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Line shape of time-resolved four-wave mixing
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Time-resolved four-wave-mixing experiments are usually interpreted in terms of noninteracting
two-level systems in order to obtain information on the polarization dephasing time T2. Recent ex-

periments involving excitonic resonances in semiconductor quantum wells (including results
presented in this paper) show striking qualitative deviations from this simple picture. In particular,
an exponential tail is observed at low excitation for negative time delays. At high excitation, the
four-wave-mixing signal is found to evolve into two distinct temporal maxima. We demonstrate
that the microscopic origin of this time dependence can be understood in terms of coherent
exciton-exciton interactions. We show in fact that this behavior is more general and should be seen

in numerous dense media where strong nonlinear interactions of polarizations occur. In addition to
presenting rigorous numerical results, we analyze two simple situations in which such interactions
exist: dielectric media with local-field effects and the anharmonic oscillator. We derive analytical
expressions for their time-dependent four-wave-mixing response and discuss the physical origin of
these new nonlinear-optical effects.

I. INTRODUCTION

In the density-matrix description of quantum-
mechanical systems, the effects of random perturbations
and damping are usually accounted for by introducing
phenomenological relaxation terms in the equations of
motion. In this approach the damping of the diagonal
and off-diagonal terms of the density matrix are charac-
terized by two types of time constants, T, and T2, which
describe, respectively, the lifetime of the populations of
the levels and the loss of coherence of the transition am-
plitude between two such levels. This analysis is particu-
larly simple in the case of two-level systems, the linear
and nonlinear-optical response of which have been exten-
sively investigated. ' In general, the damping parame-
ters T& and T2 are extremely difficult to calculate and
therefore they are deduced from experiments. Hence the
importance of a correct procedure to deduce them from
experimental data.

A very powerful and elegant method to study dephas-
ing processes in the optical response is time-resolved
four-wave mixing (FWM). In this technique two pulsed
laser beams with wave vectors k, and kz interfere in a
sample to produce a diffracted beam in the direction
k3 =2k2 —k, . The magnitude of the diffracted signal in
the direction k3 is then recorded as a function of the time
delay T = t2 —t, between a pulse of beam 2 and a pulse of
beam I (Fig. I). The experimental results are usually in-

terpreted in terms of the pioneering work of Yajima and
Taira, who introduced a noninteracting two-level model
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FIG. 1. Schematic of the geometry of four-wave mixing. In
our notation, positive time delay T corresponds to pulse 1

preceding pulse 2.

to determine the polarization dephasing time T2 during
which the system has not experienced incoherent scatter-
ing.

In the context of semiconductor physics, important in-
formation on incoherent scattering of excitons by acous-
tic phonons, impurities, other excitons, and free electrons
(e) and holes (h) has been obtained by time-resolved
FWM experitnents in GaAs quantum wells (QW's).
Quantum beats, which are a direct tnanifestation of
coherence, have also been seen between closely spaced ex-
citon levels in GaAs QW's. Finally, even the extremely
fast density-dependent scattering of free e and h among
themselves has been measured in GaAs using ultrashort
laser pulses.
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The present paper addresses the general question of the
validity of the noninteracting two-level model analysis for
the case of dense media. It is organized as follows. In
Sec. II we present experimental results on time-resolved
FWM close to excitonic resonances in semiconductor
QW's at low temperatures with ultrashort (140 fs) dura-
tion pulses. At high excitation, we find a time evolution
of the FWM signal which qualitatively disagrees with an
analysis based on noninteracting two-level systems. In
Sec. III we summarize the quantum kinetic equations for
interacting e and h in semiconductors and present numer-
ical solutions of the complete set of equations to all or-
ders for finite pulses. These are directly compared to our
experiments. It is found that the Coulomb force pro-
duces nonlinearities that can be interpreted as due to
coherent exciton-exciton interactions. These terms have
previously been introduced in the context of the excitonic
ac Stark effect. They involve a direct coherent coupling
of e-h pair amplitudes and populations via the Coulomb
potential. As shown in Ref. 8, their signature in the time
domain is qualitatively different from that of noninteract-
ing two-level systems, for which the FWM signal solely
originates from the coupling of the population to the ap-
plied field. At low density, exciton-exciton interactions
result in a signal at negative time delays, T &0, which
gradually evolves into a temporal profile with two dis-
tinct maxima as the density increases. Since it seems
that the origin of these effects is of quite general nature,
they should also be seen in other situations where non-
linear couplings of polarizations or polarization and pop-
ulation exist. In order to demonstrate that this is indeed
the case we consider, in Secs. IV and V, two situations
that exhibit such couplings. In Sec. IV we discuss the
case of interacting two-level systems in a dense medium
where local-field effects are important and in Sec. V the
case of a single anharmonic oscillator that can describe a
molecule, for example. We find that for both cases very
simple analytical models give a comprehensive phenome-
nological description of all the observed effects including
inhomogeneous broadening. The models are simple and
general enough to make the underlying physics transpar-
ent and point out experimental conditions where the
same temporal profile should be observed in time-
resolved FWM.

