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We have developed a method for reconstructing equations of motion for systems where all the
necessary variables have not been observed. This technique can be applied to systems with one or
several such hidden variables, and can be used to reconstruct maps or differential equations. The
effects of experimental noise are discussed through specific examples. The control of nonlinear sys-

tems containing hidden variables is also discussed.

I. INTRODUCTION

Prior to the 1980s, researchers had always assumed
that to study the dynamics of nonlinear systems with
many degrees of freedom, time-series measurements of all
the variables, or derivatives thereof, were necessary to
generate state-space representations of the dynamics.
For experimental systems, derivatives are particularly
difficult to employ due to the noise problems. In 1980,
Packard et al. ' and Ruelle noted that a state-space repre-
sentation of the dynamics could be reconstructed from a
single time series through the use of delay coordinates.
This delay-coordinate reconstruction would then be topo-
logically equivalent to the dynamics of the true system.
Whitney had shown much earlier that any compact
manifold with dimension m can be embedded in R
Takens extended this in proving that an embedding can
be obtained for any system from only a single time series
by using 2m +1 delay coordinates. While this combina-
tion of ideas thus far has been extremely useful in study-
ing nonlinear systems, several difficulties arise in their ap-
plication that we hope to address with an alternative
method for reconstructing these hidden variables.

The most obvious difficulty in using delay coordinates
is the issue of interpreting the results physically. If one is
concerned only with forecasting, the method used for the
modeling is irrelevant, as long as it works. Successful
modeling techniques based upon delay coordinates
and/or partitioning the state space to generate local fits
have been developed. However, relating these models
back to physical principles or existing theories is often
difficult if not impossible. Another important considera-
tion is that Takens's theorem does not apply to systems
with noise, i.e., experimental data. In the case of (noisy)

experimental data, one must define what precisely is
meant by an embedding. We will call an embedding any
representation for which any two observations X,(t) and
X2(t) within cr, the noise amplitude, of each other are fol-
lowed by X,(t +5t ) and X2(t+5t ) within the propogated
error of each other. Another way of stating this could be
that for any region of the state space, the variance of the
succeeding values is minimized. Casdagli has reported
progress in extending Takens's theorem to find optimal
embeddings in the low noise limit, but at present there
exists no general guarantee that a given reconstruction
will be an embedding in the presence of noise.

In order to create a modeling technique in which exist-
ing information can be incorporated, the resulting model
can be interpreted physically, and which is reasonably
stable to noise; we base our technique upon the f?ow
method developed by Cremers and Hubler and Eisen-
hammer et al. ' that is similar to that of Crutchfield and
McNamara. " The Aow method is a procedure for recon-
structing a set of coupled maps (CM's) or ordinary
differential equations (ODE's) from a trajectory of the
system in state space. We will show that this may be
easily adapted to the presence of hidden variables.

In Sec. II, we will review the fiow method and demon-
strate how hidden variables can be incorporated into this
framework. Some limitations of these techniques are also
addressed. Section III provides details on the implemen-
tation of our hidden variables technique with specific ex-
amples of its application to simulated data. The treat-
ment of noisy experimental data is also discussed. The
use of this modeling procedure in conjunction with non-
linear control theory to control systems where some vari-
ables are hidden from observation, control, or both is dis-
cussed in Sec. IV.
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II. THEORY

A. Trajectory modeling without hidden variables

In the flow method as developed by Cremers and
Hubler, the dynamics throughout the state space is
represented either with a single set of coupled maps

y;(n+1)=f;(y(n)), i =1, , N, yER

or a set of ordinary differential equations

y, (t)=f, (y(t)), i =1, . . . , N, yER

The number of observed variables is assumed sufficient to
embed the dynamics. The functions (f; ) may be of any
form, but are usually taken to be a series expansion in y.
This method has been successfully tested with Taylor-
and Fourier-series expansions. In this manner, the rnod-
eling is done by finding the best expansion coefficients to
reproduce the experimental data. Often the situation
arises where the form of the functions [f; ] is known, but
the coefficients are unknown, e.g., this occurs frequently
with rate equations for chemical processes. This added
information greatly reduces the number of undetermined
parameters, thus making the modeling computationally
more efficient.

