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The scalar optical transmittance function is given by the Fourier transform of a path integral.
Here we try to express it directly by a path integral. Applications both to the calculation of com-

plex amplitude distributions and "instantaneous" optical transformations in the paraxial region are
developed.

Scalar paraxial optical transformations by operational
methods have been an important subject in past years.
Bacry and Cadilhac' derived the Sp(4, R ) as the symme-
try group of the wave equation in the paraxial limit.
Canonical transform kernels were introduced by Na-
zarathy and co-workers. Dragt introduced Lie algebra
techniques in the Hamiltonian treatment of geometrical
optics. Moreover, in the spirit of Dragt's ideas, Wolf
developed nonlinear canonical transformations in optical
phase space; in particular, "instantaneous" finite canoni-
cal transformations, which have no counterpart in
mechanics.

In this Brief Report we show how each optical com-
ponent can be regarded as an element that performs an
effective (thick element) or real (thin element) "instan-
taneous" transformation, which is connected to both the
optical phase space and the idea of the transmittance
function (TF) as a path integral representing an "instan-
taneous" optical propagator. The method is not restrict-
ed to Gaussian optics.

Path-integral (PI) formalism can be considered as com-
plementary to that setup with a group-theoretical basis
and canonical operators. Recently, a formal derivation of
the optical propagator for the Helmholtz equation has
been given, ' where limiting cases such as a paraxial ap-
proximation have been obtained; moreover, in the paraxi-
al region the Wiener-Feynman measure is restored and
explicit calculations can be performed. Thus, the optical
propagator for the gradient-index (GRIN) media was cal-
culated and transmittance functions were inferred as a
PI. Nevertheless, a formal derivation of these TF's has
not been given. In this work, we try to express the scalar
TF directly by a PI. On the other hand, the vector TF
could be also obtained by the Mukunda-Simon-
Sudarshan' (MSS) formalism and by PI formalism:"
both formalisms may be regarded as the vector generali-
zation of the operational methods mentioned above.

The TF can be defined as a PI when the sum over paths
is restricted to a subset of them determined by the initial
conditions of the light rays. This definition is closely re-
lated to other path integrals such as the Hamiltonian
ones where the sum over paths is restricted to those
characterized by constants of motion (energy, momen-
tum, etc.).

The TF can be used to evaluate the complex amplitude
distribution (CAD) at the output plane of the optical sys-

= fDx (z)Dy (z)exp[ikS(x|,y|,xp, yp'z, )],

S being the geometrical optical path length and k the
wave number. Thus, if the CAD %(xp,yp) is known at a
transverse plane z =0, then the function 4 at some plane
z =z, & 0 satisfies the integral equation

+(xl yl zl)= «x| yi»o yo'zl)'Il(xo yo)dxodyo .
R

The path functional S can be written as

Z ]S = f L (x,y, x,y;z)dz,
0

where I. is the optical Lagrangian given by

L(x,y, x,y;z)=n(x, y, z)(1+x +y )' (4)

for arbitrary media, and the dot represents differentiation
with respect to z. In order to examine light propagation
through an optical system we assume the following repre-
sentation for the refractive index:

n (x,y, z) =no+En (x,y, z} .

This refractive index can be a real or effective one. ' For
instance, a GRIN medium has a real refractive index;
nevertheless, for a conventional lens an effective refrac-
tive index can be used. Moreover, if we consider the par-
axial region (hn/no&(l, x,y ((1;note that q=pq/plQ,

q =x or y, and p is the optical momentum) the optical
Lagrangian can be approximated by

L (x,y, x,y;z) =(no/2)(x +y )+n (x,y, z)

and Eq. (1) becomes

tern if the input CAD is known. Neither the general ker-
nels nor the propagation integral are required, because
the TF supplies an "instantaneous" transformation of the
CAD. The following PI expression has been formally de-
rived for the scalar optical propagator:

K(x| yl, xp yp'z~ )
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&(x„y,,xo,yo;z, )=fDx(z)Dy(z)exp ik f [(no/2)(x +y )+n(x, y, z)]dz (7)

Note that Eq. (7) represents a PI with a well-defined Wiener-Feynman measure, ' ' and corresponds to the kernel of a
paraxial wave equation. We can now evaluate the optical propagator (7), only for a subset of paths with a fixed initial

optical momentum xp =c yp =c, by the following projection operator:

G(x»y»xo yo', z& ) =fE(xi yi xo yo', z, )exp[ ik—no(xoxo+yoyo)]dxodyo . (8)