Several experiments at various intensities are performed.
The samples consist of multiple (20—60) layers with 200-
A In& Ga„As QW's and Ini, A1„Asor InP barriers.
One of the In& „GaAs/In& Al As samples is de-
scribed in some detail in Ref. 11. For this rather large
well. width the heavy-hole and light-hole excitons are not
resolved. " Furthermore, since the well material is a ter-
nary compound, alloy disorder produces significant inho-
mogeneous broadening of the exciton line, ' in addition
to well-width fluctuations which are the main cause of
broadening in binary QW's, such as GaAs QW's. For the
FWM experiments the samples are held at fixed tempera-
ture 5 K~300 K, in a He-flow cryostat.

In Fig. 2 we show the sample absorption at 5 K (solid
line). For exactly resonant excitation, we observe only
symmetric FWM signals, indicating that in this case T2 is
shorter than our pulse. In this condition, however, we
generate directly a significant amount of free e-h pairs be-
cause the bandwidth of the laser (10 meV) is larger than
the exciton binding energy (=4 meV). Therefore, in or-
der to avoid this, we tune the laser below the exciton res-
onance. The spectrum of the fs laser for a detuning of 10
meV is also shown in Fig. 2. Typical results of time-
dependent FWM signals are shown in Fig. 3 for low den-
sities of excitons (X=5 X 10 cm ) and various tempera-
tures. T2 is clearly resolved. In this regime, we find the
decay time to be insensitive to the excitation density in a
small range, i.e., when increasing or decreasing the in-
cident laser intensity by a factor of 2. At 5 K the decay
time is about 140 fs, which corresponds to T2 = 550 fs, as-
suming that the exciton line is inhomogeneously
broadened. The In, „Ga„As/InP sample has only a
slightly longer dephasing time of T2 =700 fs, whereas in
a second In, „Ga„As/In, „Al„Assample as well as in
bulk In~, Ga„As T2 is below our resolution (dashed line
in Fig. 3). Comparing this short T2 to that measured in
similar experiments in GaAS QW's, we find a
significantly shorter dephasing in the ternary system. Let

200A In-Ga-As/In-AI-As QW

II. EXPERIMENTAL STUDIES
OF TIME-RESOLVED FOUR-WAVE MIXING

IN QUANTUM WELLS

The source of fs pulses in our experiment is a tunable,
140-fs full width at half maximum (FWHM) duration,
additive-pulse mode-locked color-center laser, similar to
that described in Ref. 10. The pulses are nearly trans-
form limited. We split the beam into two beams with
wave vectors k, and k2 and intensity ratio I2/I j