The modeling procedure begins by choosing some trial
coefficients. The error in these parameters can be com-
puted by taking each data point x(t„)as an initial condi-
tion for the model equations. The predicted value

y( t„+&
) can then be calculated for CM's as

y, (n+1)=f (x(n)}, i=1, . . . , N

or for ODE's as

y;(t„+&)=x;(t„)+f f;(y(t')}dt', i=1, . . . , N

and compared to the experimentally determined value.
Previous work' has shown that more stable models can
often be obtained by comparing the prediction and the
experimental data several time steps into the future. For
the present analysis, we will predict the value only to the
time of the first unused experimental data point. The er-
ror in the model is thus obtained by summing these
differences

(2)

where N, is the number of free coefficients, M is the num-
ber of data points, and 0.; is the error in the j'" vector
component of the i'" measurement. The task of finding
the optimal model parameters has now been reduced to a

minimization problem. Thus, the best parameters are
determined by

mulated as a standard g problem, all of the normal sta-
tistical tests can be applied. Typically, y =1 implies that
the modeling was successful; however, more sophisticat-
ed tests can be applied as well, e.g. , F test, etc. ' If the
experimental uncertainties a; are unavailable, this nor-
malization factor can simply be removed from Eq. (2).
This means that the g„tests cannot be applied, but the
best possible model can still be determined by locating
the global minimum of g in the parameter space.

y;(n+1)=f;(x(n), w(n)), i =1, . . . , N (4)

thus requiring that we know w(n) Since .experimental
data are available for the other N, variables for all n, we
can use those to solve for w(n) as

f (x(n), w(n)) —x;(n+1)=0, i=1, . . . , N .

Having one hidden variable, only one of these equations
is needed to solve for w(n). If f; were a Taylor-series ex-

pansion to I '" order, then solving for w ( n ) produces I
roots. In practice, since we do not expect our first guess
for the model coefficients to be correct, each of the N,
equations is solved, thus generating 1N, possible solutions
for w(n). To be accepted, these roots are required to be
real and to satisfy any known physical bounds upon the
value of w(n) Aside fr.om these constraints, there is no a
priori method to determine which root is correct. There-
fore each is tried in turn with the best root chosen ac-
cording to predictive accuracy.

Using one such w(n), we determine w(n + 1) from Eq.
(4). Now the predicted values y(n +2) can be calculated
from (x(n + 1),w(n + 1)}and compared to x(n +2). The
error in the model is thus

1
M 0

N, M —2 —N, ,

B. Modeling with hidden variables

As stated, this method works when all the variables
can be measured. Unfortunately, this is almost never the
case in real experiments. Frequently, one or more of the
variables is hidden, i.e., it cannot be directly measured.
This requires that a new method be utilized to recon-
struct the equations of motion for the dynamics.

To develop a technique for reconstructing the dynam-
ics of systems with hidden variables, we assume that only
one variable m is hidden, i.e., N& =1; and our experimen-

N
tal data x contains N, observables, x&R '. The restric-
tion on Nz is purely for illustration. The model equations
are identical to the previous case, with

y;(n+1)=f;(y(n)}, i=1, . . . , N

for a system of maps where N=N, +N&, y&R, and
y(n)=x(n), w(n). The predicted values y(n) are calculat-
ed from

Therefore the ability to determine these coefficients rests
upon the strength of the algorithm employed to search
through the space of parameters. Since this has been for-

The best value of w(n + 1) is stored for the next iteration.
If at step n+1, no acceptable roots can be found, the
previous best w(n +1) is used to continue the calcula-
tion. Note that we do not use w(n) to immediately calcu-
late y(n +1). This is because the x(n +1) have already
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been used in determining w(n), thus causing Eq. (6) to
improperly characterize the accuracy of the model.

This analysis can be extended simply to handle an arbi-
trary number of hidden variables. If we have at least as
many observables as hidden variables N, NI„then rath-
er than solving one equation in one unknown, we must
solve a system of equations in N& unknowns.

f, (x(n), w(n)) —x, (n +1}=0,
f2(x(n), w(n)) —x2(n +1)=0,

f~ (x(n},w(n)) —xiv (n+1)=0,

where wCR ". Once the w(n) have been determined,
the analysis proceeds exactly as before.

