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Comparison of the saddle-point method and the Feshbach-type projection method
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In this work, we compare the saddle-point method with the Feshbach-type projection-operator
method using experimental and theoretical data in the literature. It appears that the saddle-point

energy gives a better approximation to the resonance energy. This result is explained in terms of the
variational principle of quantum mechanics. It is also pointed out that the existing Feshbach-type
projection method is not suitable for general triply excited states such as {2snln'I') where n, n' 3.

where

P, = Ip(r, ) ) ( q(r, ) . (2)

y is the ground-state wave function of the hydrogenic
ion. From Eq. (1), Bylicki obtained the following for the
closed-channel wave function:

In a recent paper, ' Bylicki developed a Feshbach-type
projection method. He obtained a projection operator for
triply excited three-electron systems. His method is par-
ticularly interesting in view of the fact that these systems
lie above the doubly ionized threshold, and there are an
infinite number of open channels associated with these
resonances. The traditional Feshbach-type projection-
operator method cannot solve these problems easily.

In Ref. 1, for the open-channel space wave function,
Bylicki gives

Pq' (P, +P2—+P3 P, P2 P—, P3 P—2P3+P—,P2P3)%,

taking the hydrogenic value. These two methods are
probably among the simplest methods for solving the tri-
ply excited three-electron system. With the advance of
experimental technique, it is reasonable to expect more
and more of these highly excited systems to be found in
high-resolution experiments. It is, therefore, important
to have a reliable theoretical method to identify the ob-
served spectra.

The saddle-point method is based on the variational
principle of quantum mechanics; that is,
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with the trial function covering the proper Hilbert space.
To require 5E =0 to be true for arbitrary variation of any
and all possible parameters in 4, the parameters must be
at a value where

(3)
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where
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are used. The only difference is that in the saddle-point
method the parameter q is to be optimized rather than

Two important features of Eq. (3) have been pointed
out by Bylicki. One is that Q is completely symmetric
with respect to the electron coordinates. The other is
that Eq. (3} takes the same form as the projection opera-
tor of the saddle-point method. He also pointed out that
the same situation occurs in the case of doubly excited
resonances in two-electron systems and states that the
successful application of the saddle-point method to tri-
ply excited resonances" in He, Li, and Be+ justifies the
reliability of his approach.

For (2l2!'2l") ' L resonances, Eq. (3) does take the
same form as the projection operators of the saddle-point
method, where projection operators of the form

For autoionizing states, the continuum part of the wave
function cannot be included in Eq. (5). Therefore, Eq. (6)
is only satisfied in the approximate sense.

There are many types of stationary values of E. The
saddle-point method suggests that, for those innershell
vacancy states with orbital excitation, one can construct
the vacancy orbitals with parameters and build these va-
cancies directly into the wave function. In the variation-
al process, one should maximize the energy with respect
to the parameters in the vacancy orbital. This implies
that when the same wave function is used, the energy
from the saddle-point calculation must necessarily be
higher than that from Eq. (3). The question naturally fol-
lows: Which result gives a better approximation to the
true resonance?

It is difficult to make detailed comparisons from the
study of triply excited three-electron systems, because
there the experimental data are less precise. There is also
the question of the cancellation of errors due to
insufficient correlation in the wave function. On the oth-
er hand, for two-electron systems, many accurate theoret-
ical and experimental data are available. This is especial-
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E res =EFT + g FT(E res
)n n n n (8)

Here E„"is the eigenvalue of interest with corresponding
eigenfunction 4„.%', is the appropriate continuum
wave function. ' The shift in Eq. (7) is usually referred to
as the Feshbach shift. One can also define a shift for the
saddle-point method as

or
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If R is less than 1, this means that the saddle-point ener-

gy lies closer to the resonance energy. But if the ratio is
greater than unity, then the Feshbach-type energy is a
bet ter approximation.

The Feshbach shifts for helium resonances below the
n =2 threshold have been calculated by Bhatia and Tem-
kin. " Of the 22 resonances calculated for helium, only
two states have negative shifts. The Feshbach shifts of
the 2s2s 'S and 2s2p 'P resonances were also calculated
by Chung and Davis. ' ' In Table I, we show this ratio
for resonances where the Feshbach shift is significant.
For states with very small shifts, both methods should be

ly true for the helium atom. Here, many high-precision
calculations have been carried out. There are also high-
precision optical experimental data on helium. Some
of them are accurate to within 0.01 eV. Hence, in this
work, we will use helium to compare the two methods in
question.

In the case of helium, the Feshbach-type projection
operator of Eq. (3) is identical to the conventional Fesh-
bach projection operator. The shift from the eigenvalue
of QHQ to the resonance position is given by

I& ~„IHJ~+)/'b„(E)=Pf de . (7)E —e

That is,

considered as accurate; they are not included in this
table. Perhaps the most remarkable point in this table is
that for the two states with negative 5, the saddle-point
results should definitely be worse than those of Feshbach.
However, we found that for these resonances the q values
lie extremely close to Z =2, implying that the saddle-
point solution and that of the Feshbach method become
almost identical.