=3. The
two beams are focused to one spot with a 7-cm focal
length lens. We detect the diffracted beam in direction
k3=2k2 —k, with a slow detector (cooled Ge), which thus
measures the energy of the diffracted pulse. The
geometry is illustrated in Fig. 1. The signal is measured
as a function of the time delay T between the two pulses.
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FIG. 2. Absorption spectrum of the 200-A In, „GaAs/
In& „AlAs multiple quantum well structure at 5 K. The spec-
trum of the additive-pulse mode-locked color-center laser for
10-meV detuning is also shown.
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FIG. 3. Diffracted signal vs time delay for three different
temperatures. The decay becomes faster as the thermal popula-
tion of acoustic phonons rises. The decay constants are 140 (5),
100 (30), and 70 fs (50 K). The dashed line shows the time reso-
lution of the experiment.
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us note that this is consistent with the fact that the oscil-
lator strength of the excitonic transition as observed in
the absorption spectrum is also lower than in GaAs. It is
furthermore consistent with the fact that the recombina-
tion lifetime in In& „Ga„AsQW samples is typically of
the order of several ns (sometimes up to 10 ns), as com-
pared to a typical value of =1 ns for GaAs (500 ps for
the sample in Ref. 4). All these results relate the short
dephasing time to a small coherence volume of the exci-
ton, which reduces its oscillator strength and thus in-
creases the radiative lifetime. ' This shorter dephasing of
the excitons in the ternary system is most likely due to
the additional scattering off local band gap fluctuations
associated with alloy disorder. ' We have presented in-
dependent indications of such an additional scattering
process in a previous study of exciton ionization in this
material system. " As the temperature is increased, T2
decreases (Fig. 3), qualitatively reproducing the observa-
tion of Ref. 4 for GaAs QW's. This is easily understood
in terms of scattering by acoustic phonons, the popula-
tion of which increases with temperature.

In Figs. 4(a) and 4(b), we plot the FWM signals for 10-
and 6-meV detuning, respectively, as the intensity of both
beams is scaled up simultaneously from IQ =3 MW cm
to 20IO. For the highest intensities we estimate the exci-
ton density to be of the order of X= 10"cm, compara-
ble to the saturation density of the exciton. As the in-
cident intensity is increased, we observe the evolution of
two different features. First the strength of the signal for
negative time delays increases. Then the single-
maximurn temporal profile at low intensities gradually
evolves into a line shape that exhibits two distinct maxi-
ma in time for 10-meV detuning and a strong asymmetry
for 6-meV detuning. We verified that the signal in direc-
tion 2k, —k2 has the same time dependence for inverted
time delay. For the 10-meV detuning experiment [Fig.
4(a)], the highest intensity 20IO=60 MWcm corre-

FIG. 4. Diffracted signal vs time delay for five different exci-
tation intensities (ID=3 MWcm ). (a) 10- and (b) 6-meV de-
tuning.

sponds to a regime of significant saturation of the reso-
nance, and yet we still resolve a decay time of =80 fs for
positive time delays. At this point the excitonic line has
broadened due to the high exciton density. Assuming a

homogeneous line yields T2=160 fs. The fact that we
can still resolve Tz at a density where excitons are dense-

ly packed in real space is quite remarkable. For the 6-
meV detuning case [Fig. 4(b)], the evolution with increas-
ing intensity is less pronounced. For resonant or above
resonant excitation, T2 is always below our temporal
resolution and we observe symmetric time dependences
for all intensities. The In, „Ga„As/InPsample exhibits
the same qualitative behavior.

III. THEORY OF TIME-RESOLVED
FOUR-WAVE MIXING

NEAR EXCITONIC RESONANCES

The optical response of semiconductors near the funda-
mental absorption edge is governed by excitonic effects.
Nonlinearities are due to exciton-exciton interactions and
anharmonicities in the exciton-photon interaction. Re-
cently, following Ref. 7, theories based on the unrestrict-
ed Hartree-Fock (or BCS) approximation have been used
successfully to describe coherent nonlinear-optical effects
in semiconductors induced by excitation below, at, and
above excitonic resonances. ' ' ' In this section we
derive the general expressions describing time-resolved
FWM within the framework of the theory of Ref. 7. We
discuss the salient features due to Coulomb interaction
and present results of numerical calculations with param-
eters close to those of our experiments. We note that the
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applicability of the noninteracting two-level model to
time-resolved F%'M in semiconductors has previously
been criticized. '

We consider a parabolic two-band model with conduc-
tion band c and valence band U. Neglecting the photon
momentum, the optically coupled conduction and
valence band states form an inhomogeneous set of two-
level systems labeled by wave vectors k. The density ma-
trix of the semiconductor breaks into 2 X 2 blocks,

n,k(t) Pk(t)

of the present discussion, we approximate this term by
transverse and longitudinal relaxation rates y z

