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Noise in the modeling and control of dynamical systems
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We demonstrate how noise can be an effective tool in modeling systems whose experimental data
sets would normally be limited to a small region of the reconstructed state space. In fact, for sys-
tems with stable fixed points, using noise to extend the accessible state-space volume may be the
only possibility for constructing a model. We find that noise can also be useful in modeling limit cy-
cles when multiple systems generate the same closed trajectory and the model that represents the
true dynamics is desired. We discuss the implications of our method for nonlinear control theory
about which important questions on the effects of noise in real-time modeling have arisen.

I. INTRODUCTION II. MODELING FIXED-POINT DYNAMICS

In order to describe nonlinear systems from their ex-
perimental time series, delay coordinates, derivatives, or
some other state-space representation are frequently use-
ful. This reconstruction of the experimental data is often
topologically very simple compared to the possibly chaot-
ic temporal representation. ' The goal of this represen-
tation is to permit the dynamics to be modeled with few
parameters.

Several techniques currently exist for constructing a
model of the system based upon the state-space recon-
struction. Implicit in all these methods is the assumption
that to obtain a good model, the state space must be well
sampled. In many scientific disciplines, systems arise
that exhibit limit-cycle or stable-fixed-point behavior
where modeling would normally be considered ineffective
or impossible. We will demonstrate how the presence of
noise can actually be used advantageously in the con-
struction of models for these systems. We must em-
phasize from the outset that we are concerned with noise
within the dynamical system, and not just noise arising
from imperfect experimental measurement techniques or
related to simulated annealing procedures. Measurement
noise does not have the modeling benefits which we wi11

present in the following discussion.
This type of modeling can be extremely useful to the

control of nonlinear dynamical systems. ' Typically in
nonlinear control theory, knowledge of the dynamics is
required in a certain region of the state space. By using
noise to increase the sampled state space, we should be
able to generate improved models in these regions of in-
terest.

In Sec. II we discuss modeling in the region about a
stable fixed point. An analytical justification of our ex-
pectations on the effects of dynamical noise and specific
examples thereof are presented. Modeling in the neigh-
borhood of closed trajectories and chaotic attractors is
discussed with examples in Sec. III ~ These ideas are then
related to nonlinear control theory in Sec. IV, with con-
cluding remarks in Sec. V.
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FIG. 1. This figure exhibits three typical situations: a stable
fixed point, a single transient to that fixed point, and continuous
added noise. These data were generated from Eq. (22) and are
representative of the data sets used in the modeling.

Many experimental systems exist in a state of stable
equilibrium. If the initial transient data are available,
and the system is well isolated, the entire data set may
consist of a single stable fixed point, or collection of fixed
points. From this set of measurements, it is impossible to
construct a model of the dynamics. The key to modeling
this type of system is to increase the region of state space
being observed. The ideal situation is to be able to supply
a single sharp kick to the system while simultaneously el-
iminating all external noise, Fig. 1, thus providing a clean
view of the state space for use in the modeling procedure.
However, depending upon the specific system being stud-
ied, obtaining this type of transient data is often impossi-
ble. We intend to show that the continuous addition of
random noise to the system can still be a powerful aid to
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modeling because of the small transients resulting from
the noise.

Using this simple idea of increasing the observable
state space through the addition of noise, we can relate
the expected quality of the fit to the amplitude of the
noise, e, for some modeling procedures. We expect that,
in general, as we gradually increase e from a=0, the sam-
pled state space should grow and the quality of the fit
should improve. Alternatively, since we are forced to
deal with finite length time series, we cannot expect to
observe all the accessible state space with equal probabili-
ty. Thus the quality of the fit should begin to degrade for
large e. Combining these two effects, we demonstrate
that the model error is minimized for e&0. In some
cases an optimum value of e is shown to exist, while for
others a noise threshold is obtained above which all mod-
els are reasonably accurate.

A. Noise in gradient dynamics

We can provide an analytic justification for our pro-
cedure if we restrict our investigations to the subset of
dynamical systems exhibiting gradient dynamics. We be-
gin by requiring that the system be written as a set of or-
dinary differential equations (ODE} such that

=K(q)

f (q) ~e 2$(q)/g

I f (q)dq= I
(6)

where we assumed P(q) ensures that f (q) vanishes for
q~ao. For our subsequent investigations, we will take
Q =ca, which indicates that the noise amplitude is equal
along each axis in the state space and c is a parameter
determined by the specific color of the noise. The follow-
ing results will thus be generally applicable for any type
of symmetric noise.

