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Incomplete "collapse" and partial quantum Zeno efFect
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If the interaction generating a quantum measurement is too weak to completely "collapse"
the wave function, a partial quantum Zeno effect may result. An experimental test is proposed.

It was shown long ago by von Neumann that it is pos-
sible to steer a quantum system from any arbitrary pure
state into any other arbitrary pure state, by a sequence
of measurements in rapid succession (the meaning of the
word "measurement" is discussed in the last chapter of
von Neumann's book). In particular, if all these measure-
ments test whether the momentary quantum state is the
same as the initial preparation state, that initial state is
"frozen, " irrespective of the dynamical properties of the
free (unmeasured) quantum system. This effect has be-
come a popular subject of discussion after it acquired the
name "quantum Zeno paradox. "

There is, however, nothing paradoxical here. Simply,
the frequent interactions of the measuring apparatus with
the quantum system alter the dynamical properties of
the latter, and in particular its transition rates. There-
fore, the quantum Xeno effect is nothing more than an
ordinary dynamical effect, which can be completely dis-
cussed without invoking ill-defined terms such as "mea-
surement" or "collapse" of the wave function.

Recently, the existence of the Zeno effect was dramat-
ically verified in an experiment by Itano et al sIn th. at
experiment, Rabi oscillations between two atomic levels,

ll) and l2), were monitored by means of a sequence of
brief laser pulses. These pulses were tuned in such a way
that they could excite the atom from level ll) (but not
level l2)) into an unstable level l3), which then imme-
diately decayed back into level ll), thereby emitting an
observable fluorescence photon. It was found that, as the
time separation between the pulses decreased, the prob-
ability for a transition between the atomic levels ll) and

l2) was depressed, and tended to zero. The agreement
between theory and experiment was excellent.

The purpose of the present article is to examine the be-
havior of the Zeno effect when the intensity of the laser
pulses is reduced to the point that the probability of ex-
citing the atom from level ll) to level l3) becomes signif-
icantly less than unity. In the language of measurement
theory, this means that the measurement is no longer of
the idealized von Neumann type, whereby the final states
of the measuring apparatus are orthogonal. Therefore,
the infamous "collapse" postulate becomes ambiguous
and useless; a detailed dynamical description of the mea-
suring process is needed, as shown below.

In addition to the three atomic states mentioned above,
let us denote by l0) the ground state of the photon field.

Since our problem is to monitor only the Rabi oscilla-
tions of the atom, we disregard the photon field in (1) by
tracing it out. The net result is
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where S = (Ol4) is the survival amplitude of the electro-
magnetic vacuum state —that is, the amplitude for the
absence of resonance fluorescence.

If the laser pulse is very strong, S ~ 0 and the efFect of
the pulse simply is to obliterate the off-diagonal elements
of p. Their disappearance is the so-called "collapse" of
the wave function. If, on the other hand, the pulse is
only moderately strong, there is a non-negligible survival
amplitude (Ol4) and we must explicitly use the evolu-
tion law (2). The appropriate formalism can be found in
Ref. 7.

Our problem thus is to evaluate the survival amplitude
S = (Ol@) . We shall assume that the duration of the laser
pulse is so short that one can neglect the occurrence of
transitions between states ll) and l2) while the laser is
acting. Moreover, let us assume for simplicity that the
initial state is pure, namely l4';) = l1) l0). [A mixed
state such as in Eq. (1) can always be considered as a
statistical average of pure states. ] The state after the
laser pulse acts during a time t will be

le(t)) = ai(t) l1) e lo)+ a, (t) l3) e lo)+. . . , (3)

That field too is a dynamical system, coupled to the
atom. Suppose that the initial state, before the laser
pulse, is l4';) = ll) l0). As the lifetime r of the excited
state l3) is very brief on the time scale of the experi-
ment, the state soon after the end of the pulse will be
l4't) = ll) lc), where l4) is an excited state of the
electromagnetic field, including various amplitudes for
0,1,2, . . . photons. On the other hand, the laser pulse
does not affect the atomic state l2), so that the initial
state l2) l0) remains unchanged.

In general, the initial state of the atom will not be pure
and it must be represented by a density matrix p. The
quantum evolution generated by the pulse is
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where the ellipsis represents other terms. The evolution
of this 4(t) is generated by a Hamiltonian whose relevant
terms can be written as

b, = —,'Q.-"b. ,

b. = ,' —Q.*"b, —b./2r,

H = Ho + H~ + V.

