lattice"
crystals in which all pairs of particles interact with the
short-ranged Lennard-Jones spline potential, which
very smoothly connects the Lennard-Jones 6-12 potential
to a cubic spline between the potential's inflection point
R; and a cutoff R at 1.547 537 times the potential's rest-
length d:

Pt&s(r)=e[(d/r)' —2(d/r) ] for r &R, ,

/Us(r) =4 655 59. 5(e/d )(R r)—
—6. 129377(e/d )(R r) for R—, &r &R

R;/d =(13/7)'i =1.108683, R /d =1.547537 .

The three constants in the spline potential follow from
matching the values of the potential and its first two
derivatives at the inflection point R;.

%'e also include similar calculations using an
embedded-atom collective potential. ' We use the
Holian-Voter-Hoover embedded-atom potential. The
goal was to model the vacancy energy and elastic proper-
ties of a simple metal such as copper or nickel with as
simple a functional form as possible. We chose to write
the additional energy as a sum, over all atoms, of a
density-dependent potential PE~(p ):

@EA X PEA(p) =2ee g (p lnp )

p; =(1/6e)[(R r)I(R——d )]

where the individual-particle densities [p, ] are computed
as sums of the short-ranged quartic function which van-
ishes at the potential cutoff distance R . In the perfect-
lattice arrangement a particle with six neighbors has an
embedding density of I/e, at which the energy is mini-
mized, corresponding to a negative binding energy of
—2e per particle. In this present work we match the en-

ergy minima for the two potentials by adding onto 4E~
the usual Lennard-Jones-spline potential, multiplied by —,',
so that the perfect-crystal energies for the Lennard-Jones
and Lennard-Jones plus embedded-atom models are iden-
tical, —3e per particle. The embedded-atom potential
acts to drastically reduce the crystal vacancy energy. If a
single vacancy is introduced into a stress-free static
Lennard-Jones crystal the energy change is +3@, exactly
the same as the binding energy per particle. In the
embedded-atom case moving an atom within the crystal
so as to create a vacancy causes the density of the six
atoms neighboring the vacancy location to change from
1/e to 5/6e. The corresponding change in the
embedded-atom contribution to the total crystal energy
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4EA is e[101n(5/6e) —121n(1/e)]=+0. 177e, less than
one-tenth the embedded-atom binding energy per parti-
cle.

The change in the elastic properties is dramatic too be-
cause the embedded-atom contribution to the zero-
temperature zero-pressure shear modulus is exactly zero.
For the regular triangular-lattice arrangement the change
in embedding density is quadratic in the shear strain rath-
er than linear so that the linear-elastic embedded-atom
resistance to shear vanishes. As a result the two poten-
tials have different zero-pressure melting temperatures
(about 0.40ejk for the Lennard-Jones-spline potential
and 0.20 e/k for the Lennard-Jones plus embedded-atom
potential) and different elastic properties. The factor-of-2
drop in the melting temperature corresponds roughly to
the drop in lattice frequencies of those modes resisting
shear. The reduction is exactly a factor &3, refiecting
the factor-of-3 decrease in the Lennard-Jones contribu-
tion in the Lennard-Jones plus embedded-atom potential.
It is possible to match the bulk modulus, as well as the
binding energy, by using a Morse potential developed by
Holian, rather than the Lennard-Jones-spline potential,
but we have not investigated that somewhat softer poten-
tial here.

In describing the elastic properties of solids the Lame-
constant description is a useful one because the
triangular-lattice structure implies elastic isotropicity. In
the plane-strain interpretation of our two-dimensional re-
sults the elastic constitutive equations have the forms

cr =I V uI + rt( V u + V u '),
o„,=(A, +2rt)e„„+he,o„~=ate„~,

o = ke„,+ ( A. +2i) )eye,

where the elastic displacement relative to the stress-free
configuration is the vector u = (u„u ) and I is the unit
tensor. With central forces the zero-temperature zero-
pressure shear modulus 6, and the two Lame constants,

g and A, , are all three equal for any two-dimensional
triangular-lattice system. We can estimate these moduli
from the equation of state of the cold crystal. For the
pure Lennard-Jones-spline force law these relations are

PV/Ne= 18(plpo) —18(pjpo)

BV/Ne=2GV/Ne= 126(pjpo) —72(pjpo)',

where po is the two-dimensional zero-temperature stress-
free density, po=(4/3)'~ (m ld ). P and V indicate the
equilibrium pressure and volume for an ¹ tom crystal.
B is the zero-temperature bulk modulus, —V(dP/dV)o.
Thus, for the cold stress-free lattice:

BV/Ne= (A, +g) V/Ne=2G V/Ne

=2riV/Ne=54 (LJS) .

