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Perturbation theory for solitons in optical fibers
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Using a singular perturbation expansion, we study the evolution of a Raman loss compensated
soliton in an optical fiber. Our analytical results agree quite well with the numerical results of Mol-

lenauer, Gordon, and Islam [IEEE J. Quantum Electron. QE-22, 157 (1986)]. However, there are

some differences in that our theory predicts an additional structure that was only partially seen in

the numerical calculations. Our analytical results do give a quite good qualitative and quantitative
check of the numerical results.

I. INTRODUCTION

One of the most useful features of soliton theory is the
practicality of using it for the approximate description of
physical phenomena. An excellent example of such an
application is the proposed use of solitons as bit carriers
in optical fibers. ' Compensating for normal losses by
the use of Raman gain, one can obtain propagation
over thousands of kilometers with bit rates in the 10-GHz
range.

The first application of perturbation techniques to soli-
ton propagation was done in 1976 by this author. ' In-
terestingly enough, the equation studied then was the
damped nonlinear Schrodinger equation; almost exactly
the same one that we shall study here. Actually, those re-
sults could have been easily used here, just in the form as
they were given then. However, we have been able to
slightly generalize the original theory and it is this gen-
eralization that we shall emphasize here.

Since that time, there has been a tremendous amount
of work on perturbations of soliton systems. Among the
notable results was the development of a Green's-
function approach by Keener and McLaughlin, which
was applied to the sine-Gordon equation by McLaughlin
and Scott. ' Karpman and Maslov"' devised tech-
niques for handling perturbations of the Korteweg —de
Vries equation. Kaup and Newell' studied the same
problem and also summarized many of the results for
perturbations of integrable systems. Recently, the entire
area has been excellently and very comprehensively re-
viewed by Kivshar and Malomed. '

What we shall present here is the application of an ex-
panded perturbation theory for single-soliton propaga-
tion to a problem of current interest. And with a
minimal effort, the same theory can easily be extended to
handle any array of well-separated solitons, as one can
expect in an optical fiber. The extended perturbation
theory is based on an extension of the inverse scattering
transform (IST) perturbation theory first developed in
1976. That theory was developed in the hope that one
could alternate between coordinate space and scattering
space in some way so as to extend those results into
higher order. However, the calculations beyond the first
order rapidly became extremely complex, and nothing

II. PERTURBED NLS

The general form of the perturbed NLS is

it), q = —8 q+2rq +eR [q, r],
id, r =8 r 2r q eR *[q,r]—, — (lb)

where r = —q* and e is our expansion parameter. We
take the zeroth-order solution to be

Ae'
qo=

coshO
(2)

more has been done in this direction. What we have
achieved here is a perturbation expansion which is based
on a regular perturbation expansion about the nonlinear
one-soliton solution. It differs only slightly from the 1976
theory, but in a small way which could be quite impor-
tant for optical pulse propagation. In that problem, one
finds relatively low amplitude and broad pulses to be
more stable. In that limit, a perturbation expansion be-
comes accurate if we decouple the soliton's amplitude
from the soliton's width. This could not be done with the
1976 theory, but can be done here. Although it may
seem that this theory entirely bypasses the IST, neverthe-
less we will be using a very fundamental and key feature
that is a result of the existence of the IST for the model
integrable system. And that is there exists a closed set of
closed-form functions in which the perturbation may be
expanded. " For a general nonlinear solitary wave, such
a system does not exist.