From Eq. (6), we may find the width of the equilibrium
distribution along a specified axis as

a; =(q; ) = J q f (q)dq . (7)

The accessible volume of the state space is then

If the forces K(q) are derived from a potential field, i.e.,

&P(q)

Bq,

then we have gradient dynamics. If the diffusion
coefficients Q," also satisfy

Qv=~JQ

then Eq. (4} has the general solution

where K(q) represents the forces upon the system. When
noise is added, we obtain the Langevin equation

Bq =K(q)+F(t) (2)

If we consider not just a single trajectory in state space,
but rather a population of trajectories, the corresponding
distribution function f (t) is described by the Fokker-
Planck equation

= —V (Kf)+ —'QQ
t "Bq,Bq,

(3)

This is an approximation, keeping derivatives of the 5
function only up to second order. In this way, Eq. (3) is a
first-order approximation for small-amplitude noise of
any type, so long as the noise is symmetric about the ori-
gin. In the case of Gaussian noise, Eq. (3) becomes exact.

We are primarily interested in knowing, for a given
noise amplitude e, the width of the equilibrium distribu-
tion as a way of quantifying the average volume of the
phase space observed. To do this, we simply let

=0
at

in Eq. (2), yielding the steady-state equation

a2
V (Kf)= —,

' g Q;
iraq; iraq

.

where F(t) is a random force corresponding to noise, and
therefore is assumed 5-correlated

(F;(t)F (t')) =Q;, 5(t t'), Q;, ~E;—E) .

The relationship between the accuracy of a given mod-
el and the volume of the state space observed is deter-
mined entirely by the specific modeling technique em-
ployed. For modeling techniques where this relationship
is well defined, it becomes possible to predict the op-
timum noise amplitude using the analysis detailed above.
In the current study, we are interested primarily in global
models ' as opposed to various local modeling tech-
niques"' since global models can be better utilized in
the nonlinear control theory without feedback. In the
following sections, we discuss two types of global rnodel-
ing.

B. Noise in topological modeling

The first class of models we want to consider can be de-
scribed as topological models. This technique is based
upon obtaining a deterministic embedding of the dynam-
ics in some representative state space. The topology of
the dynamics is then modeled by making a transforma-
tion of the state space in a set of orthogonal functions.
This method is effective even for cases of low dimensional
chaos because we are modeling the state space, not the
time series.

For the present analysis, we will consider one-
dimensional systems and use Fourier transforms. ' The
state-space coordinates may be available observables,
derivatives, or delay coordinates. For our one-
dimensional system, we can often choose Ix„,x„+,I to
reconstruct the dynamics. This is modeled as

N

x„+,=h(x„)= g b„sin(mkx„) .
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the averaging process involved in obtaining the grid
values. However, as e increases, these values do come
into closer agreement.

To determine the optimum noise amplitude, we locate
the minimum of the combined error, (o +g )' . This
represents the point at which the noise-induced modeling
error g becomes greater than the error arising from an
insufficient sampling of the state space, 0.. For the
present example, we predict that the overall modeling er-
ror is minimized for @=0.32. From the numerical exper-
iments, we see that as e increases, g, becomes significant
to the total model error. Extrapolating e, and g„ the
optimal noise amplitude is estimated at @=0.31. Unfor-
tunately, from Fig. 2 we determine that a~0. 2 is unac-
ceptable since this can take the dynamics outside the re-
gion on which the logistic map is defined. This is not a
failure of the method; rather it is a constraint imposed by
the system being studied, Thus, even though an extrapo-
lation of the experimental results was required, we can

get approximate theoretical and experimental
confirmation of an optimum noise amplitude for topologi-
cal modeling about a fixed point.

2. Logistic map —period 2

If we now take a E [3.0,3.449] in Eq. (8), the mapping
becomes period 2 and thus we obtain two stable fixed
points for a=0. For this example, we want simply to
show that the general ideas developed for the period-1
case still hold. Thus we can proceed by investigating the
map numerically in precisely the same manner as before.