These contributions are reduced threefold in the
Lennard-Jones plus embedded-atom case. The corre-
sponding pure embedded-atom contribution to the bulk
modulus B =k+q is 4.1%@/V, leading to the additional
zero-temperature stress-free results:

BV/Ne=(A, +rt) V/Ne=22. 1,
V,/Ne=13. 1,

GV/N e= riV/N e=9 (LJEA) .

These elastic constants are useful in comparing the re-
sults of our atomistic simulations with the predictions of
continuum mechanics and with experimental findings, as
is briefiy discussed in Sec. V. Preliminary qualitative in-
vestigations ' showed a good correspondence with elastic
theory. We expect to present more detailed compar-
isons' with numerical continuum plasticity simulations
in the near future.

It has been emphasized that centered-difference
"modified-Stoermer" methods generalizing Verlet's equi-
librium approach to nonequilibrium simulations are both
stable and useful for relatively large time steps,
dt =0.02(md je)' for the Lennard-Jones-spline calcu-
lations and dt =0.03(md le)' for the slightly softer
embedded-atom simulations, and also require minimum
storage. Accordingly we have used the Stoermer form:

x+ —2xo+x =(dt) (Fo/m),

for our cold-crystal simulations. At nonzero tempera-
tures a very powerful and Aexible type of temperature
control can be applied by using a modified-Stoermer gen-
eralization of Nose-Hoover mechanics. In general, indi-
vidual thermostat temperatures T and relaxation times

can be imposed on selected subsets I x, ) of the system
degrees of freedom by "friction coefficients" g . The cor-
responding equations of motion for the members of such
a subset can include a space-and-time dependent weight-
ing function w (x;, t ):

d x; dx;
=(F, /m, )

—w~(x;, t)g,

dg,
=w, (x„t)[(p,/m, kT, )

—1]/r2 .
dt

We call g a "friction coefficient" in order to suggest an
analogy with the functional form of hydrodynamic drag
forces. The present friction coefficients have no direct re-
lation or connection to real macroscopic friction and ap-
pear in the (time-reversible) equations as temperature-
control variables. It is not difficult to show that in the
equilibrium case, where the imposed temperatures I T )

have a common value, T, these Nose-Hoover equations of
motion preserve Gibbs's canonical-ensemble phase-space
distribution for an otherwise isolated system. Thus the
friction coefficients are the deterministic mechanical
equivalent of a thermodynamic heat bath. For simplicity,
in our finite-temperature indentation simulations we ap-
ply a uniformly weighted thermostat, with no explicit
space or time dependence, to all degrees of freedom. The
time-reversible finite-difference equations, with which we
approximate the solution of the differential equations of
motion given above, are these:
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x+ —2xo+x =(dt) (Fc/m) —gc(x+ —x )(dt/2),

= [(ICD/NkT) 1—](2dt)/r

Kc=(1/dt) g (m/8)(x+ —x )

The subscripts I
—,0, + I indicate successive times

separated by the time step dt. New coordinates, "+,"
are first calculated using the current value "0"of the fric-
tion coefficien, gc; then the new value of the friction
coefficient, g+, can be calculated from the kinetic energy
Ec based on these new coordinates [x+ }. The long-time
average value of the kinetic energy is NkT where T is the
temperature and N is the number of (moving) particles
(excluding the bottom row of fixed particles). The arbi-
trary relaxation time r is set equal to (md /e)' except
at the higher rates of deformation, for which
r=0. 1(md /e)'

IU. COMPUTATIONAL DETAILS

The calculations were made as simple as possible by us-
ing the short-ranged Lennard-Jones-spline potential. In
our exploratory work on the CRAY computers at Liver-
more we constructed neighbor lists for each particle.
For the 64-megabyte SPRINT it was advantageous to
save space, spanning the problem geometry by a network
of rectangular cells, each of sidelength twice the mean
nearest-neighbor spacing, and to keep track of each cell's
occupants by using a linked list. In this way the num-
ber of storage locations per atom was reduced to about
nine, two coordinates at each of three times and an addi-
tional three locations per particle describing the distribu-
tion of particles among cells. At the expense of program-
ming clarity it is possible to reduce the required storage
by an additional two locations per particle by introduc-
ing "velocities" described by a "leapfrog" version of the
Stoermer algorithm. Again for simplicity all of our simu-
lations were geometrically similar, with m horizontal
rows of 2m particles each making up the workpiece, as