Here,

(4) where 6 = ~ —~si is the detuning of the laser with
respect to the ~3q transition frequency. Eliminating b3,
we obtain

Ho ——) (Et Ik)(kl) + hQ sin(ut) (ll)(31+ l3)(ll),

where Ei, is the energy of level lk); u is the frequency of
the laser; hQ is the value of the matrix element generat-
ing transitions between states ll) and l3) (that value is
proportional to the amplitude of the laser field); Ir,m is
the Hamiltonian of the free electromagnetic field; and V
is the interaction between that field and the atom, which
causes the spontaneous decay from l3) to ll). The laser
field itself is treated classically and is not considered as a
quantized dynamical variable (we can safely neglect the
reaction of the atom on the laser).

The relevant equations of motion thus are

ihai —Ei ai y M sin(art) as,

and

ihas ——Es as + hQ sin(ut) ai —((Ol js (3l)Vl4'). (7)

For times that are neither very short nor very long, the
last term can be treated phenomenologically as causing
an exponential decay, and therefore replaced by ias/2r- ,

where 1/r is the Einstein A coefficient. This is the
Weisskopf-Wigner approximation. It obviously violates
unitarity, because we have restricted our attention to a
two-dimensional subspace of the Hilbert space of states.
It is customary to bypass this difficulty by using a den-

sity matrix formalism, keeping track of the atomic state
only. Here, we preferred to use a pure-state analysis, s to
show more clearly how rare fluorescence photons cause a
partial decoherence when they are traced out.

We now define b„= a„exp(iE„t/h) and obtain

ibi —Q sin(ut) exp(iusit) bqi, (8)

ail d

ibs —Q sin(~t) exp( —i~sit) bi —ibs/2r, (9)

where usi ——(Es —Ei)/h. As we are interested in the
case a usi, we can neglect the rapidly oscillating terms

exp[i(~st + ~)]f and we have

t'1 . l Qbi+
l

—+ib
l
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I,2r y 4
(12)

It follows that bi evolves as a sum of two exponentials.
The value of bi at the end of the pulse is the coefficient
S which appears in Eq. (2) and controls the partial Xeno
effect. [The phase factor exp(iEit/fi) is irrelevant, since
it would also appear in the absence of the laser pulse. ]

We henceforth restrict the discussion to the. simple case
of no detuning (b = 0). The two exponentials in the
solution of (12) are

exp —(1/2r) 6 g(l/2r)' —(Q/2)'
I

Here, if there were no decay, Q/2 would be the Rabi
frequency for the ll) ~ l3) oscillations. In the exper-
iment of Itano ef at. ,

s the laser pulse was strong and
Qr )) 1. Therefore the solution of (12) behaved as
e i~z' cos(Qf/2). At the end of each pulse, t )) 2r and
S was essentially zero.

In the present article, we are interested in weaker
pulses, such that Qr « 1. In that case, the solution of
(12) behaves as exp( —Q2rt/2). By adjusting the strength
of the pulses, the factor 02rt can be continuously con-
trolled, and the survival amplitude S = (Ol4) can be
given any desired value between 0 and 1.

We are finally ready to compute the result of a se-
quence of n laser pulses, equally spaced during a half-
period of the Rabi oscillations between levels ll) and l2)
as in the experiment of Itano et O,l. . We write the density
matrix as

l
l

—1(1+a . R)( p21 p22 ) (14)

Initially, R = (0,0,1). In each one of the n time intervals,
the vector R rotates by an angle 8 = x/n, and then its
z and y components (corresponding to the off-diagonal
elements of p) are reduced by a factor S. If phases are
chosen so that R„remains zero, the result is given byio

TABLE I. Predicted values for ll) ~ l2) or l2) ~ ll) transition probabilities, for various

values of n (the number of pulses) and 9 (the amplitude for uo fluorescenc ). The laser pulses are

assumed to be so brief that optical pumping ll) ~ l2) is negligible during each pulse.

1
2

4
8

16
32
64

S=o
1.0

0.5000
0.3750
0.2346
0.1334
0.0716
0.0371

S= 0.2
1.0

0.6000
0.4560
0.3054
0.1840
0.1028
0.0543

S= 04
1.0

0.7000
0.5530
0.3948
0.2541
0.1488
0.0814

S =0.6
1.0

0.8000
0.6720
0.5154
0.3590
0.2261
0.1304

S =0.8
1.0

0.9000
0.8190
0.6962
0.5419
0.3834
0.2458

1.0
1.0
1.0
1.0
1.0
1.0
1.0
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where 8 = x/n. The transition probability isa (l —R', )/2,
and is given in Table I for various values of n and S. The
two columns on the left are identical to those of Table I
of Ref. 5. The column on the right corresponds to the

trivial case of very weak laser pulses. The other columns,
for S=0.2 to 0.8, illustrate a partial quantum Zeno effect,
due to an incomplete "collapse. " An experimental test,
extending the results of Ref. 5, should be feasible.
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