For this example, a few important notes about the gen-
eration of the histogram are required. When accumulat-
ing statistics, gaps will naturally occur at the edges of the
histogram where a cell with no counts will have two
neighboring cells both containing information. Since we
are using a Fourier series, these gaps can have a major
effect upon the final coefficients. Therefore we smooth
over these holes by interpolating between the neighbors.
While this has a minor effect in the previous case, the
same algorithm now connects the two fixed points with a
straight line. This means that even with no noise, the
model will be a rough approximation.

Using Eqs. (14) and (16) as before, we show the results
of added noise for this situation, Fig. 6. We observe for
this plot that even with the interpolation, a little added
noise dramatically improves the accuracy of the model.
For this example, the error falls precipitously until
@=0.14. This is the point at which the noise is large
enough to fill the region between the two fixed points,
thus replacing the interpolation with dynamical informa-
tion. Again, we cannot increase the noise past @=0.2, so
we cannot determine if an optimal noise amplitude exists,
but Fig. 6 gives a clear indication of the benefits of added
noise for topological modeling.
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FIG. 5. (a) shows the predicted error cr, and the experimen-
tally determined error o, vs e. In (b) the predicted variance g,
and experimental variance g, are plotted vs e. Experimenters
commonly assume that reduced noise improves modeling, based
upon the trend shown in (b). Since the error in (a) is initially
much larger than the variance (b) but decreasing, we find in-
stead that a=0 is not the optimum noise level when modeling
dynamics about fixed points.

FIG. 6. This plot is identical to Fig. 5 except with a =3.3.
For this case, the model improves dramatically up to @=0.14.
Because of the presence of two fixed points, we do not have a
theoretical prediction for the modeling error and any resulting
optimal noise amplitude. However, such an optimal value may
exist for e&0,2 as in the period-1 case, but this cannot be
confirmed from the experiment.
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C. Noise in trajectory modeling 1. Coupled logistic maps

The other global modeling technique we wish to con-
sider was developed by Cremers and Hubler and is
known as the trajectory method. In this case we try to
reconstruct a coupled set of ordinary differential equa-
tions or maps, according to the nature of the dynamics.
We proceed by making a series expansion of our model
equations and then fitting the corresponding coefficients.
The model can be based upon any type of series expan-
sion since existence or lack of orthogonality never enters
the modeling process. For the subsequent numerical ex-
periments, we will use a Taylor-series expansion, since we
can compare the resulting coefficients directly to the orig-
inal equations. Fourier and Legendre series have also
been used in other studies with an equal degree of suc-
cess. This modeling technique can be applied for a state
space with any number of dimensions, but two dimen-
sions are used for illustration in the following discussion.
In Eq. (17) is an example of an initial model for two di-
mensions based upon a Taylor-series expansion:

x =f (x,y) =aoo+a, ox + aoy

As a simple example of a two-dimensional system, we
can take a pair of coupled logistic maps exhibiting a
stable fixed point,

x„+,=ax„(1—x„)+gy„+F(e,n),

y„+,=by„(1—y„)+rtx„+F(e,n) .
(19)

Since the Fokker-Planck method developed in Sec. IIA
applies for any number of dimensions, we could also try it
here using the gradient dynamic approximation
developed in the one-dimensional case. However, since
we do not know the exact correlation between the state-
space volume observed and the quality of a model based
upon a gradient search, this cannot be used effectively as
a predictive tool.

To investigate Eqs. (19) numerically, we employ the
trajectory method to reconstruct maps rather than
differential equations. This entails just the simple substi-
tutions x(t;)~x„and x(t;+, )~x„+,. For the present
two-dimensional case, we fit the coefficients a, and b,, in
the following series:

+a xy+ . . +a .x'yJ+» IJ

y =g (x,y) =boo+buoy +hoax

+b xy+ +b xJy'+» IJ

(17) x„+,=a00+ a,0x„+a0,y„+a»x„y„+

y. + 1 =bM+bloy. +bolx. +b»x.y. +
(20)