TABLE I. The work of indentation, in units of e, is tabulated for an indentor travel distance of
(Nd /200)' ', where N is the number of particles. The force laws indicated are the Lennard-Jones-
spline and the combination of that potential with an embedded-atom potential, as described in the text.
For both these potentials "cold" indicates the adiabatic indentation of an initially static crystal and
"hot" indicates the isothermal indentation of a crystal at half the melting temperature. [The melting
temperatures are 0.40(e/k) for LJS and 0.20(e/k) for LJEA, respectively. ] The average indentor speed,
in units of {e/m)', is half the tabulated maximum value. See Fig. 2. The uncertainty in the results
quoted is due primarily to the underlying chaotic dynamics. Comparisons of calculations with slightly
different initial conditions suggest that this uncertainty is of the order of a few to several percent.

Number

800
800
800
800

800
800
800
800
800

3200
3200
3200
3200

3200
3200
3200
3200

12 800
12 800
12 800

12 800
12 800
12 800
12 800

1 036 800

Temperature

Cold
Cold
Cold
Cold

Hot
Hot
Hot
Hot
Hot

Cold
Cold
Cold
Cold

Hot
Hot
Hot
Hot

Cold
Cold
Cold

Hot
Hot
Hot
Hot

Hot

Maximum speed

0.0010
0.0100
0.1000
1.0000

0.0001
0.0010
0.0100
0.1000
1.0000

0.0010
0.0100
0.1000
1.0000

0.0010
0.0100
0.1000
1.0000

0.0100
0.1000
1.0000

0.0040
0.0100
0.1000
1.0000

1.0000

W(LJS)

51
49
48
82

32
40
48
62

172
183
224
292

127
127
165
233

877
890

1115

507
516
587
805

41 300

W(LJEA)

17
18
19
35

7
8

12
16
26

59
67
72

121

59
57
56

124

278
321
418

208
219
241
401

22 200
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was shown in Fig. 2. The bottom row of particles was
held fixed and periodic boundaries were applied at the
ends of the rows. Simulations were carried out for cold
crystals, with the minimum-energy nearest-neighbor
spacing d, and at temperatures half the melting tempera-
ture, kT/@=0.20 for the Lennard-Jones-spline potential
and 0.10 for the Lennard-Jones plus embedded-atom po-
tential. At these temperatures the nearest-neighbor spac-
ing was increased to correspond to the stress-free value.
The required increases were 2.25% (LJS) and 2.5%
(LJEA).

In all of our simulations the total indentor displace-
ment was set equal to the indentor radius and the inden-
tor speed was a continuous function of time. See Fig. 2
and Table I. At zero temperature the longitudinal sound
speed in the two-dimensional Lennard-Jones-spline ma-
terial is 9(e /m )

' . We accordingly chose loading
schedules in which the maximum indentor speed never
exceeded (e/m)' . The time-dependence of the indentor
velocity, as well as the corresponding indentor displace-
ment, are shown as insets, in Fig. 2. We found that rela-
tively slow maximum speeds, of order 0.01(e/m)', were
required to obtain quasistatic results. '

The interactions between all of the particles were ex-
actly the same, but the interactions between particles and
the indentor were taken as the repulsive part of the
Lennard-Jones potential. We checked to verify that our
results were insensitive to this choice.

V. RESULTS

In our exploratory work we found that sequences of
pictures, particularly videotapes, were essential to a qual-
itative understanding of the indentation process. The
low-temperature movies of elastically deforming crystals
show motions with a strong visual resemblance to quiver-
ing Jello. Dislocations advance and retreat many times,
and over different paths, before the final permanent de-
formation mode stabilizes. Figure 4 shows a particularly
interesting low-temperature final configuration in which a
wedge of material below the indentor has penetrated one
lattice spacing into otherwise defect-free material. This
deformation strongly resembles a plastic slip-line solu-
tion. The movies also show a marked temperature depen-

FIG. 4. Final configuration of a 3200-atom cold Lennard-
Jones crystal. The displaced wedge of material under the inden-
tor has been made visible by using a repeating sequence of four
colors to indicate the displacements of the originally horizontal
rows of atoms.

dence of yield morphology with widespread flow at half
the melting temperature and considerable, relatively rap-
id diffusion of surface atoms.