In Sec. II, we present the general singular perturbation
expansion for the nonlinear Schrodinger (NLS) equation
out to first order. In Sec. III, we present the closure of
the eigenstates of an operator L, in which the solution
can best be expanded. In Sec. IV, we apply these results
to the perturbed NLS, obtaining the solution for the evo-
lution of the soliton parameters and the continuous spec-
trum. In Sec. V, we apply these results to the case of a
Raman pumped soliton propagating in an optical fiber.
We compare our results for the evolution of the soliton's
area with the numerical results of Mollenauer, Gordon,
and Islam. We demonstrate that our analytic results
from this theory agree quite well with the numerical re-
sults.
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In the absence of any perturbations, (2) is an exact solu-
tion if

%=e '-R+ „[~a,a, +2g~a, x,1

cosh' I

3 =2g,

8=2'(x —x )

a= —2$(x —X }+a,

(3)

(4)

(5)

—ia, ~ —~8(a, g)z~]

2A 4 —A'
cosh20 @cosh 0

(16)

where r) and g are the constants of the motion and

In (13},the operator L is

2
L =cr3(a& 1—)+

2
(2cr3+io&),

cosh2g
(17)

a,x = —4g,

a, a=4(q'+ g') .

(6)

(7)

where o &, cr2, a3 are the Pauli spin matrices.
Given R, we want a solution for U. Obviously from (13)

we had best expand in eigenstates of L. These we give in
Sec. III, along with their closure and adjoints.

Ae'
+Eq] +

cosh0
(Sa}

Now we expand q and r in a singular perturbation expan-
sion. It shall be most convenient to choose 8 as our spa-
tial coordinate. We take

III. EIGENSTATES OF L

These eigenstates are simply related to the "squared
eigenfunctions. " ' However, no formal connection with
the IST is required here, so we shall simply start anew
and only present the essential results. Consider the prob-
lem

+or]+
cosh0

(Sb) Lf=A,g,
and consider q, and r, to be functions of 8 and r( = t) 8.
is chosen to be of the form in (4). The perturbation will
cause g and x to shift as a function of time. Thus we al-
low rt to depend on the slow time [g=rt(r, =ex)] For X. ,
it will be more convenient to use the trick of replacing ~
with r, ( =er) in

eike 2ike 0 1 e'
+

(k+i) cosh8 1 . 1 (k+i) cosh 8

(19)

where L is given by (17) and g is a column matrix. One
may verify that a solution of (18) is

T

X = U1 +Xo =(Ur) ) Ie+Xo (9)
with the eigenvalue

In the latter form, X is not dependent on the fast time,
but only on the slow time. Thus we take A~=k =1 . (20)

X =X ]E +Xp+X]E+ (10) Given this solution, one may show that a second solution
of (18) is

as the expansion for X with the coefficients only depen-
dent on the slow time. Similarly for a, we choose (5) to
be true with c7,

K =K ]e +c7p+ 0!]e+
whose eigenvalue is

A, -= —(k +1) .

(21)

(22)

a x, = —4g, (12a)

where the coefficients are again independent of the fast
time.

Taking all the above and expanding (1), we have in
zeroth order

These two solutions, for all real k, are the continuous
spectrum of L.

Since L is self-adjoint, these solutions are also the ad-
joint solutions. However, for inner products, it is more
convenient to use the set

a, a 1=4( +4rt

and in first order

ih U+4g LU =F,
e '

q,—e' r&

(12b)

(13}

(14)

(15)

2ike

(k+i) cosh8
—ik8e

(k+i) cosh 8

~hose eigenvalues are

Ap= —(k +1), A~=(k +1) .

(23}

(24)

(25)
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The bound states have an eigenvalue of zero and
k =+i. They are a linear combination of the functions

1
'

1
'

sinh8
cosh8 . 1 '

cosh 8
(26)

where e (o) refers to the even (odd) part of the solution.
Since they are bound states, it follows that

LP, =0=LE, . (27)

Since the eigenfunctions have a double pole at the
bound state k =i [see (19) and (23)], we must include two
more states for closure. ' These are "derivative states"
and are proportional to the two states 8$, and

F =F,„,—2ir)A (a, xo)[$, )+3 (a, a +2(a, xo)[P, )

+2W(4q' —W' )e 'I )+~—(a, q)IX&
1

——(a, g)~8y, ) —ig[a, (A/q)]~o p, ),
where

—I CXg

ext ia~ e—e R

and ~v) is the state

(35)

(36)

(37)

8 tanh8 —1x=
cosh8

The L operator acting on these states gives

(28)
cosh 8

Note that ~v) and ~o 3P, ) are not linearly independent
states.