For resonances in the inelastic region, such as 3s 3p 'P,
the operator constructed by Bylicki (Eq. 3) cannot re-
move the open channels (2skp), (2pks) or (2pkd). There-
fore, breakdown will always occur in a variational calcu-
lation. It is, however, possible to construct Feshbach-
type projection operators for these resonances. ' We
can also compare the results from this operator with that
from the saddle-point method, ' as well as with other ac-
curate theoretical' ' and experimental ' results. This
comparison is given in Table II. Open-channel effects are
included in Refs. 16 and 17. Here, we give the results for
the lowest 'P' resonances. The experimental results for
the lowest 'P' resonance are highly accurate; the line
profile' and width are analyzed in great detail. If we as-
sume that the correct resonance position is 69.918 eV,
then the saddle-point result is too low by 0.015 eV and,
for the Feshbach result, by 0.049 eV. For higher
members of the resonance series, as a rule, the differences
between the results of the two methods become smaller.

For resonances below the n =4 threshold, accurate
measurements for 'P' states were obtained by Madden
and Codling in 1965. We are not aware of any line-
profile analysis for these resonances. For the 4s4p 'P'
state, the QHQ result with an 85-term wave function is
—0. 195 032 a.u. ' The corresponding solution from the
saddle-point method is —0.193990a.u. The energy of the
measured line maximum by Madden and Codling is
—0.19271(81)a.u.

It is important to understand the mathematical reason
why the saddle-point method should give a better result.
The wave function of both methods can be symbolically

TABLE I. Comparison of saddle-point method and the Bylicki Feshbach-type projection-operator
method for resonance states of helium below the He+ n =2 threshold (in a.u. ). Square brackets denote
powers of 10.

States

lg( 1 )a

'S(2)a
'P(1)b
'P(2)'
'P(3)
'P(1)
'P(2)
'D(1)'
'D(1)"

EFT

0.778 761
0.622 567
0.692 775 3
0.597 091
0.563 861
0.761 457
0.584 888
0.702 684
0.583 790

EsP

0.777 882
0.622 356
0.692 773 3
0.597 078
0.563 861
0.760 842
0.584 822
0.702 161
0.583 774

bE=E —E

0.000 879
0.000 212
0.000 002 0
0.000013
0.000000
0.000 615
0.000066
0.000 523
0.000016

1.919
2.074
1.994
1.98
2.00
1.92
1.97
1.753
1.977

HAFT

0.000 903
0.000 807'

—0.000 249
0.000 023'

—0.000 074'
0.001 000'
0.000 266'
0.000 893'
0.000 046'

Half width

0.0023
0.000 12
0.000 69
0.2[—5]
0.000 18
0.000 16
0.000 05
0.0013
0.9[—6]

0.027
0.737
1.008
0.435
1.000
0.385
0.752
0.414
0.652

'Reference 13~

"Reference 12.
'Reference 11.
Reference 14.

'Reference 13. Note that the E is printed incorrectly in this reference. The correct result is
—0.702 684 a.u.
The parentheses (x) indicate it is the xth state counted from below.
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TABLE II. The 'P and 'P autoionizing states of He below the He+ n = 3 threshold (in eV). 1 a.u. =27.207 95 eV is used in the con-
version.

Burke
and Taylor'

Theory

Ho EFT EsP

Dhez
and Ederer

Energy I /2

Experiment

Energy

Woodruff
Samson'

I /2

1p
3p

69.917
69.482

69.8727+0.0014
69.471+0.0028

69.&69

69.435
69.903
69.461

69.919+0.007 0.066+0.007 69.917+0.012 0.089+0.006

'Reference 16.
Reference 17.

'Reference 14. Energy given in this table is relative to the relativistic ground-state energy of helium at —2.903 800 a.u. as given by
Pekeris.
Reference 7.

'Reference 8.

written as 0%', where 0 represents the operators of the
two methods. For the saddle-point method, in general,
the antisymmetrization is taken after 0 has operated on
the unsymmetrized wave function. The variation method
for 0% gives

QUA= [1—P„(1)][1—P„(2)][1—P„(3)]
X A t@(r„rz,r3)[(0,0)'0, 1]

+4'(r&, r2, r3)[(1,1)'0, 1]I, (15)
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Hence, in order to find the best approximation to the
Schrodinger equation, the energy E must be stationary
with respect to any and all possible parameters in 0+. In
the case of the Feshbach-type projection operator, we
have

50%=05%, (12)

since 0 is fixed. However, for the saddle-point method,
we have

50%=(50 )4+05qi . (13)

+ A [1—P2 (2)][1—P~ (3}]

X4'(r„r2,r3)[(1,1)'0, 1],
whereas, Eq. (3) gives

(14)

That is, more flexibility is allowed in Eq. (11) to better
satisfy the Schrodinger equation.