= T~
' and

p ]
= T] respectively. The temporal evolution of the e-h

pair amplitude and the population is then given by

—+ye+i [e,k(t) —s,k(t)] pk(t)=i [1—2nk(t)]6k(t)
a

and

where n, „& are the populations in the conduction and
valence bands, and gk is the e-h pair amplitude. The
density matrix obeys the Liouville equation (irt= 1),

hk(t) =—i [e—k(t), ttk(t)]+ —8'k(t) ~„),„, (2)

where ek is the energy matrix. The difference between
the BCS model of a semiconductor and a collection of
noninteracting two-level systems is that the Coulomb in-
teraction V& & couples the various states. In the presence
of a "strong" pump field E, propagating in the direction
kz, the energy matrix is

0
ct pE(t)—

0
~uk

sk(t)= p'E '( t)—

ejk(t) =e,k g Vk k ntk (t) J =c U

k'
(4a)

and (ii) the coupling to the light field is modified accord-
ing to

PE(t)~~k(t) PE(t)+ y Vk, k'ek'(t) (4b)

This modification describes the fact that the optically
coupled e-h states at k do not only experience the applied
field pE; rather they see the self-consistent "local field"
6&, which is the sum of the applied field and the "molec-
ular" field due to all the other e-h states at different wave
vectors k'.

The last term of Eq. (2) describes the coupling to the
thermal reservoir and hence relaxation. For the purpose

I

pE is the Rabi frequency which describes the coupling of
the two-level system at k to the puinp field (in the dipole
approximation). The unperturbed conduction and
valence band energies are c,& =E~ /2+ k /2m, and

s„k= Es/2 —k j—2mk+g& Vk k, where Es is the band

gap. As compared to noninteracting two-level systems,
the physics is modified by the Coulomb force in two
ways: (i) the conduction and valence band energies are
renormalized,

—+y, n„(t)=—i[f„(t)h„'(t)—f„'(t)h„(t)], (Sb)

where

+—
51tk( t) i„„„,a

t
(6)

5sk(t) = 0 p5E (t)—
p, '5E*—(t) 0

—g Vkk5&k(t) .
k'

The change in the energy matrix 50k consists of two
terms, the Rabi frequency associated with the probe field
p5E and the change in the molecular field gk Vk k 58k'
The total polarization (per spin degree of freedom) in-
duced by the probe field is

5P(t)= gP'5/k(t) .

The FWM signal is given by the part 5Pk of 5P which
3

propagates in the direction k3,

I„(T)~ J dt~5P„(t)~'. (9)

(The part 5Pk of 5P that propagates in the direction k,
I

describes the absorption and refraction of the probe beam
as modified by the pump field. )

It is instructive to write explicitly the evolution equa-
tion for the probe-induced change in the e-h pair ampli-
tude,

where we have used the e-h representation n,k ~nk and

nag + 1 nP
In a FWM experiment a "weak" probe field 5E, propa-

gating in the direction k„interferes with the pump field

to generate a polarization propagating in the direction
k3=2kz —k&. The linear response to the probe field is ob-
tained by substituting E~E+5E in Eq. (2) and lineariz-
ing with respect to 5E, which yields

58—k(t) = i [sk—(t), 58k(t)] i [5s—k(t), fi'k(t)]
a

—+ye+i(e, k s„k}5/k(t) —i g Vk k 5/k(t)—
Bt k'

=i [1 2nk(t)]p5E(—t) i 25nk(t)pE(—t) i 2 + Vk k [nk(t—)5/k (t) nk (t)5/k(t)+—5nk(t)pk (t) 5nk'(t)4k(t)] . —

