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There is a theorem proved by Svendsen which implies that a zero-range (5-function) potential
cannot be defined for the Dirac equation in two and three space dimensions. %'e give an elementary
proof of the theorem by examining the solution of the Dirac equation with a square-well potential of
finite range and taking the zero-range limit.

I. INTRODUCTION

In nonrelativistic quantum mechanics, the zero range
or the 5-function potential in one space dimension, say—g5(x), is well defined with no ambiguity. For its sim-
plicity the one-dimensional 5-function potential is used
extensively as a model interaction in condensed-matter
physics and also as classroom exercises of quantum
mechanics. The 5-function potential can also be used
with the relativistic Dirac equation in one dimension.
Unlike the nonrelativistic case, there is an arbitrariness
regarding the definition of the 5 function in the relativis-
tic case. ' However, there is nothing really serious
about this arbitrariness.

In two and three dimensions, the 5-function potential
could be defined by starting with a square-well potential
of depth D and radius a, and taking the limit of a~0,
but keeping Da "=gconstant, wh—ere n ( =2 or 3) is the
dimensionality of the space. The g is essentially the
strength of the 5-function potential. We are interested in
an attractive potential such that there is at least one
bound state. In nonrelativistic quantum mechanics with
the Schrodinger equation, it is well known that the
ground-state energy becomes —au in the 5-function limit
of a ~0. However, the strength g of the potential can be
scaled or renormalized such that there is a ground state
with a finite binding energy. In this sense one can define
the 5-function potential for the Schrodinger equation in
two and three dimensions. In Sec. II we will briefly
summarize how the 5-function potential can be defined
for the Schrodinger equation in two and three dimen-
sions.

We are naturally interested in the relativistic extension

We confine ourselves to the S state. The Schrodinger
equation reads

1 dg n —1 dg
2m fr 2 r dr

(2.1)

where n (=2 or 3) is the dimensionality. For the poten-
tial V(r) we assume an attractive square well;

of the notion of the 5-function potential in two and three
dimensions. Unfortunately, this is not possible, accord-
ing to Svendsen, who proved a theorem that has impor-
tant implications regarding the possibility of the 5-
function potential. As an application of the theorem,
Svendsen examined the kinetic-energy operator of the
Dirac Hamiltonian defined within a set of functions that
vanish near the origin. He found that the operator so
defined is essentially self-adjoint if the dimensionality of
space is greater than 1, which excludes the possibility of
the 5-function potential for the Dirac equation for other
than one dimension. Since Svendsen's paper is highly
mathematical, it would be interesting to examine the
problem in a more elementary way by starting with a
square-well potential and taking the zero-range limit.
This we will do in Sec. III.

Although the 5-function potential for the Dirac equa-
tion in two and three dimensions cannot be defined, there
is no such problem with the 5-shell potential, provided
that the radius of the shell is not zero. We will discuss
this in the Appendix. We use natural units (c =trt=l)
throughout.

II. SCHRODINGER EQUATION
IN TWO AND THREE DIMENSIONS
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D— for r &aVr='
0 for r & a . (2.2)

[a„p„+ia„gk/r +P(m +S)+V]/=ED, (3.2)

where a„=a rlr and p„= i—[d!Br+(n —1)/(2r)], and

Following the standard method, f and df/dr for r &a
and r & a are matched at r =a, which leads to the follow-
ing equations:

L+(P/2) for n =2k='
P(cr L+1) for n =3, (3.3)

aoaJ, (boa)/Jo(~oa)=~aK, (~a)/Ko(xa) for n =2

(2.3)

and

~oa cot(boa) =~a for n =3, (2.4)

where v=( —2mE)'~, so=[2m (D+E)]'~, and the J's
and E's are Bessel and modified Bessel functions, respec-
tively. For given values of D and a, Eqs. (2.3) and (2.4)
determine E for n =2 and 3, respectively.