For triply excited three-electron resonances, such as
(2s2s2p) P', the projection operator in Eq. (3) resembles
that of the saddle-point method. However, for (2snln'I')
resonances with n, n

' ~ 3, the two methods are completely
different. For example, for the [(2s3s)'S, 3p] P reso-
nance, the saddle-point method gives, for the two major
partial waves [(0,0)'0, 1] and [(1,1)'0, 1],

Q+= A [1 P„(1)][1—P„(2—)][1—P, (2)]

X [1—P2 (3)]4(r&, r2, r 3 )[(0,0)'0, 1]

which is the same equation as one would use to calculate
the (2s2s2p) resonance. In the wave function of Eq. (15),
all states of the symmetry (2s2snp), (2s2pns), (2s2pnd),
and (2p2pnp) will be present. The wave function will also
contain the [(2s2s)'S, kp], [(2s2p) ', ks], [(2s2p) ', kd],
[(2p2p)'S, kp], [(2p2p)'D, kp] and [(2p2p) P, kp] con-
tinua. Therefore, breakdown cannot be avoided in a vari-
ational calculation. It is not clear how one can improve
the Q operator in Eq. (15) to overcome the difficulty.
This implies that the method of Bylicki cannot be used
for general triply excited systems.

In a recent paper, Bylicki remarked that in some situ-
ations variational breakdown may occur in a saddle-point
calculation. In the case where Eq. (3) is applicable, the
method of Bylicki actually guarantees that the saddle-
point method will never suffer from variational break-
down. This is because the projection operators in Eq. (3)
are fixed, whereas the saddle-point energy is maximized
with respect to the parameters in these operators. The
saddle-point energy always lies above the energy from Eq.
(3).

The situations that Bylicki is concerned about are
those resonances, such as (ls2s2p) P' of He, that lie be-
tween an open-channel with target state (ls2s) S and a
closed channel with target state (ls2s)'S. In this case,
the 2s "hole" is not shared by the entire system. As can
be seen from Eq. (14}that the construction of the projec-
tion operators in a saddle-point calculation is very flexi-
ble. There is no reason to forbid the building a certain
"hole" in a part of the total wave function in order to re-
move an open channel. The only criterion is whether the
wave function is sound and whether it reflects the physics
of the system. The rest is left to the variational principle
of quantum mechanics. Reference 3 was criticized for
not spelling out explicitly how to prevent variational
breakdown for systems like P of He when an arbitrary
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wave function is used. Note that P' of He was con-
sidered to be a shape resonance in 1979. The saddle-
point method is developed for Feshbach resonances.
Nevertheless, it is through the application of the saddle-
point method that the Feshbach resonance nature of He
P' is uncovered. ' In a recent comment, an explicit

saddle-point calculation was carried out to show that no
variational breakdown will occur in P' of He, even
with the wave function of Bylicki. We do not consider
this concern of Bylicki to be serious. For example, we
refer to the recent work of Jaskolska and Woznicki on
[(Is2s)'S, nd] D of Lit.

One challenging problem facing the saddle-point
method is the high-spin-multiplicity systems consisting of
vacancies due to orbital excitation as well as spin symme-
try. Recently, we have found an approach to solve this
type of problem. Applications have been carried out on
ten resonances; very detailed studies have been made. It
appears that the results are very satisfactory. We hope
that experiments can be carried out to test these predic-
tions in the near future.

The saddle-point method uses projection operators of
the form P; = 1 —

~ y; ) ( qr; ~
to build vacancies into the

wave function. This method of building vacancies should

be obvious to anyone who is familiar with the Feshbach
projection-operator method. In the work of Hahn,
O' Malley, and Spruch in 1962, a projection operator is
constructed with the product of P;. It is followed by the
many applications of O' Malley and Geltman and Bha-
tian, Temkin, and Perkins. The projection operator
given by Eq. (4) was given in a footnote in Ref. 9. It was
also explicitly used by Chen. Note that the form of y,
as well as the total wave function 4 in the saddle-point
method, follows closely that of Ref. 9. The emphasis of
the single-particle projection technique in Ref. 3 was on
how to determine the projection operator by optimiza-
tion, rather than by the use of Eq. (4) which is well
known in the literature. The most important concept in
the saddle-point method is that the "hole" orbital in a
physical system is completely different from a "particle"
orbital. This is a different approach to the idea of
Nicolaides in his Hartree-Fock projection formulation.

This work is supported by the National Science Foun-
dation Grant No. PHY 87-15238 and by the National
Science Council of the Republic of China.
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