(10)
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This is a driven time-dependent Wannier equation. In
lowest order in the applied fields, where nk =5nk =0, one
recovers the form of the %annier equation often used
when nonlinear effects are neglected. The case of nonin-
teracting e-h pairs is obtained be setting the Coulomb in-
teraction V«. equal to zero. Then the above set of equa-
tions reduces to the usual Bloch equations for an inhomo-
geneously broadened two-level system. ' This estab-
lishes a direct connection between the (BSC) density-
matrix description of band-edge excitations and the more
conventional theories of excitons in semiconductors and
two-level systems. Let us note for the discussion of the
forthcoming sections that in certain limiting cases and
after some manipulations, Eqs. (Sa) and (10) reduce to
the equation of motion of a driven anharmonic oscillator
(i.e., to a Ginzburg-Landau-like equation}. The driving
terms in Eq. (10}deserve some comments. The first two
contributions express the coupling to the applied fields
corrected for Pauli exclusion. The Coulomb coupling,
however, produces the third term, which is responsible
for specific excitonic effects in the nonlinear response.
This term comprises the so-called exciton-Hartree (pro-
portional to n„)and exciton-Fock (proportional to 5nl, )
terms. As compared to the external field terms, these
terms are proportional to the incoherent and coherent
population (modulation) and the e-h pair amplitudes.
Hence they have a very different temporal evolution. For
example, in the case of excitation with ultrashort optical
pulses, they exhibit a steplike onset and a subsequent de-
cay, which is governed by the scattering rates y2 and y, .
Since they are proportional to Vk k, they express
exciton-exciton interactions and are thus absent for
noninteracting two-level systems. It is also important to
note that the diagonal interaction terms k=k' vanish
identically.

As we shall see, the above exciton-exciton interaction
terms are most important to understand the behavior of
the FWM signal at low and high intensities. In the case
of noninteracting two-level systems Vk k. =0, the dynami-
cal response is well known. It is depicted in Fig. 5 for

the case of excitation with 5-shaped optical pulses (see
also Sec. IV). In this figure we try to illustrate the physi-
cal processes involved in a FWM measurement. The op-
tical pulses are indicated by the spikes, for clarity pulse 2
is represented larger. Along the horizontal time axis we
plot the squared magnitude of the third-order polariza-
tion t5Pk t

for successive time delays T (light areas).
3

The full area on the left time delay axis represents the
time-integrated signal as measured by a slow detector.
Clearly, there is no induced polarization for negative time
delays (pulse 2 arrives before pulse 1). For positive time
delays one finds an exponential decay of the polarization.
The time constant of the decay of the time-integrated sig-
nal is T2/2.

To study the general case, we have solved numerically
Eqs. (1)-(10) for parameters similar to those of our ex-
periments. Following Ref. 7, we further decompose Eq.
(10}into two coupled equations for the polarizations 5P~

1

and 5Pi, , which are then directly integrated together3'
with the equations for nz, fz, and 5n q. The latter quanti-

ty, which describes the grating formed by the pump and
probe fields, is split into a part propagating in the direc-
tion ki —k2 and a (complex conjugate) part propagating
in the direction kz —k, . Figure 6 shows the theoretical
results for the diffracted signal, calculated for Gaussian
pump and probe pulses of 110-fs duration tuned 3 ryd-
bergs (Ry) below the exciton resonance. The material pa-
rameters are those of bulk GaAs and a dephasing time of
T2=0.4 Ry ' was assumed. Results for three different

pump intensities are presented, corresponding to peak
Rabi frequencies of 0.2, 0.6, and 0.8 Ry. They agree
qualitatively with the experimental data. At low intensi-
ty (Io), the time-integrated signal decays as expected with
a time constant T2/2 for positive time delay. For nega-
tive time delay, however, it exhibits a rising wing with a
'12/4 time constant. This has recently been verified ex-
perimentally in the case of a nearly homogeneous exciton
line in GaAs QW's. As the excitation intensity in-
creases, the negative time delay signal becomes more pro-
nounced (9IO) and a temporal profile with two distinct
maxima energies (16IO), as seen in the case of

&6Io

TIME 9&o

FIG. 5. Graphical representation of the predictions of the
noninteracting two-level model of Ref. 3 for 5 pulses. The tem-

poral position of the two incident pulses is marked by the
spikes. Pulse 2 is displayed with twice the strength of pulse 1.
On the second line the two pulses overlap, which corresponds to
zero time delay. The light areas represent the square of the
magnitude of the third-order polarization as a function of time
for various time delays. The full area on the left is the energy of
the diffracted signal as a function of the time delay (i.e., the time
integral of the light area at a given time delay).