The fundamental measured quantity in all of our simu-
lations is the time history of the work of indentation IVI:

8' = d8' = F dy= F dt)0

F& is the vertical component of the force exerted on the
workpiece by the indentor. An independent estimate of
the indentation work follows from energy conservation,
WI = b, W =—b,E —b, Q, where b,E is the change in sys-
tem energy during indentation, including the potential
energy of interaction with the indentor, and —b, g is the
heat extracted from the system by the thermostatting
forces. From the continuum standpoint the indentor
force can be viewed as the product of a phenomenological
yield stress or microhardness [with units
(energy)/(length) in D dimensions] and the correspond-
ing projected area (D=3) or length (D=2) to which the
stress is applied. In two dimensions the resulting total
work of indentation is given by the integral

WI= f 2Y(R' —h )'i dh = YR f 2cos~(8)d8

= YnR/2, .

where h is the height of the indentor's center above the
horizontal workpiece surface. Thus the yield stress is ap-
proximately equal to the work done per unit area of in-
dentation. In three dimensions the corresponding yield
stress is the work per unit volume, with the indentation
volume equal to half the cylindrical indentor volume
(n /2)R L, with the indentor length L assumed large rel-
ative to R.

The time history of the indentor force is plotted in Fig.
5 for a workpiece with more than a million atoms. The
decrease in indentor force, closely following the decrease
in indentor speed, indicates that the response is dissipa-
tive rather than elastic. Further, the late-time absolute
decrease in the magnitude of force as a function of dis-
placement shows that the response must be at least par-
tially viscoplastic or strain-softening, for the contact area
increases monotonically. A portion of a typical
configuration of this same simulation is shown in Fig. 6.
Note the dislocations and voids formed directly below the
indentor as well as the lack of overall symmetry between
the left and right sides of the indentation cavity.

The results for small and large systems are similar,
with somewhat larger relative fluctuations and with near-
ly discontinuous changes in indentor force reflecting
structural changes. In two dimensions the smallest size
sample for which we found useful results was composed
of 800 atoms. The time history of the work of indenting
a hot 800-atom embedded-atom crystal is plotted in Fig.
7. There are two well-defined changes of overall slope in
the integrated work for this relatively small system.

To interpret our results we adopt the simple yield mod-
el discussed above. We imagine that the net vertical in-
dentor force is the product of the yield strength Y and a
perpendicular line segment against which the indentor
force is applied, the work done is a direct measure of the
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FIG. 5. Indentor force as a function of time and displace-
ment for the indentation of 1036800 Lennard-Jones-spline par-
ticles at half the melting temperature. The force variation for
smaller crystals is quite similar, but with larger fluctuations.

FIG. 6. Portion of a typical configuration of the 1036800-
atom Lennard-Jones-spline simulation showing damage below
the indentor and the lack of right-left symmetry in the indenta-
tion cavity.

yield strength Y and equal to the microhardness. The
raw results are complicated somewhat by their depen-
dence on the scaled indentor velocity, U/c, as well as on
the indentor size R. The dependence of stress on strain
rate is evidently not a simple power law of the type found
in Ref. 15 and 16. We attribute this difference in rate
dependence to the inhomogeneity of the present strain
field. If we use our lowest-speed energies as estimates for
the work of quasistatic indentation the resulting estimates
for the yield strength, F= Wt /R, give consistent results

FIG. 7. Work of indentation for an 800-atom Lennard-Jones
plus embedded-atom crystal at half the melting temperature.
The simulation time of over one million time steps,
40000(md'/e)' ', corresponds to about 20000 sound traversal
times.

for both temperatures and both force laws. The ratio of
the cold yield strength to the shear modulus is about —,',
slightly more for the stiffer Lennard-Jones crystal and
slightly less for the metallic embedded-atom model. At
half the melting temperature there is a reduction in
strength of about 30% in both cases. The magnitude of
the kinetic correction, for an indentor speed of order
(e/m)', varies closely with R, as the view of indenta-
tion as slow-speed impact would suggest. At the reason-
ably slow speed of 0.001( /e)m'~, the indentation process
takes place over about 1000 sample sound traversal times,
adequately slow for quasistatic compression.

Our estimated yield strengths for both the Lennard-
Jones-spline and the Lennard-Jones-spline plus
embedded-atom potentials are plotted in Fig. 8. The data
indicate that at sufficiently low rates yield stress depends
mainly on strain as opposed to strain rate Further, the.

size e+ect appears to be small, so small that simulations
only 100 atomic diameters in width provide accurate esti-
mates of large-system behavior. In this connection it is
particularly satisfying to see the nice agreement among
the scale-model yield estimates for indentor radii of 2d,
4d, 8d, and 72d. The data show that for indentor speeds
exceeding 1% of the sound velocity definite kinetic effects
increase the effective yield strength. The empirical yield
strength is reduced by about 30% by heating the solid to
half the melting temperature.