When Nz )N„we cannot generate enough equations
from the first N, model equations using only x(n) and
x(n +1) to uniquely determine the Ni, initial conditions
of w(n) There. fore we create additional equations using
more experimental data points:

f, (x(n), w(n)) —xl(n+1)=0,

fiv (x(n), w(n)) —xN (n +1)=0,

f~ +,(x(n), w(n)) —w, (n+1)=0,

fiv(x(n), w(n)) —
wiv (n +1)=0,

0

f|(x(n +1),w(n +1))—x ~(n +2)=0,

fN (x(n +1),w(n +1))—xiv (n +2)=0 .

In Eqs. (8), the first N, equations are the same ones used
previously. However, the second N& equations come
from the model equations representing the dynamics of
the hidden variables. These are needed to calculate
w(n +1) as a function of w(n). The third set of equa-
tions determines N, more of the w;(n) from x(n +2), etc.
This continues until enough equations have been generat-
ed to determine w(n); N„([N„/N,]+ I ) equations are
needed, where the square brackets indicate the greatest
integer.

While the above method for handling Nz & N, is
straightforward, an alternate approach exists which may
be more efficient in some situations. In such cases, there
will be N„=Nz—N, unknown variables that cannot be
reconstructed directly from the N, observations at a sin-

gle time. If the system is not chaotic, we can simply add
one unknown parameter for each of the N„unknown
variables representing that variable's value at time to.
This value can then be iterated at each time step and car-
ried forward to the next step, exactly as is done when no
acceptable roots can be found. This makes the optimiza-
tion of the model coefficients more difficult due to an in-

crease in the number of local minima in the y landscape.
Fortunately, the correct minimum can still be determined
by y satisfying the statistical tests. Foreknowledge of
the proper form of the If, I will be very useful for reduc-
ing the complexity of this search.

However, if the system is chaotic, a single initial condi-
tion iterated through the entire data set cannot be expect-
ed to remain close to the experimental trajectory even for
an accurate model. Thus several initial conditions will be
needed for each unknown variable. The time between
these initial conditions ~ will depend in general upon the
rate of information loss, i.e., the Lyapunov ex-
ponents. ' ' An additional term can be added to g,
representing the distance between the previous initial
condition p; iterated up to the time of the next initial
condition and that initial condition p, +, so that

1 M 0

, [y, (i)—x)(i)]
0 c i=3 j=l 0ij'

1

N„(NT 1) NT——
Nu NT —1

xg
j=1 I (j +1)P

where NT is the number of parameters needed for each
undetermined variable. The added term in Eq. (9) is a
simple end-point-matching condition that helps reduce
the number of local minima in g,. Because of the per-
sistent complexity of the y, landscape, knowledge of the
form of the model equations will be necessary, and they
must be limited to only a few free parameters. This vari-
ation of our hidden variables reconstruction is generally
the least robust of the options described, but it may be
useful in some special situations.

While the discussion of hidden variable has thus far fo-
cused upon maps, it can easily be extended to recon-
structing hidden variables in continuous systems
(ODE's). For this, Eq. (5) becomes

f;(x(t„),w(t„))—x;(t„)=0; (10)

so we must calculate the first derivatives of the observ-
ables x. The modeling process then proceeds exactly as
in Eqs. (3)—(6) except that a modification of Eq. (1) re-
places Eq. (4). The extension to multiple hidden variables
is equally straightforward by simple modifications of Eqs.
(5)—(9) and with the same restrictions as before. The only
caveat to this process comes from the introduction of ad-
ditional noise which occurs during the process of com-
puting the derivatives of the experimental data sets x(t„)
and the integration of the model equations necessary to
calculate w(t„+,) and y(t„+2). To compensate for these
errors, the o.;, should be adjusted appropriately, thereby
making it possible for the value of g to satisfy the statist-
ical tests. This computational noise is discussed further
in the examples of the Rossler and Lorenz systems, Sec.
III.
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C. Applicability

Unfortunately, the hidden variable reconstruction
method detailed above is not a panacea. Further study
has shown that it is not possible to construct models in
some special cases. In this section, we first give an
analytical example for how the model parameters are de-
rived, and then provide tests to determine when a model
will fail and possibly which terms cause the failure.