0
TIME DELAY (fs)

500
Ip

FIG. 6. Calculated diffracted signal vs time delay for three
dil'erent excitation intensities. The points are the results of a
numerical solution to all orders of the quantum kinetic equa-
tions for interacting excitons in semiconductors and qualitative-
ly reproduce the data shown in Fig. 4(a).
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In, „Ga„AsQW's [Fig. 4(a}]. The theory also repro-
duces the shoulder observed in Fig. 4(b) at small detun-
ing.

The numerical solutions confirm that the unusual
FWM time profile is due to the Coulomb interaction
which mediates a nonlinear coupling of populations and
pair amplitudes. Due to the complexity of the equations
and the extreme time consumption of the numerical solu-
tion it is, however, diScult to follow the details of the
mechanisms involved. In Secs. IV and V we discuss two
idealized phenomenological models which are simple
enough that they can be treated analytically and yet con-
tain all the important physics.

and

—+y, v(t) = —i [P (t)E,*„(t)—P '(t)E).,(t)] . (11b)

These equations have the same structure as Eqs. (5), al-
though as already noted the self-interaction term k =k'
vanishes in Eq. (5a). In linear response one finds that L
merely renormalizes the transition energy to 0=c,—

e2 —V, where V=Nlp, l L.
The perturbation treatinent of the Bloch equations (11)

is similar to that without local-field corrections. ' Up
to third order, one finds

IV. TIME-RESOLVED FOUR-WAVE MIXING
IN A DENSE SYSTEM OF TWO-LEVEL ATOMS

WITH LOCAL-FIELD CORRECTIONS

—+r2+i II PI "(t)=iNlpl E(t),8
(12a)

A system of interacting electrons and holes in the pres-
ence of an external field is somewhat analogous to a
paramagnet or a dense dielectric medium. In both cases
"local-field efFects" are very important and in fact can
dominate the physics. In this section we exploit this
similarity and consider a dense medium consisting of in-
teracting two-level atoms. The atomic transition ampli-
tude f and excited state population n satisfy the usual
Bloch equations in which the driving terms involve not
only the applied field E, but the Lorentz local field
E&„=E+LP.Here, L is the Lorentz local field factor
and P =Np" g is the polarization, where N is the density
of atoms. The polarization and the excited state density
v=Nn obey the Bloch equations

—+r2+i( ei—ei) P(t)=i[N —2v(t)]ljul Ei„(t)

(1 la)

a „, a IP'"(t)l'—+y, v' '(t)= —+2y2
a&

' at
(12b)

and

—+y +in P~"(t)
at

= —i2lpl v' '(t)[E(t)+LP"'(t)] . (12c)

As in Eq. (10), the driving term in Eq. (12c) consists of
two types of contributions. The first one mixes the
second-order excited-state density with the applied field,
while the second one mixes it with the first-order polar-
ization. This is the crucial difference between a nonin-
teracting and an interacting set of two-level atoms. We
consider the FWM situation where the applied field con-
sists of two short pulses with a time delay T, i.e.,
E5(t —T}exp(ik2 r)+5E5(t)exp(iki r). Solving Eqs.
(12) yields for a homogeneously broadened system

5Pi, '"' (t)=me ' l8(T)8(t —T)+i(2V/ri)[8(T)8(t —T)(1—e '
)

+8( —T)8(t)(1—e ' )e ' ]l, (13)

where ~= iNlpl E 5E' a—nd 8 is the Heaviside step
function. Equation (13) comprises three terms. The first
one is the usual term for noninteracting two-level atoms,
which contributes for positive time delay only [propor-
tional to 8(T)]. The two other terms (proportional to
V) are due to the local-field correction. The first one
[proportional to 6(T)] also contributes at positive time
delay whereas the other [proportional to 8( —T)] con-
tributes only at negative time delay. It is interesting to
note that the three terms are orthogonal. The first one is
orthogonal in the complex plane to the two others, which
are orthogonal to one another in time. Thus the three
contributions do not interfere. The time-integrated
diffracted signal is

4p 2

Ihom( T) ~ 8( T)e i 2

(2ri+r i)(r2+r i)

X[6(T)e ' +6(—T)e ' ] .

