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Femtosecond squeezed-vacuum-state generation in mode-locked soliton lasers
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A mode-locked soliton laser, experiencing group-velocity dispersion and self-phase modulation
via a nonlinear Kerr medium in an antiresonant ring interferometer reflector is analyzed in the
linearized regime. It is demonstrated that this laser can produce an ultrashort squeezed vacuum
from the open port of the antiresonant ring interferometer and that the spectral linewidth of the sol-

iton output is broadened via the coupling of amplitude and phase in the Kerr medium.

INTRODUCTION

A pulsed squeezed state is expected to improve the
signal-to-noise ratio in precision measurements of ul-
trafast phenomena. The use of squeezed states may be
advantageous specifically when the expected signal is ex-
tremely small or when only a weak optical probe is al-
lowed. Examples are electro-optic field-sensing measure-
ments for ultrashort pulse propagation in electronic in-
tegrated circuits, ' polarization rotation measurements
for nerve pulse propagation in biological systems, and
measurements of particle-induced birefringence in vacu-
um. Slusher et al. produced a pulsed squeezed state of
100 ps duration using a traveling-wave KTiOPO4 (KTP)
parametric amplifier pumped by second-harmonic light
of a 1.06-IMm cw mode-locked yttrium aluminum garnet
(YAG) laser. The degree of squeezing was, however,
modest mainly due to the limited pump intensity.

In previous work on soliton like pulse generation in a
colliding-pulse mode-locked (CPM) dye laser, a natural
self-phase modulation (SPM) due to the optical Kerr
effect in the dye solvents (up chirp) and time-dependent
absorption saturation (down chirp), were employed to-
gether with negative group-velocity dispersion (GVD)
caused by intracavity prisms. '

In this paper, a new generation scheme for a fem-
tosecond squeezed vacuum state is proposed using the an-
tiresonant ring interferometer. The scheme is free of ex-
cess noise of the pump wave, in contrast to the scheme

proposed by Kitagawa and Yamamoto for generation of
number-phase squeezed states using SPM in a Kerr medi-
um. Shirasaki et al. analyzed a nonlinear Mach-
Zehnder interferometer, in which two number-phase
squeezed states interfere at an output half mirror to pro-
duce a squeezed vacuum state. We have discovered the
fact that the excess noise of the pump wave incident from
the pump port does not aFect the squeezed vacuum state
at the other (output) port in the range of validity of the
linearization approximation when one input has only a
vacuum state. This paper applies this discovery to a
mode-locked laser with an antiresonant ring fiber
reflector as shown in Fig. 1. This mode-locked laser can
produce a squeezed vacuum state and a stable fem-
tosecond solitonlike pulse. The two squeezed pulses in-
terfere coherently at the coupler, and a squeezed vacuum
state and a number-phase squeezed state with coherent
excitation are emitted out of the open port and reflected
into the main cavity, respectively (see Fig. 2).
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FIG. 1. Mode-locked laser for squeezed-vacuum-state gen-
eration. An antiresonant fiber-ring interferometer serves as an
end reflector of the laser cavity.

FIG. 2. %'igner densities for a clockwise and counterclock-
wise pulses in an antiresonant interferometer before and after
self-phase modulation. A squeezed vacuum state is the output
at the open port and the coherent excitation is reflected back
into the cavity.
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This system has several advantages over other
squeezed-state generation schemes. Since the pulse dura-
tion is 10 "to 10 of the repetition rate and the intensi-
ty for the pulse inside the cavity is usually about 2 orders
of magnitude larger than the one outside the cavity, the
peak intensity of the pulse can be extremely high and so
efficient nonlinear interaction (squeezing) becomes possi-
ble. Unlike a degenerate parametric amplifier, it does not
require any frequency conversion and reconversion pro-
cesses. No pump pulse energy is wasted to produce a
squeezed state. It is also a wavelength-tunable squeezer.

This paper is organized as follows. Section I looks at
the ring interferometer reflector in the absence of disper-
sion. Section II is a brief review of the quantum theory of
soliton propagation in fibers as presented in Ref. 9. Sec-
tion III considers a fiber-ring interferometer reflector ex-
cited by solitons (i.e., after the beam splitter the two
counter propagating pulses are solitons). Section IV
studies the quantization of the laser medium. We consid-
er the limit of a very broadband laser medium such that
the spreading of the pulse via passage through the gain
medium is negligible. Correspondingly the temporal
modulation of the pulse by the saturable absorber is also
unimportant. With this approximation, the noise in the
resonator may be considered a stationary process. We
make the further assumption that the laser medium and
saturable absorber shape the pulse into the soliton shape
required by the fiber. Section V combines the equations
of the cavity with those of soliton propagation. In this
way the equations are obtained for the four operators
(photon number, phase, position, momentum) describing
the soliton traveling in the resonator. These four equa-
tions have a close resemblance to the equations of noise
in an oscillator, except, of course, that there is now an ad-
ditional pair of equations describing position and momen-
tum. The phase noise of the soliton is found to be
enhanced by the Kerr modulation, in a way very similar
to the way the amplitude-dependent index in a semicon-
ductor laser, (the a parameter) enhances the phase noise
and the linewidth of a semiconductor laser.