To illustrate how the parameters for a given model
may be derived analytically, consider the example

x(n +1)=2x(n)+ew(n),

w(n + 1)=w (n)+ ex (n),

where x, w ER ', all the x (n) are known, and w is the hid-
den variable. To determine the free parameter e we must
also compute the initial condition w ( n ), so we actually
have two undetermined parameters. The solution may be
obtained from the equations

x(n +1)=2x(n)+ew(n),

w(n +1)=w (n)+ ex(n),

x(n +2)=2x(n + I )+ew(n + 1),
such that

w(n)= x(n +1)—2x(n)
E'

T I /2
x(n +2)—3x(n + 1)+2x(n)E=+

x(n)

x(n +1)=2x(n)+ew(n),

w(n +1)=w(n)
(12)

is a simple example of a model which does not have
unique solutions. Obviously, e and w(n) cannot be ob-
tained independently. The y modeling procedure as
currently described cannot distinguish these situations,
and will arbitrarily select one solution from the possible
solutions. Fortunately, prior to the modeling process we
can determine if a given model has unique solutions, as-
suming that the model contains no extraneous terms.
This is done by computing the Wronskian matrix for the
equations required for an analytic solution, i.e., the
Wronskian matrix for the system of equations

Thus using (x(n), x(n+1),x(n+2)) we can determine
w(n) and e uniquely. In general, [(N, +Nz)/N, ]+I
data points will be required, where N, is the number of
free coefficients. Although this analytical method
effectively demonstrates how the reconstruction of hid-
den variables works, it is impractical when the data con-
tain any noise since we must then average the coefficients
over the calculations for all the n experimental data
points. Thus the statistical approach described in Sec. II
is a more reliable technique.

Even though model (11)could be solved easily,

x, (n+j +1)—f, (x(n+j), w(n+j );c)=0, i =1, . . . , N„j=O,. . . , m —1

[gk J
=, w, (n +j +1) f, +1v (x(n —+j ), w(n +j);c)=0,

x, (n +m +1)—f;(x(n+m ), w(n +M);c)=0,

i =1, . . . , N„, j=0, . . . , m —1

i =1, . . . , N, +Nh —N, m

Bg 1 Bg1 Bg1

Be Bw(n) Bw(n +1)
~82 ~82

Be Bw(n) Bw(n +1)
~83 ~f3 ~83

Be Bw(n) Bw(n +1)

w(n) E 0
x(n) 1 —1

w(n+1) 0 e

for which WAO, thus confirming that unique solutions
exist. However, W=O for model (12), as expected.

We can also extend the use of the Wronskian matrix to
help identify which parameters may be causing the
difficulty. For a model with 8'=0, we can systematically
fix the value of each of the c, or w, (n+j). This is
equivalent to removing the corresponding column and
one row from the Wronskian matrix. If 8'is still 0, pairs

where m=[(N, +N&)/N, j. We define the Wronskian
matrix as the first derivative of each gk with respect to
the coefficients c; and the values of the hidden variables
w;(n+ j). The determinant of this matrix is the Wron-
skian of the system W. If WAO, the model will have
unique solutions. This is illustrated by the Wronskian
matrix for model (11)

t

of parameters may be fixed, etc. , until WAO, thus deter-
mining the rank of the matrix. More than this, if WAO
for any choice of parameters to fix, then the system is un-
derdetermined in the fashion common in linear systems.
However, if only a few of the parameters can be fixed
such that 8'%0, then these are the parameters which
cannot be determined independently. If a best guess can
be made from physical considerations for all but one of
these parameters, then the modeling can proceed normal-
ly.

Using the Wronskian matrix in this manner, we can
construct the model equations such that unique solutions
can be determined. If during modeling some of the terms
are found to be unnecessary, c, =0, the resulting model
must be checked again to determine if the solutions are
indeed unique. Thus we can have complete knowledge as
to the success of the modeling procedure.