(14)

The signal exhibits a finite rise time with a time constant
T2/4 and a decay with a time constant T2/2, as dis-
cussed for the case of exciton-exciton interactions [Fig.
7(a)]. ' It is now easy to interpret the results intuitively.
With or without local-field interaction a grating is formed
once both pulse 1 and pulse 2 (for either time ordering)
have arrived in the sample. Without local-field interac-
tion only the applied fields can diffract from this grating.
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(a) gp(3), inhom(t) —o (t 2T—) /4fip(3), horn(t)
k3 k3 (16)

I

TIME

o

with Q replaced by Qo in Eq. (13). For a very inhomo-
geneous line yz &&0, a photon-echo-like response of the
polarization is found. In this case the time-integrated
diffracted signal is given by

Iin om(T)~8(T)e )' 1+ (1 e
r

)"3 ~j

(17)

I

TIME

(b) The shape of the signal now contains information both on
T2 and T, . The decay is eventually governed by T2I4
like in the noninteracting two-level model [Fig. 7(b)].
The inhomogeneous case explains why no signal at nega-
tive time delay is observed in the low-intensity experi-
ments on In, „Ga„AsQW's for which 0 =4yz.

V. TIME-RESOLVED FOUR-WAVE MIXING
AND THE ANHARMONIC OSCILLATOR

If pulse 2 comes first (negative time delay), the grating is
only set up after pulse 1 arrives. At this time, however,
no photon from pulse 2 is available since pulse 2 has al-
ready passed the sample. Thus in the direction 2k2 —

k&

no signal is generated for negative time delay. With
local-field interaction, however it is possible to diffract
the leftover of the first-order polarization induced by
pulse 2 off the grating formed as soon as pulse 1 arrives.
Since two first-order polarizations from pulse 2 are in-
volved in this process and both decay with a time con-
stant T2 until pulse 1 arrives, the signal decays with twice
the time constant for negative time delay.

We can now incorporate inhomogeneous broadening
with a normalized Gaussian distribution function

We obtain

—(0—Qo) iver

&no

FIG. 7. Same as Fig. 5, but including local-field corrections.
Results for (a) a homogeneously broadened line and (b) a strong-
ly inhomogeneously broadened line are depicted. In contrast to
the noninteracting two-level model, Fig. 5, one also finds a sig-
nal for negative time delay. This additional signal, however, is
quite sensitive to inhomogeneous broadening and eventually
disappears completely for a strongly inhomogeneously
broadened line.

= —Vp V(p)(t)+A[E(t)+E'(t)], (18)

where )(, = 2Q i pi . We expand V (P) in a power series

V(P) =
—,'a3P —

—,(a&P + (19)

Here we have assumed inversion symmetry of the prob-
lern and dropped the uneven terms. Again inhornogene-
ous broadening is accounted for by a Gaussian distribu-
tion. For the same 5-shaped pulses as in Sec. IV and for
Q0))y2, e, we find the following general result up to fifth
order:

In the preceding sections we have analyzed situations
where a negative time delay signal is produced by collec-
tive effects. In this section we show that a single system
can also exhibit such a behavior provided that the equa-
tion of motion comprises terms with the proper non-
linearity. The anharrnonic oscillator is one of the stan-
dard models in nonlinear optics. It is interesting to note
that the kinetic equations for semiconductors can be ar-
ranged into the form of a harmonic oscillator with a non-
linear driving term and the electronic transitions in large
molecules are often modeled by an anharmonic potential.
In Eq. (18) we add an arbitrary anharmonic potential
V(P) to the dynamics of the polarization P,

a2 a+2y,—+Q' P (t)
at~ at

5P& (t)= [2 cos(Q()t)e " ' ' +cos[Q()(t —2T)]e " ' " '
I

A3 2 2 2 — 2

"3 3

X[B(T)B(t—T)(e ' —e ')+8( —T)B(t)(e ' —e ' )]