From Eq. (8) it follows that G is given by a Fourier transform which is widely used for projecting over a fixed energy in
the Hamiltonian path integrals. ' On the other hand, the optical propagator (7) can be rewritten as

K(x„y„xo,yo;z, )=fDx(z)Dy(z)exp(iknoz, )exp[ikno(x, x, —xoxo+y, y, —yoyo)/2]

Xexp ikno f [(xx+y'y)/2+An)]dz

where integration by parts in the phase integral and Eq. (5) has been used. Now, we perform the path integration as a
sum over paths with fixed xp, yp, where we follow closely Gutzwiller's idea' related to fixed energy. Then integrating
over all the values of xo,yo, Eq. (8) becomes

G(x, ,y„xo,yo;z, ) = f dxodyo f dxodyoexp[ ikno(c —xo+c~yo)]

X f Dx(z)Dy(z)exp(iknoz&)exp[ikno(x~x, +xoxo+y&y, +yoyo)/2]
zp =const, yp const

Xexp ikno f [xx+y'y/(2+An)]dz (10)

The integrations over xo,yo generate a factor proportional to 5(c„+xo,c~+yo), so that Eq. (10), after some algebra, can
be rewritten as

G(x&,y„xoyo'z~)= f Dx(z)Dy(z)exp f [(no/2)(x ~+y 2)+n(x, y, z)]dz
zp =canst, yp

=canst

Equation (11) is a PI on trajectories from (xo,yo) to
(x„y&

), parametrized by the variable z. Only the paths
with xp =c, yp =cy are considered in the integration. In
short, expression (11) describes a functional integration
with constraints' in the phase space. From the optical
point of view, it may be regarded as a TF, as will be made
clear later.

On the other hand, Eq. (8) can be used to perform ex-
plicit calculations of the TF in a direct way. Several par-
axial cases can be studied, but for the sake of simplicity
we consider the Gaussian region. It is well known that in
the Gaussian approximation only the classical paths con-
tribute to the PI ' therefore Euler's equations can be
used to evaluate the PI. A Gaussian optical path length
is given by

Eq. (7) becomes

1E(x] y~ xo yo'z~ )= exP(iknoz~ )F(z)

Xexp[ikno(x]x, xoxo

+6» —
yoyo )/2]

(14)

where F(z) is given by

F(z)=Fof exp — f V~Sdz
1

2np

S=noz, +(no/2)(x +y ) —g (z)(x +y ) (12)
(15)

(linear terms are not considered because no new result
would be obtained). Therefore from Euler's equations

B + B

Bx By

BL

Bq

d BL
dz Bq

=Q, q=x ory (13) Substituting Eq. (14) into Eq. (8) and performing the
Fourier transform, it follows that
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G(x„y„xo,yo;z, )= exp(iknoz, )exp[ikno(x, x, —xpxp+y, y, —ypyp)/2]5(c„+xp, c +yp),F z
(16)

which represents an "instantaneous" optical propagator. A useful application of this PI formulation is, for instance,
the singular case when 8 =0 in the ABCD ray-transform matrix. The optical propagator for this singular case can be
derived from Eq. (16) in a straightforward way. Likewise, operator techniques' have been used for deriving the
transfer operator in the above-mentioned case. Finally, the usual TF can be derived from G as

r(x„y„xp,yo;z, )=f G(x&,y„xp,yp, z, )%(xp,yo)dxodyp[%(xp yo)]

exp(ikn pz, )exp[iknp(x, x, +y,y, )][%((xp yp )]F z

Now, we apply Eq. (16) to calculate the output CAD due
to an input general Gaussian beam characterized by the
initial condition qo=qp/U with UEC(:. The classical
rays are given by

q =qo[S2+S, /(no U)]=qoF(z), (18)

where S& and S2 are the axial and field rays. Inserting
Eq. (18) into Eq. (16) the output CAD is given by Eq. (2),
where E is replaced by G. After some algebra one ob-
tains

1
%(x, ,y„z,) = exp(iknoz, )exp[iknpF/F(x (+y, )] .

F(z)

In short, a formal derivation of the TF as a PI with a
constraint in the paraxial region has been derived. Like-
wise, a projection operator has been used to obtain this
result and evaluate the general form of the Gaussian TF.
This method can be used for more general optical systems
(non-Gaussian systems), whose TF performs three-
dimensional focusing. Results will be reported later. Fi-
nally, the method that has been developed can be applied
to evaluate propagators associated to "instantaneous"
transformations (such as arbitrary refractive surfaces) as
a limiting case. Equation (16) makes clear this assertion.
Moreover, it could be applied in other branches of phys-
ics, such as electron optics, diffraction, and so on.
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