These results indicate first of all that the yield
phenomenon in two-dimensiona1 crystals at temperatures
up to half the melting temperature differs qualitatively
from the results of macroscopic hardness experiments on
metals. There is a bewildering variety of experimental re-
sults, but it is fair to summarize these by stating that even
the small micrometer-scale hardness values for pure met-
als are generally in the range from 0.05 to 5 gigapascals,
that is, on the order of a percent of the shear modulus.
On the other hand, some relatively old but careful experi-
ments, carried out by Gane and Bowden ' with a blunt
indentor only slightly larger than that used in our
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somewhat slower than SPRINT and restricted to system
sizes of less than half a million atoms. The Connection
Machine and the SPRINT have very similar speeds when
applied to the problem. From the economic standpoint
the SPRINT is superior to the much more costly super-
computers and to the Connection Machine. Our compar-
isons show that the newly installed Butterfly Machine at
Livermore is two times faster than SPRINT with 31 pro-
cessors, and probably eight times faster than 126, but this
speed advantage of the Butterfly Machine is attained at a
25- to 100-fold increase in cost. SPRINT uses FORTRAN
and can equally well be used to treat two- and three-
dimensional problems in atomistic and continuum
mechanics and so is a very eScient role-model tool for
solving a wide range of problems in computational phys-
1cs.

We expect to check the dependence on dimensionality
by carrying out a three-dimensional indentation sirnula-
tion with a million-atom crystal using exactly the same
embedded-atom function. Earlier simulations' of steady
plastic flow in two- and three-dimensional plane Couette
flow geometry showed no real dependence on dimen-
sionality and a stronger dependence on rate than that
found here.

l2/ N)1 /2

FIG. 8. Variation of the phenomenological yield strength, or
"microhardness, " Y=—8'i/R', with system size, temperature,
and force law. This microhardness is the total work of indenta-
tion —fF~dy, divided by the square of the indentor radius. It

is approximately equal to the applied load divided by the pro-
jected area. These microhardness values should be compared to
the corresponding zero-temperature-and-pressure shear moduli,
27Ne/V for the Lennard-Jones-spline potential, and 9$e/V for
the Lennard-Jones plus embedded-atom potential.

million-atom simulations, showed a 30-fold increase in
gold's microhardness. There is no reason to believe that
our two-dimensional results would vary for larger scales.
One might well expect that the accumulation of damage
during an indentation or cutting process would provide
sufficient defects for a realistic estimate of yield strength.
We can only conclude that three-dimensional materials
may actually be somewhat weaker than corresponding
two-dimensional ones. This is possible because more slip
directions are available for plastic flow in three dimen-
sions than in two. The additional flow rnechanisrns might
well reduce the yield strength by a factor of 10. Because
we found no qualitative difference between the behavior
of the Lennard-Jones and embedded-atom crystals we ex-
pect that the behavior of real materials can be adequately
modeled by short-ranged forces of the types used in the
present work.

We found that the computer time required for our (sca-
lar) computer program increased by nearly a factor of 20
when the same program was executed on a CRAY2 com-
puter. A different vector version, written for the 65 536-
processor Connection Machine at Los Alamos, was exe-
cuted both on a CRAY- YMP and the Connection
Machine. The YMP vector program was perhaps ten
times faster than the CRAY2 scalar program, but still

VI. CONCLUSION

By using relatively inexpensive transputer technology
it is now possible to simulate the motion of one million
atoms using conventional molecular dynamics. Storage
requirements can be minimized by using modifications of
the centered-difference Stoermer algorithms.

In the atomistic simulations of plastic flow in two-
dimensional plane strain reported here we find that both
the Lennard- Jones-spline potential and a modified
embedded-atom potential thought to describe interac-
tions in simple metals both lead to broadly similar con-
clusions: the yield strength, or microhardness, for a
two-dimensional triangular-lattice material is of the order
of one quarter of the shear modulus. This result is unam-
biguous, and depends only weakly on forces, system size,
temperature, and strain rate. We are making an effort to
study the continuum version of this same problem nu-
merically on the SPRINT and Butterfly Machines. It
still remains to be seen whether or not three-dimensional
simulations will yield the somewhat lower strengths seen
experimentally. Three-dimensional simulations are possi-
ble, so that this question should be answered soon.
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