We choose the coefficients a;J and bkI by taking each ex-
perimental data point X,(t;) as an initial condition to our
model equations and calculating X (t, + &) from

r, +1
(t;+&)= J f(x, (t),y, (t))dt,

I

y (t, +, ) = J g(. x, (t),y, (t))dt,

This expansion does not assume any foreknowledge of the
system. All the terms are fitted, including those which
will ultimately be found to be zero. These expansions are
limited only through the imposition of a maximum order
for the polynomial terms, as a means of improving com-
putational efficiency. The best model is again construct-
ed by minimizing Q defined for maps as

X IIX;+i —x,'+ (21)
which we then compare to X,(t, +, ). In this manner, the
quality of a given model is defined as

Q= g llx (t, )
—x, (t, )ll . (18)

By minimizing Q, we can determine the best coeScients
in our expansion. This minimization process is essential-

ly a search through the space of coefficients. This search
and the numerical integrations necesssary for the associ-
ated ODE problem are performed using standard rou-
tines in the IMSL10 library.

Because of the search involved in the modeling pro-
cess, we do not have a theory for how the model accuracy
should scale in relation to the noise amplitude. However,
we expect that the same counterbalancing effects of in-
creasing the observable state space and increasing the
variance in the data set will be important to selecting a
noise amplitude which minimizes the error. In fact, most
of the following examples will show that the trajectory
method improves rapidly for small amounts of noise, but
it then continues to generate high-quality models even for
large amplitude noise. This is a reflection of the robust-
ness of this modeling technique.

Once the best possible parameters have been obtained,
the systematic error in the fit and the variance of the
coeScients is computed as in Eqs. (14) and (16). For this
example and the following ones, we have taken 2000 data
points per model and 20 independent modeling attempts
for each value of t. . These values are forced by computa-
tional limitations; and, as a result, g, will be much larger
than for the topological modeling.

We find experimentally that the modeling of Eq. (19)
behaves very much like that of the simple logistic map
example. As the noise is gradually increased, we see a
drastic improvement in error of the model coefficients,
Fig. 7. Also, note that the variance decreases simultane-
ously, indicating that the lack of unique solutions in the
modeling process, a common shortcoming of the trajecto-
ry method, becomes less severe as the noise increases.
This is simply because, as the state-space volume in-
creases, the data better indicate to the search algorithm
which coefficients represent the true dynamics. However,
for large e, the model is degraded just as rapidly due to
the excessive noise in the experimental data. For this ex-
ample, the numerical experiment indicates the presence
of an optimal noise amplitude.
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due to current computational limitations. For the
present example, any additional information apparently
makes a dramatic improvement in the quality of the mod-
el. This is probably a result of the strong damping, y = 1,
used in this example. Also, we note that g, again rises
for increasing e. By combining the systematic error and
the variance, Fig. 8 suggests that there may still be an op-
timum noise level, although there is no way of obtaining
analytic agreement. More importantly, we find here and
in general that any noise makes a dramatic improvement
in the models obtained via the trajectory method. More-
over, this method demonstrates remarkable robustness
even under large amplitude noise.

10 10 10 10 10
3. Damped harmonic oscillator

FIG. 7. These calculations are for the coupled logistic maps,
Eqs. (19) with a =2.0 and b = 1.5, and are based upon trajecto-
ry modeling. From the plot, we see that a=0.05 is the best
choice for this example. Presumably, this minimum exists for
the same general reasons outlined in Sec. II, although the ex-
istence of a single optimal noise amplitude need not be the gen-
eral case for the trajectory modeling.

As a final example for modeling dynamics about fixed
points, we consider a damped harmonic oscillator

x+px+x =0

where the second term is the damping term. We can
break the equation into a pair of coupled ODE's as fol-
lows:

2. Overdamped oscillator
x=y,
y= —py+x .

(23)

We can also apply the modeling with noise to the case
of ordinary differential equations. As an example, we
consider the overdamped oscillator equation

x = —yx +F(e, t) (22)
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where the inertial term mx is negligible compared to x.
Numerically, we generated the data sets from Eq. (22)
with a variable fifth-order Runge-Kutta integration
scheme (from the IMSL10 libraries).