Up to now, all examples discussed have been simple
polynomial expansions. The methods described are not
dependent upon this and apply to any form of the model
equations. There is a special class of models, though,
which we should mention. It can occur that Eq. (5) or
(10) can produce an infinite number of solutions, such as
for
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x(n + l)=tan[aw(n)],

tc(n +1)=Pw(n),

III. EXAMPLES

Specific examples of the reconstruction of hidden vari-
ables will now be given for simulated data. This is an
effective method of testing since the correct model pa-
rameters will already be known. The first example is for
two coupled logistic maps,

x(n + 1)=A, ,x(n)[1 —x(n)]+dy(n),

y(n +1)=Ay (n)[1—y(n)]+dx(n) .
(13)

1.0—

To treat this occurrence, we can begin by applying any
known physical constraints on w(n). However, if the
quality of the model's predictions changes smoothly with
to(n), we can do the equivalent of a gradient search
through the possible values of w(n) to locate the correct
one. This is not a perfect solution, but it is a reasonable
approach.

The experimental data were generated using A, =2.0,
A.&=3.5, and d=0.2. For the tests using Eqs. (13), we
took y to be the hidden variable. A next return map for
the observable data is shown in Fig. 1(a). We begin by as-
suming that the form of the equations of motion is
known, and A, 2 and d are the only free parameters. In
Fig. 1(b) we show the y„landscape for these two parame-
ters. This landscape has two minima: F2=3.5, d=0.2;
and A,2=3.875, d=0. 275. According to the value of y„,
the first minimum qualifies as a solution, whereas the
second minimum fails badly. In this case, the
landscape was sufticiently simple that even an unaided
gradient search would have a high probability of locating
the correct minimum.

For the previous test, the noise in the data was nothing
more than roundoff error in the last significant digit. To
better study the effects of noise, we have added band-
limited noise in the range —e to e to the experimental
data. We use the same model as above, so we still have
A, z and d as our free parameters. In Fig. 2(a), we show the
effects of dynamical noise. This means that the noise was
added to the experimental system at each step in the
mapping. This would be like making perfect measure-
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FIG. 1. A simple reconstruction for experimental data ob-
tained from Eqs. (13) is shown in (a), and the resulting p
landscape is in (b). From the representation in (a), we see that
the data are clearly not one-dimensional, thereby necessitating a
hidden variable reconstruction. The g, surface in (b) has two
local minima, but the correct solution, at A,,=3.5 and d =0 2 is~ )

several orders of magnitude lower than the other. Even a sim-
ple gradient search is effective in cases such as this.

FIG. 2. These plots show s vs e for the two minima in Fig.
1(b), where s is the error in the model without being normalized
by o„.In (a) the effects of noise added directly to the dynamical
system are shown upon the depth s and accuracy q of the local
minima. In (b) the measurements contained noise, but the
dynamical system itself was noiseless.
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ments of a dynamical system which was being constantly
perturbed. The plot shows s,

s =g g [y, (i)—xj(i)]
t =2J=1

the error in the model as in Eq. (6) but not normalized
with a;, versus the maximum noise amplitude e, for the
two local minima shown in Fig. 1(b). We see that for
very small noise levels, the error of the first minimum s&

is s, =e, corresponding to g„=1, and that the error of
the second minimum s2 is approximately constant and
consistently fails any y tests. Since the experimental
data no longer represent a trajectory of the true system
with complete accuracy, the model coefficients will not be
precise and will vary from one data set to another. The
average difference between the model parameters and the
correct values is also shown in Fig. 2(a), as g versus e,
where g =(A,P

—
A, , ) +(d —d) with the superscript rn

indicating the coefficients obtained from the model.
When the noise reaches approximately 2%, the trends

just noted begin to break down and it becomes increas-
ingly difficult to distinguish the two minima. For approx-
imately 5% noise, both minitna now satisfy our statistical
tests, and it is no longer possible to determine which set
of parameters is correct. The point at which this occurs
is not generic, but rather depends specifically upon the
system being studied. Clearly, the added noise has the
effect of smoothing the s landscape, thus the first minima
is effected most drastically. For the current case, to be
able to determine which minimum is the correct solution
for up to 5% noise is a significant achievement. Note
that in all these simulations, Eq. (4) is used only to pre-
dict one time step forward. When the predictions are
carried several time steps into the future, the false mini-
ma become more shallow, providing greater tolerance to
noise. '

The reason this procedure eventually becomes noise
limited is easily understood by noting that the local mini-
ma in the g, landscape generally arise from the several-
to-one nature of many maps. Each solution represents a
different possible trajectory. Since we cannot say which
will conform to the true trajectory, all solutions are treat-
ed equally, thereby allowing for a piecewise fit to the ex-
perimental trajectory. When the noise level is on the or-
der of the errors in the piecewise fit, the correct minimum
can no longer be distinguished based upon the y value.
Fortunately, the models corresponding to false minima
are typically unstable. Thus even in the presence of large
amplitude noise, one should be able to distinguish the
correct minimum based upon model stability.