Inserting (34) and (35) into (13) gives

Lx= —4. (29)
a. n

a, h, =2a, A —A
' +-,'i&/, o, (F,„,),

1 l
(38a)

From the Wronskian relation and the above defini-
tions, one may verify that the only nonzero inner prod-
ucts are the following:

a, ho =i a,—g ,'i &
—y,—o,~F,„,), (38b)

& P(k') ~cr 3~ /(k) ) =2m a 5(k —k'),

&P(k')~o3~$(k)) = 2na 5(k ——k'),

&&, 1~3lx& = —2=&xI~31&, &,

where

(30a)

(30b)

(30c)

(31)

a, g, +4g ih, = iA —a, a +2(a, xo+ —(4' —A )

+-,'~ &xl~3IF,„,&,

a, g i4'—h = 2' A a~— ,'i & 8$,—~

o—F,„,),
a~ —4' (k +1)ig

1

, qa, (a jq)&y~a, ~~,y, )
2+a

(39a)

(39b)

and the inner product is defined by

&u~m~v)= f d8[u(8)] m(8)v(8), (32)
a@+4''(k'+ I )ig

(40a)

with no complex conjugations involved and where [ ] in-

dicates the matrix transpose. By direct integration, one
may verify the closure relation

~,&(8—8')= ' f" dka '(ly&&yl —lq&&gl)

+ —,'(IP. & & 8&, 1+18&,& & P. I

—Iy, &

1

, ~a, (~ y~)&y~~, ~~,y, &

2ma

A 477 A

7M 27M

(40b)

x &xl —lx&&4, 1)

in an obvious notation.

IV. FIRST-ORDER SOLUTION

(33)
upon using

&P, /cr, [cr,y, &=4,

&Xla3lv& = —2,
(41)

(42)

with all other inner products of $„$„8g„andX with
o 38, and v vanishing. Now, one should observe in (38)
that if h, and ho are initially zero, we may maintain them
zero for all ~ simply by requiring g and g to evolve ac-
cording tov = f dk[g(k)P(k)+g(k)g(k)]

+g, P, +g,P, +h, x+h, 8$, .

We also expand F [Eq. (15)] similarly

(34)

We start by expanding U in the closure of the eigen-
functions of L;

A

2A
(43a)
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(43b)

If thithis is not done, then in general h d h 1, an o mill become
a e g, an go to be zerosecular in ~, . Similarly, we may t k, d

y taking

0.06
(o)

0.04—

I 1 I I l I I I I I I I y

B,x, = — '
(Oy, ~o, ~F,„,) (44a)

SA

A

2
a, z,= —2ga, x, ——(4q' —A')+

(44b)

Then integration of (40) will give the solution for g and g.
Note that A is still arbitrary. We have not const

'
d

it in an wa .
cons raine

y way. And outside of A being near 2' [see (40)],
we are still free to specify it.

Finally, we shall give the specific results for a darn ed
soliton where

or a ampe

0.02—

10

iI1 &

g
)I/I

$00

R = —iyq,
which by (36) gives

Fegt i y A
l
o 3—((, ) i yel v—)

(45)

(46)

-(b
0.12—

In the above, y may be a function of time. The evalua-
tion of the inner products in (43) and (44) then gives

0.08—
SA

A

B, (A e /ri)=0,

a, g=o,

a, x, =o,

8, ao= —2(3g —A )/e,

(47a)

(47b)

(47c)

(47d)

0.04—
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V)I

where

r = J y(s)ds .