Let us consider the limit such that D~ 00, a ~0, but
Da"=g=const and ~E~ is finite. Then vo—-(2mD)', and

(m +S E+ V—)u— n —1+
dr r

U=0, (3.4)

du +(—m —S E+ V—)U =0 .
r

(3.5)

where o. is the Pauli spin matrix. For n =2,
L =—xp —

yp . Since k commutes with 0, we can take it
as a constant. For the state that corresponds to the
ground S state of the Schrodinger case, k =

—,
' for n=2,

and k=1 for n=3. In the following we consider only
these states. For the matrices a„and P, we use a„=a~
and P=o, . If we denote the upper and lower com-
ponents of g by u and U, respectively, Eq. (3.2) becomes

(2mg)'~ & ao for n =2
KOQ (2mg/a)' ~ao for n =3 . (2.5) Let us first consider the two-dimensional case. For

r )a, u and varegivenby

It is not difficult to see that, as 1ong as E remains finite,
Eqs. (2.3) and (2.4) cannot be satisfied in this limit. For
n=2, for example, the left-hand side of Eq. (2.3) ap-
proaches a constant, whereas the right-hand side
diverges; recall that, for x « 1, Ko(x) = —[ln(x/2)+y],
where y =0.577. . . is the Euler constant, and
K, (x)=1/x.

This difficulty can be avoided by scaling D in such a
way that

u =Ko(vr),

u = aK, (ar)l—(m +E),
(3.6)

(3.7)

(E —V) —(rn +S) =~o&0 (case I),
(m +S) —(E —V) =~o&0 (case II) .

(3.8)

(3.9)

where a =(m E)' . F—or r & a there are two cases:

[
—2/[ln(va/2)+y] j' for n =2

(m'/2)+2xa/m for n =3 . (2.6)
u =Jo(d'or), (3.10)

Let us examine case I in some detail. Apart from the
normalization factor, the solution for r (a is given by

The value of K, and hence the energy E, can be chosen at
wi11. The 5-function potential is accordingly determined,
albeit g =Da "~0. The parameter of this potential is
therefore the bound-state energy or K rather than g. Let
us add that the renormalization trick summarized above
does not work for dimensions higher than 3; this also
follows from Svendsen's theorem. When the angular
part is separated and the Schrodinger equation is written
for r g, the kinetic energy in n dimensions bears the "di-
mensional barrier" [(n —1)(n —3)/4]/(2mr ) Thi.s'
makes the 5-function potential impossible for dimensions
greater than 3.

III. DIRAC EQUATIGN
IN TWO AND THREE DIMENSIONS

v = —aoJ, (d'or)/(m +E+E—V) .

The continuity of u and v at r =a leads to

zo Ji(boa) ~ K, (a )a
m +S+E—V Jo(boa) m +E Ko(za)

(3.11)

(3.12)

Suppose that S=O and V= —D~ —00; then Ko=D.
We now take the limit of a ~0. It appears as if we can
define the 5-function potential by scaling the well depth
D such that

xo+((a), (3.13)

where xo is such that Jo(xo ) =0, and g(a) is a function of
a such that $~0 as a~0. When /&&1, Jo(boa)= —g,
and the left-hand side of Eq. (3.12) becomes = —I/g.
Therefore, if we choose g'(a) to be

The Dirac equation reads
g(a) =a (m +E)[ln(~a/2)+y], (3.14)

[a.p+P[m +S(r)]+ V(r) j /=ED, (3.1)

where S ( r ) and V ( r ) are a Lorentz scalar and (the zeroth
component of} a vector. For each of S and V, we assume
a square-well potential of the form of Eq. (2.2). Follow-
ing, e.g., Schiff, we can separate the angular variables
and reduce Eq. (3.1) to

the Dirac equation is satisfied with the eigenvalue E,
which is specified by K. This remains valid in the limit of
a ~0.

To find a solution of the Dirac equation is one thing,
but whether or not the solution is physically acceptable is
another. Unfortunately, g obtained above by scaling &co
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becomes unnormalizable in the limit of a ~0. This is due
to the behavior of v near the origin; v = —1/r and hence

f v r dr diverges.
In the case II of Eq. (3.9), we can assume that S dom-

inates. In this case it turns out that it is impossible to
scale the depth of the potential in such a way that the
Dirac equation remains satisfied in the limit of a~0.
But even if the scaling were possible, v would aquire
essentially the same singularity at the origin as in case I.
Hence the 5-function potential cannot be defined.

The three-dimensional case is very similar. The three-
diinensional counterpart of Eq. (3.12) is

~oa coth(boa) —1

m+S+E —V

ma+1
m+E (3.15)

In taking the limit of a ~0, the scaling can be done such
that

boa ~a+(m +E)a . (3.16)

The Dirac equation is satisfied with the eigenvalue E.
However, the difBculty regarding the normalizability of
the wave function again develops. Apart from a constant
factor, the two components of g for r )a in three dimen-
sions are given by

Regarding the 5-function potential, the Dirac and
Schrodinger equations are very different; in two and three
dimensions, the 5-function potential can be defined for
the latter, but not for the former. This may sound
strange in view of the usual interpretation that the
Schrodinger equation is an approximation to the Dirac
equation. This difference stems from the following. In
obtaining the 5 function as the narrow-width limit of the
square well, the depth of the well is made much greater
than the mass in the relativistic case. On the other hand,
in reducing the Dirac equation to the Schrodinger equa-
tion, it is understood that the mass is much greater than
the strength of the potential; in this sense, the depth can-
not exceed the mass.
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APPENDIX: 5-SHELL POTENTIAL

Let us consider the attractive 5-shell potential of the
form

u =e ""/(ar),

v = —e ""(I+sr)/[(m+E)xr ] .