For Fig. 2(b), we have added the noise after the data
were generated. This is equivalent to making noisy mea-
surements of a perfect system. The results here are essen-
tially the same as in Fig. 2(a) except that the modeling is
less tolerant to the noise, and the two minima become in-
distinguishable at a noise level of approximately 2%%uo.

This increased sensitivity to measurement noise was
found to be due to the fact that dynamical noise actually
increases the available information by portraying the dy-
namics in a larger region of the state space, whereas the

measurement noise causes nothing but a loss of informa-
tion. '

The case just shown had only two free parameters so
that the g landscape could be represented graphically.
This is, of course, not necessary and other tests were tried
with more free parameters. When we assumed a model of
the form

x(n+1)=p, x(n) =pox(n) +p3y(n),

y(n+1) =p4y(n)+psy(n) +p6x(n),
(14)

y =x +ay,
z=b+(x —c)z,

(15)

where we have used a =0.343, b =1.83, and c =9.75 to
generate the data. For this modeling, we use the method
for reconstructing ODE's and assume a model of the
same form as Eqs. (15) with b and c unknown. The ex-
perimental data with z(t) hidden is shown in Fig. 3(a).
We have again calculated the y landscape for the free
parameters, Fig. 3(b). In this case, there is only one
minimum, and it occurs at the proper parameter values.
In this case, however, the minimum is not as sharp as the
previous example. This smoothing of the landscape
comes from errors introduced through the calculation of
the derivatives and integrals. The greatest error comes
from the differentiation which was done simply as

x(t„)= (xt„+)— (xt„~)
tn+1 tn —

1

This error was not incorporated into g in Fig. 3 so as to
illustrate the cumulative effect of these computational er-
rors. The most remarkable aspect of this example is that
the data in Fig. 3(a) only contain two excursions along
the axis of the hidden variable, even though the full at-
tractor has a fully developed funnel, ' and yet the hidden
variables were still reconstructed effectively. When a
spline fit or other more accurate differentiation scheme is
employed, the minimum in Fig. 3(b) becomes much more
distinct.

We also consider the Lorentz system,

x =sr(y —x),
y —rx y xz

z = —bz+xy

The data were generated with o. =10, r =50, and b = 3.

six free parameters were used, and we found many more
local minima in the g landscape. However, 10% of the
volume of this parameter space was within the basin of
attraction of the correct minimum, and this minimum
still satisfied y, tests. Again, all of the other local mini-

ma had y values several orders of magnitude larger.
Only roundoff noise is present here and for all of the fol-
lowing tests.

Next we consider data obtained from a set of ODE's.
The first such example is the Rossler system,

x= —y —z,
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For this case, the time between data points is much larger
than the previous example, Fig. 4(a). This tends to ampli-

fy differentiation errors, thus causing the g landscape to
be even more strongly smoothed, Fig. 4(b). Again, we
have not incorporated these errors into y so as to illus-

trate the magnitude of the effect. In fact, the minimum is
still at the correct parameter values; but, if the
differentiation errors are not symmetrically distributed,
the minimum may wander some from the true values.
The modeling in this case is remarkably successful, con-
sidering the coarseness of the experimental data.

In both of the examples where the models were ODE's
only one minimum was found in the landscape. Because
of the integration needed to predict the value of the ob-
servables at the next time, Eq. (I), we are no longer sim-

pyly doing a one-step prediction as was done for the CM.
Thus stable solutions are preferred and fewer local mini-
ma occur in the y landscape. This implies that it may be
easier to generate models based on ODE's. We have, of
course, chosen systems which could be modeled with a
finite number of polynomial terms. If this fails, one may

simply need to choose a different set of expansion func-
tions. When appropriate expansion functions were select-
ed, the only real limitations came from failings in the
search algorithm employed to minimize y or from noise
present in the data or introduced through the modeling
technique.