For the evaluation of (40), we will need

(yl, l.) = (yl, l.) =
4 cosh[(7T/2)k]

(48)

(49a)

0.01

(c)
0.2—

0.1 1 10
L/z,

100

which then gives

cosh[(n. /2)k]

(49b)

A

0.1—

8++Eyg —4l (k +1)
a, (A/q)+y(A/

2a cosh[(m. /2)k]
iA (k+i) (4q A)—

4e cosh[( m /2 )k]

(50)

0--

Q. 01 0.1 10
L zo

100

The equation for g follows from the symmetry

g(k) =g*(—k*)

Once g ts obtained, then q can be constructed from (8),
(14), (19), (21), and (34), giving

FIG. 1. Firrst-order perturbation results for the fractional
e soi on

en o exactly one period for a period of (a) 30 km, (b) 40
km, and c 50 m. ese curves are similar to the numerical
calculations in Fig. 6 of Ref. 7, except that the x axis is the mir-
ror image of that in Ref. 7.
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ECX

+ ' f dk (k) '" 1—
(k+i) cosh8

a, L sinh[a~(r —L/2)]r= '
~—

—,'L ——
2 ' 2 sinh(a L/2) (60)

ik0
+ee' f dk [g(k)+g(k)]+0(e ),(k+i) cosh 0

(52)

for 0 (~ & L. It is periodic in ~ of period L, where L is
the distance between repeaters and ~ is the distance along
the fiber. The constants a and a, for quartz fibers have
the values of

where a is given by (5), (10)—(12), and (47). o., =0.042/km, e =0.067/km . (61)

V. EVOLUTION OF SOLITON AREA

Let us now specialize the previous results to an optical
soliton propagating in an optical fiber. We take

Now it is simply a matter of numerically evaluating gQ
in (58). In order to compare with the results in Ref. 7, we
have the relationship

=0. (53)
7T

zo
16'

(62)

Obviously the area of q in (52) is complex although the
phase a is now independent of 0. Simple straightforward
integration gives

f q dH= Ave' +2mee' a (k =0)g(k =0)

+ee' dk
(k +i} sinh[(n. /2)k]

X[g(k) —g(k}] . (54)

Due to (51), the integral over k in (54) is pure imaginary
and is 90' out of phase with the zeroth-order term Am. .
This part we ignore. Thus we only need g(k =0).

It is now time to choose how to couple the amplitude
and the width. Based on the numerical observations,
the width of the soliton remains more constant than the
amplitude. Thus we choose

i3, g=0, (55)

whence by (47a)

W =2ge

Letting g (k =0)=ga A, then (52) becomes

(56)

8~0 4iri g—D= ——ri (1—e ),

whose solution is

~ 7

vari

f ( I e
—21 ( ) )e4'vP( —

)ds
7

0
(58)

with I (r) being the slow-time integral of the damping
y(r) as given by (48). From (54), we have

between our g and their characteristic length zQ. In Fig.
1, we present our results for the standard quartz fiber Ra-
man compensated case characterized by (61), for the
three repeater distances of interest, L =30, 40, and 50
km. Here 5A /A is the real part of the fractional change
in the area given in Eq. (59). If one compares these re-
sults to the numerical calculations presented in Fig. 6 of
Ref. 7, one observes some remarkable similarities as well
as some differences. First, the heights of the first peak
are all almost identical to those in Ref. 7. Second, the
depth of the first minimum is likewise almost identical as
well as the asymptotic shape for small L /z0( ~0). How-
ever, in our results, the first zero crossing occurs very
close to L/z0=4 for all three distances, whereas in Ref.
7, it varies from L/zQ=3. 5 for L =30 km down to
L/z0=2. 5 for L =50 km. Furthermore, the structure to
the left of the main peak from the numerical calculations
in Ref. 7 lacks the details that we find, simply because
they did not give sumcient detail for resolving the struc-
ture of their oscillations. However, comparison with our
Fig. 1 indicates that the oscillations are indeed real and
should be present.

One must remember that our calculation is only a
first-order calculation, and that the second-order terms
could possibly be important, particularly in the L =50-
km case. However, from the close agreements in the
peaks and in the general trends, we suspect that, in gen-
eral, the second-order contributions are probably small, if
not insignificant. But even if these second-order terms
were significant, still our first-order perturbation results
do give a quick and excellent qualitative check of the nu-
merical results.

f q do=e' n A [1+2ega+0(e )], (59)
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