Upon examining the actual calculations, Fig. 8, we find
that the variance is quite large, which is to be expected

Although these equations have the form of Eq. (1), a po-
tential field cannot be found which will satisfy Eq. (5), so
this does not represent gradient dynamics and the solu-
tion in Eq. (6) is not applicable. In cases such as this, it
may be possible to solve the time-independent Fokker-
Planck equation, Eq. (4), directly. We have chosen to in-
vestigate this system numerically since we are still using
the trajectory model which impedes any further analytic
considerations.

For this study, we proceed with exactly the same
method as for the overdamped oscillator with the simple
generalization to two dimensions. The calculations are
shown in Fig. 9. Due to the numerical integrations in-
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FIG. 8. The data used in these calculations were generated
from the overdamped oscillator, Eq. (22), with y = l. From this
plot, we note that e=p. 1 is an acceptable value to obtain a good
model, but the modeling continues to be successful even for very
large noise amplitudes.

FIG. 9. These calculations use data from the damped har-
monic oscillator, Eq. (23), with p=1. Any noise amplitude of
e ~ 0.01 appears to be acceptable.
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volved in the modeling procedure, this example is even
more computationally restricted than the previous one-
dimensional example. Correspondingly, in Fig. 9 we ob-
serve that the variance is very large and essentially con-
stant versus e. From the values of o.„there does appear
to be an initial trend toward reduced error, which is
quickly obscured by g, . Thus these calculations show
that once again the added noise is advantageous to the
modeling process. It is remarkable to note how little
noise is required to generate a model which approximates
the true dynamics so accurately, and simultaneously how
consistent these results are even for large noise levels.

III. LIMIT CYCLES AND CHAOTIC ATTRACTORS
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and a system similar to a van der Pol oscillator

Another class of systems which is often difFicult to
model are those exhibiting limit cycles. The problem is
that when there are no transient data available, the rate
of convergence to the limit cycle is unknown. In fact, a
single closed trajectory may not even be a limit cycle.
Unfortunately, the solution for modeling is not as clear
here as for fixed-point dynamics. In general we expect
the model accuracy to depend upon the noise amplitude
in a manner similar to that discussed for the fixed-point
modeling. However, some important exceptions do arise
which we discuss later.

The trajectory method can be employed to obtain a
good model for a closed orbit with no noise, but it is not
necessarily accurate anywhere else in the state space, and
thus cannot be expected to represent the true dynamics of
the system. This ambiguity is caused by the possible ex-
istence of many different solutions which generate the
same closed trajectory, but maintain different flow vector
fields elsewhere in the state space. To choose the correct
model, our technique of adding noise can become impor-
tant.

As an example, consider a harmonic oscillator

but further conclusions are difficult. The fact that only a
slight amount of noise is necessary to obtain a reasonably
good model further demonstrates the effectiveness of add-
ing noise for the modeling dynamics around close orbits.

Exceptions to the results in Fig. 11 occur in systems
where one or more of the model coefficients is determined
explicitly by the precise shape of the limit cycle. One
well-known example of this is the standard form of the
van der Pol oscillator

X —p, (1—x )x+x =0 . (26)

The constant p determines the shape of the limit cycle for
the van der Pol equation. If one adds a small amount of
noise, some additional transient data are then available,

x(t)

FIG. 10. This plot contains data generated from Eq. (25) with
A =1 for two values of e. The solid line is for a=0 and is indis-
tinguishable from a trajectory of a harmonic oscillator, Eq. (24).
The dashed line used e=O. 1 and proved to be superior for mod-
eling because of the increased stated-space sampling.

X+(x +x —A )x+x =0 . (25)
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Both of these systems can be reconstructed in an (x,x)
phase space. In this representation, the harmonic oscilla-
tor equation has a center point, so the phase space is a
continuous set of closed circular orbits. However, Eq.
(25) has an attractor, a stable limit cycle, which is also a
circle in the state space, Fig. 10. If the given data are ob-
tained just from this limit cycle, it becomes impossible to
distinguish between the two systems. In this situation, it
is clear that transients are necessary to select the proper
model parameters, and adding noise to increase the acces-
sible phase space is one way to accomplish this. Figure
10 also shows a trajectory with @@0. Of the two data sets
shown, the latter is far more effective for reconstructing
the original dynamics.