As a final example, we study the standard map,

p„+,=p„— sin(2nq„)modl,0!

q„+&=q„+p„+&mod1,

.97in the case where a=0.97, and p0=0. 5, and qo= .9,
Fig. 5(a). The numerical experiment was performed with

( q„Jassumed hidden and the trial model

p„+t =p„— sin(2mq„)modl,
Q

q„+,=q„+Pq„+p„+,modl,

where Pq„is obviously an extraneous term. Although the
model is not polynomial, the analysis proceeds exactly as
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FIG. 3. Observable data are shown in (a) with the corre-
sponding g landscape in (b). The data set was very planar and
has only two loops which require a third dimension for explana-
tion. Nonetheless, it is sufficient to produce a clearly defined
minimum in g .

FIG. 4. In (a) the observable data are shown. Note that these
data are very coarse in time, thus making the calculation of x
very noisy. Still, (b) shows that a minimum is produced in y
corresponding to the correct parameter values. g W h%1 at the

1minimum, because we have not incorporated the computationa
noise into o.„soas to illustrate the effect.
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for the other map examples. Because of the arcsine func-
tion used to solve for q„,two possible solutions are ob-
tained at each iteration. The resulting y landscape is
shown as a function of a and P, Fig. 5(b). The minimum
does occur at the correct value of cx, but more important-
ly P is recognized as a spurious parameter with a pre-
ferred value of zero. We have found in further examples
that as more extraneous terms are added, the
landscape has an increasing number of local minima, but
the correct minimum is still apparent.

IV. CONTROL

Much progress has been made in recent years in the
area of controlling nonlinear systems without the con-
tinuous feedback required by traditional methods. ' '
The success of this nonlinear control theory hinges upon
the creation of a good model for the system. To control a
system, we consider the following equations:

x= f(x)+F(t) (experimental dynamics),

q =h(q) (model dynamics),

u =g( u) ( goal dynamics) .

1.0
~ 'I

0.8—

The equation for the experimental dynamics represents
the actual system to be controlled. The goal dynamics
represents the system to which we wish to drive the origi-
nal system. The driving force needed to control the sys-
tem is

F(&)=g(u) —h(u) .

Previous work has shown that g(u) cannot be chosen ar-
bitrarily, but is subject to certain stability constraints and
restrictions on the initial conditions when the driving
force is applied. These issues have been detailed else-
where, ' and we will assume that all these conditions are
met.

For effective entrainment of the experimental system to
the goal dynamics, a model must be constructed for
which h= f. Chang, Hubler, and Packard' have shown
that when the model is not perfect the distance between
the experimental system and the goal dynamics scales
linearly with the error in the model coefficients. This in-
dicates that the control is stable despite possible small
modeling errors produced during the hidden variable
reconstruction.

One case that can arise is a system in which some of
the variables are hidden from observation, thus hidden
during modeling, but all the variables may be controlled.
For a numerical experiment, we consider

rr(y —x )

x= f(x)+F(t), f(x) = rx —y —xz
—bz+xy;

'In
0.4

0.2—

cr'(v —u )

u=g(u), g(u) = r'u —v —uw
—b'm+uU .

0.0 I I t I I t. I I I I I I I I i I I I I I I

0.0 0.2 0.4 0.6 0.8 1 .0

206 !(

205

204~ ==-

Here x(t) is the experimental system and u(t) is the goal
system. We have considered the specific case where

cr =10.0, o'=o. ;

r =50.0, r'=125.0;

Xy 203 I
Z Z

20

(a) (b)

FIG. 5. Both variables of the system are shown in (a), but the

t q„)were assumed to be hidden during modeling. (b) shows the

y, landscape in a and P with one deep minimum at a=0.97,
P=0.0, satisfying the statistical tests and one shallow minimum
near by.