(3.17)

(3.18)
S(r)= gs5(—r —a), V(r) = —gi, 5(r —a), (Al)

In the limit of a ~0, v becomes unnormalizable.

IV. DISCUSSION

We have examined the solutions of the Dirac equation
of a square-well potential in two and three space dimen-
sions and examined the zero-range limit with an eye to
define the 5-function potential. We had a partial success
in the sense that the solution of the Dirac equation with
the vector potential can be retained in this limit. Howev-
er, the wave function becomes unnormalizable and hence
unacceptable. This negative result is in accord with
Svendsen's theorem regarding the self-adjointness of the
kinetic-energy operator for the Dirac particle.

In order to see the impossibility of the 5-function po-
tential, actually it was unnecessary to examine the eigen-
value equation (3.12) or (3.15). Inspection of v near the
origin suffices to see that the 5-function potential is not
allowed, irrespective of whether or not the relevant eigen-
value equation has a solution. The reason why we exam-
ined the eigenvalue problem and then the scaling pro-
cedure is that we were curious about the nature of the
operator consisting of the Dirac kinetic energy and the
renormalized 5-function potential. This operator has
continuous spectra for ~E~ )m and one discrete energy
between m and —m. However, it can be shown that the
square-well potential in its 5-function limit has no effect
on the continuum; the scattering phase shifts are all
zero. ' Therefore, the scattering states, which are the
same as those of the free Dirac equation, and the discrete
state form an overcomplete set of functions. This implies
that the operator under consideration is not self-adjoint.

where the g s are both positive. The definition of this po-
tential is beset with exactly the same type of ambiguity as
that of the 5-function potential in one dimension. For
simplicity, let us adopt the definition by means of

J5(r a)f (r)dr —=[f(a +)+f(a —)]/2, (A2)

where f (r) stands for u (r) or v (r), and a+ means a plus
a positive infinitesimal. It turns out that, in general, u

and v are both discontinuous at r =a. There is an alter-
native definition of the potential, which is obtained by
starting with a shell of a finite width and then taking the
zero-width limit. The u and v which follow from this
latter definition of the 5-shell potential do not satisfy Eq.
(A2), but we do not discuss this aspect here. "

We confine ourselves to the usual ground state that we
have considered in the main text. Equations (3.4) and
(3.5) lead to

—g(u~+u )/2=v~ —v

g'(v~ +v )/2=u ~
—u

where u+ =—u (a + ), u —=u (a —), etc. , and

N =s+Rv S = Ss+Rv-

(A3)

(A4)

(A5)

The above boundary condition applies to both of two and
three dimensions.

Apart from a common constant factor, u and v for

Equations (A3)—(A5) can be reduced to a single equation:

(4—gg')(u+ v —u v+ ) —4(gu+ u +g'v+ v ) =0 .

(A6)
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u =sinh(ter)/(ttr),

U =[cosh(ttr) —sinh(ter)/(ter)]/(m +E)r .

(A7)

(A8)

Equation (A6) together with these wave functions leads
to

r )a are given by Eqs. (3.5) and (3.6), respectively, in two
dimensions, and by Eqs. (3.17}and (3.18) in three dimen-
sions. For r & a, the Eo and I(, of two dimensions are re-
placed by Io and —I, , respectively. Note that ao of Eq.
(3.8) or (3.9) does not appear because the potential is zero
except at r =a. In three dimensions, u and U of r & a are
given by

4—gg'=4a [g (m +E)KOIo —g'(m —E)KII) ]

for n =2, (A9)

where Kc =Ko(tta), etc., and

4—gg'=4tt 'e "sinhx[g (m +E) g—'(m E—)
X (1+x ')(cothx —x ')]

for n =3, (A10}

where x =~a. These equations determine the eigenvalue
of a bound state, if any. In the limit of a ~0, the wave
function becomes unnormalizable. The scattering phase
shift can be calculated; it vanishes as a ~0.
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