+ j 3 cos(Q t)e " )o"'+2 cos[Q (t —27 )]e
5 0 0

X[8(T)8(t —T)(e ' —e ')+8( —T)8(t)(e ' —e ' )], (20)
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where A3 and As are given by

A = ——'~ ) -'n-4X3E'SE*

A 5
= 25 a5—y~ '0 A, E E'5E' .S l6 5 2

A 3 and A s reflect the strength of the third- and fifth-
order terms, respectively. The homogeneous case is ob-
tained by setting the inhomogeneous broadening o. equal
to zero. The time-integrated diffracted signal for a homo-
geneous line and to third order is

TlME

(a)

I"' ( T) 8( T)e ' +8( —T)e (2l)
(b)

Iinhom( T) ~ 8( T)(e y2 2e y2 +e y2
(22)

This dependence is shown in Fig. 8(a). The anharmonic
oscillator displays the same exponential rise with Tz/4
for negative time delays as discussed in Sec. IV. For a
strongly inhomogeneously broadened line y2((0. , we
find the signal

I

Iw
ro

which decays with T2/4 for large positive time delays
and is identical to zero for negative time delays. Both the
homogeneous and the inhomogeneous case are thus quali-
tatively similar to the local-field model discussed in Sec.
IV. The regime for intermediate inhomogeneous
broadening exhibits a narrow spike at T =0 that is relat-
ed to the inverse bandwidth of the inhomogeneous
broadening.

For a homogeneous line the time-integrated diffracted
signal up to fifth order is

As 5 A58 —2yrI"' (T) ~8(T) l+ —+ —e"3 A, 2 A', 5
J

4yzT 5 5 6y2T 8 8 8y2T

A2

(23)

The ratio A&/A3 is proportional to the intensity. We
show one example for A8/A3= —0.9 in Fig. 8(b) which
illustrates the interference of the third- and fifth-order
terms. From Eq. (23) we see that with increasing A 8/A 3

first the negative time delay signal gains relative strength
(terms linear in A5) until finally two distinct maxima ap-
pear (terms quadratic in A5); see Fig. 8(b). This qualita-
tively describes the experimental findings at high intensi-
ties [Fig. 4(a)]. For large negative time delays the signal
eventually decays with T2/4.

Again the results can be understood quite intuitively.
The fifth-order polarization has the opposite sign of the
third-order polarization. Also, since one has to mix five
first-order polarizations for the fifth-order polarization, it
is expected to decay more rapidly in time. Thus we ob-
tain a pronounced destructive interference close to zero
time delay. The interference can very nicely be seen in
the time-dependent polarization close to T=O in Fig.
8(b). This destructive interference takes away energy
from the time-integrated signal and thus leads to a
minimum of the signal close to zero time delay. For a
strongly inhomogeneously broadened line the signal for

FIG. 8. Same as Fig. 5, but for an anharmonic oscillator. (a)
shows the four-wave mixing response at low intensity, (b) at
high intensity where also the fifth-order terms contribute.
Around zero time delay, the latter interfere destructively with
the third-order ones, which leads to the pronounced dip in the
diffracted signal. Again, inhomogeneous broadening suppresses
these effects.

negative time delays is again identical to zero and no
such interference is expected.

VI. CONCLUSIONS

We have demonstrated both experimentally and
theoretically that coherent polarization interactions lead
to new nonlinear-optical effects in time-resolved four-
wave mixing. These effects can be interpreted as due to
scattering of the polarization off a polarization grating.
At low intensities, this gives rise to a diffracted signal at
negative time delays, with a time constant half that for
positive time delays. At high intensities, a diffracted sig-
nal with two distinct temporal maxima evolves. Both
effects vanish for strong inhomogeneous broadening.

Although discovered in the context of excitons in semi-
conductors, these phenomena are much more general and
should be seen in many other systems. We have explicitly
studied two-level systems with local-field corrections and
the anharmonic oscillator. The former might describe a
molecular crystal and the latter a large molecule, for in-
stance.
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