FIG. 6. The trajectory of the experimental system is shown
in (a) and the goal system in (b). The driving force (and thus the
goal dynamics) does not begin at the same time as (a). Thus the
experimental system begins on the attractor in the lower half of
(a) before driving, but rapidly entrains to the goal dynamics that
correspond to the upper attractor.
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During the modeling process, we assumed that y(t) was
hidden, but the original parameters were reconstructed
without difficulty. Thus this case is not significantly
different from previous studies. ' For the goal system, we
have chosen simply to drive the system to a higher
Reynold's number. In Fig. 6 we show the results of this
control. Figure 6(a) shows the trajectory of the experi-
mental system, and Fig. 6(b) shows the trajectory of the
goal system (turned on at a later time) which was used to
drive the experimental system. In the experimental sys-
tem, the dynamics begin in the lower half of Fig. 6(a)
where the trajectory is on the attractor for the undriven
system. When the driving is turned on, the experimental
system rapidly entrains to the goal system, as expected.

This example was shown because there may be impor-
tant situations where some variables are hidden during
the modeling process, but can still be controlled. One
such case might be in chemical systems where the reac-
tants are known, but only a subset of these can be con-
tinuously monitored. By using the techniques of Sec. II,
we can reconstruct the rate equations for the chemical re-
actions. To control the system may then be simple since
one might easily be able to add reactants to the system
even though the concentrations of those reactants are
hidden from observation. Thus the combination of hid-
den variable reconstruction and nonlinear control may
have important applications in chemical systems.

The second example we wish to consider differs from
the previous case in that we wish to control the system
even when some of the variables are not controllable, i.e.,
a driving force cannot be applied. Consider the following
example:

cr(y —x )

x= f(x)+F(t), f(x) = rx —
y

—xz
—bz+xy;

0.=10.0, 0.'=o. ;

r =50.0, r' = 125.0

b= —'.
3

V. DISCUSSION

In the preceding analysis, we have demonstrated that it
is possible to reconstruct hidden variables in a dynamical
system directly from the observables by simultaneously
reconstructing the equations of motion for the system.
The greatest advantage of this technique is that the re-

It is important to understand the differences between the
driving force here and the fully controlled case. When all
the variables were controllable, even though our goal did
not attempt to alter the dynamics of either x(t) or z(t),
we could have done so had we chosen to. In the present
case, we cannot drive z(t) directly, so we must restrict
our goals to those systems which leave the z dynamics un-

changed. (See Note added in proof. ) The distance be-
tween the experimental and goal systems after the driving
was turned on is shown in Fig. 7. We see that the experi-
mental system still entrains rapidly to the goal system.
Obviously then, not all systems can be entrained by this
method, but it will be possible in many cases. Well-
chosen goal dynamics is important for the entrainment.

The problem of having uncontrollable variables is an

interesting one which is still under investigation. Current
results indicate that it may be possible to pick specific
goals such that the uncontrollable variable can be en-
trained indirectly to a new dynamics. The types of en-
trainment that are possible in systems with one or many
uncontrolled variables is an area of continuing research.

u=g(u),
o'(v —u)

g(u) = r'u —v —un

f,(u);
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40
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I I I I
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I I I I
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F(t)=g(u) —f(u) .

In this case, we again took y ( t) to be the hidden variable,
but we also chose to make z(t) an uncontrollable vari-
able, so F applied only to the x and y components.
(There is no reason to assume that the hidden variables
are also uncontrollable variables, or vice versa. ) Since we
have an uncontrollable variable, we can no longer choose
to drive the system to an arbitrary goal. Instead, we
must restrict our goals just to altering the controllable
variables. This is similar to previous work on controlling
nonlinear systems from Poincare maps. Since the driv-
ing there could be applied only in the plane of the Poin-
care map, the goal was also required to be a Poincare
map. For our test, we again chose to drive the system to
a different r value:

30

20

fX
10

I I I I I I I I I I I I I I I I I I I I I I I I I I I I l

FIG. 7. The distance between the trajectory of the experi-
mental system x and the goal dynamics u is shown as a function
of time. The driving force was turned on at t =0.
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suiting models can be interpreted physically so as to un-

derstand, as well as forecast, the dynamics. This also has
interesting implications in relation to Takens s theorem.
If the modeling fails, no statement can be made about the
proper embedding of the system. However, since the
models being generated are inherently deterministic,
when the model is a true representation of the dynamics
according to the statistical tests we must have found an
embedding for the system. Moreover, unlike Takens's
theorem, this can be applied even when noise is present in

the experimental data.
Note added in proof. Due to an unfortunate choice of

examples, the fully controlled system with the z dynamics

left unchanged is identical to the example where z(t) is
considered uncontrollable.
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