When we perform the same modeling tests as was done
for the previous examples, the results are similar to the
earlier ones, except that now there is a clear trend toward
more inaccurate models as e increases. Figure 11 also
displays a suggestion of the trend in o., noted previously,
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FIG. 11. The error and variance are shown for the models
obtained from Eq. (25). This example shows a stronger sensi-
tivity to large-amplitude noise so an optimal noise amplitude
may exist for a=0. 1.
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but the shape of the limit cycle may become slightly dis-
torted. In practice, this small distortion causes the addi-
tion of any noise to degrade the system. Eisenhammer
et al. have shown that for systems where the noise can-
not be excluded, effective models are still possible. They
overcome this problem by including both long-term and
short-term predictions into the quality function, Eq. (18),
to encourage the construction of stable models. In effect,
this averages over the noise in an attempt to regain the
shape of the original noiseless trajectory. Obviously, the
ideal data set for modeling the van der Pol equation
would be one which includes a single, long, noiseless tran-
sient settling onto the limit cycle. From our analysis and
previous studies, we expect that for modeling systems
with closed orbits, no single method will give the best re-
sults in all situations, but the method of adding noise we
have described should be applicable in a majority of
them.

When attempting to model a chaotic attractor, many
of the same advantages and disadvantages revealed in the
case of limit cycles will again apply. For many systems,
some added noise should again increase the state space
and allow for better models off the attractor. However,
some attractors will have coefficients which depend sensi-
tively upon the shape of the attractor, and thus are best
modeled without noise, just as was discovered for the van
der Pol oscillator, Eq. (26). Therefore our modeling tech-
nique should, as a general rule, be helpful when dealing
with a chaotic attractor; but each case must be con-
sidered individually, as with the closed trajectories.

IU. NOISE AND NONLINEAR CONTROL
WITHOUT FEEDBACK

The methods discussed here have important implica-
tions for the subject of nonlinear control. Nonlinear con-
trol, as described by Hiibler and Liischer and Jackson
and Hiibler, ' is a technique for controlling the dynamics
of a nonlinear system without feedback from the experi-
mental system. This type of control is entirely dependent
upon the ability to obtain a global model of the dynamics.
Once such a model exists, the system can be controlled by
using this model instead of the feedback loops frequently
utilized in control theory. If the system being controlled
is at a fixed point or closed orbit, it is imperative that the
model employed represent the true behavior of the sys-
tem not just at these few points, but throughout the state
space. If the model excluded such information, any small
perturbation which occurs during the control process
could take the dynamics to a region where the model was

inaccurate and the control would fail. These problems
can be avoided by the process we have demonstrated for
modeling with noise. Small noise-induced inaccuracies in
the model should not disrupt the entrainment of the sys-
tem. "

This nonlinear control without feedback can also be
used in a modified version where the system being con-
trolled is continuously monitored to determine if the
original model is failing and to regenerate a new model in
real time. ' The presence of noise also has the same im-
portant advantages for this type of control, both in aiding
the continuous monitoring of the model accuracy and the
generation of new models. In effect, this implies that for
a large class of systems, control and adaptive control be-
come more robust if the system is slightly noisy, because
of the corresponding improvements in the model-building
process.

V. CONCLUSIONS

Scientists, almost instinctively, strive to reduce or elim-
inate noise. In general, this is a worthwhile and often
critical objective, but we have shown that for dynamical
systems in stable equilibria, noise can be an essential tool
in modeling and control. Ironically, the perfectly noise-
less system is the worst possible case for these systems.
Since the experimenter may not be able to introduce a
single clean transient into the system for observation, we
have demonstrated that even continuous random noise is
an asset in modeling the dynamics. When noise cannot
be manually injected into the system, such as astrophysi-
cal systems, the best choice for modeling may be that sys-
tem which contains noise in the dynamics naturally.

In our studies, noise is always beneficial for modeling
systems at stable fixed points, but is not always so helpful
for other situations and must, in fact, be considered on a
case-by-case basis. If the noise is found not to be useful,
the detrimental effects from naturally occurring noise can
be minimized by employing the smoothing technique
developed previously. Still, the method of using noise to
increase the state-space sampling opens, for modeling and
control, dynamical systems in many scientific fields which
would otherwise have been unapproachable.
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