Thus far we have treated a fiber-ring reflector as the
nonlinear medium producing the squeezing. Indeed, only

such a ring is capable of producing appreciable squeezing
of vacuum, because in order to do so the nonlinear phase
shift has to be of the order of ~ or larger. Any attempt to
"lump" the nonlinearity and the GVD into separate ele-

ments su8'ers from a lack of rigor if the phase shift per
pass in the Kerr medium is large. Yet we speculate that
squeezing in such a system may yet be possible, although
further work is required to make sure. Such a modified

system would be more compact than the fiber-ring
reflector system and could be operated in the positive
GVD region of optical fibers, i.e., X & 1.3 pm.

jA4= —(A, —A2),
2

]A7= —(A, +A6),
2

(1.2)

(1.3)

As= —(A5 —A6) .
2

(1.4)

We use capital letters for the annihilation operators of
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companying the pump reemerges transformed (squeezed)
as a reflection from the pump port, whereas the vacuum
entering from the vacuum port emerges squeezed from
the vacuum port. The excess pump noise does not per-
turb the squeezing of the vacuum. We approach the
problem in two steps. First we look at the properties of
the interferometer in the absence of dispersion. Then we

consider a soliton as a pump using the quantization
developed for solitons elsewhere.

A ring interferometer reflector under pulse excitation
can be "developed" into a symmetric Mach-Zehnder in-

terferometer if one may neglect the interaction of the
counterpropagating pulses. This is permissible at power
levels that produce phase shifts of the order of vr in for-
ward propagation through the loop. Hence the system of
Fig. 3(a) can be studied in the form of Fig. 3(b). The sin-

gle input coupler is then represented by two beam split-
ters in sequence. The scattering equations for the beam
splitters are in the notation illustrated in Fig. 3(b):

1A3= —(A, +Aq),
2

I. THE SYMMETRIC NONLINEAR
INTERFEROMETER

An important issue covered in this paper is the "ortho-
gonality" of the squeezing in a ring interferometer
reflector under the linearization approximation. By
"orthogonality" we mean the property that the noise ac-
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As

FIG. 3. (a) The fiber-ring interferometer, and (b) the folded-

out Mach-Zehnder version.
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the field of pulses. This is in anticipation of the lineariza-
tion in which lower case letters will be used for the
perturbations. The photon flux of the ith wave is A, A,-.

The transformations by the nonlinear Kerr medium are

where we use a capital U for the annihilation operator, in
anticipation of the linearization, linearized quantities will
be represented by a lowercase letter. The operator 0
obeys the commutation relations

AT A A
A

&
=exp(ivA 3A 3 ) A 3 (1.5) [U(z, x)U (z,x')]=6(x —x') . (2.2)

A6=exp(isA4A4)A4 . (1.6)

A;=3, +a, ,

exp[is( A,*+a, )( A, +a, )]( A, +a, )

=exp(ia~ A;~ )(1+i~A a;+i~A;a; )(A;+a;)

=exp(ix'I A; I') A; +exp(is
I A; I')(p; a+ v; &')

where

p;=I+ted A;i, v, =iaA;'

(1.7)

(1.8)

The last expression is cast in the usual notation of squeez-
ing, with the squeezing parameters p; and v; obeying the
constraint

(1.9)

Consider now the case when a pump excitation enters
through port 1 and vacuum enters through port 2. Then
the signal in the two arms is symmetric

~

A 3 ~

=
~
A 4 ~

and
the c-number excitation of the nonlinearity is symmetric
in the two arms. Defining

Here ~ is proportional to the Kerr coefficient and the
length of the fiber. We introduce now the linearization
approximation by which we split all operators into a
"large-signal" c-number part and a small-signal operator.
The latter carries the commutation properties of the orig-
inal operator. In the linearization only first-order quanti-
ties in the perturbation will be retained. The lineariza-
tion of the action of the Kerr medium on operator A;,
i =3,4is, with

np
X sech (x —xo —poz )

2 2
no po= Uo(z, x)exp i z i —z+ipox +i Bo . (2.3)
8 2

Here the parameters are chosen so as to conform with the
quantization. The field amplitude U is so normalized that

f ~
U~ dx =no is the photon number, po is the momen-

tum, xo is the position (or time of the peak of the soliton),
and Op is the phase. Without loss of generality, we as-
sume pp =xp = ep =0. This simply says we choose coordi-
nates in which the soliton is followed so that the envelope
can be made independent of z.

The equation (2.1) is linearized by writing the operator
Uas

np
U(z, x)=[Uo(x)+u(z, x)]exp i z

8
(2.4)

The commutation relations of U are taken over by
u (z,x).

To first order, the operator u(z, x) obeys the equation

2A.
. Bu o + 1 8 u 3

Bz 8 2 gx' (2.5)

Note that x expresses time and z propagation distance
along the fiber.

The classical fundamental soliton solution of (2.1) is'

2 2
np np pp

U(z, x)= exp i z i —z+ip x+iB
2 8 2

we obtain for the outputs

(1.10)
The excitation u can be written as

u(z, x) =6n(z)f„(x)+id B(z)fe(x)+ibP(z) f~(x)
A7= A;expi4+exp(i4)(pa, +va, ),
A se p(xi e)(pa +2a v).2 {1.12)

II. REVIEW OF SOLITON PROPAGATION

The pump and its squeezed fluctuations emerge from port
7, the squeezed vacuum emerges from port 8. The re-
markable result is that, even in the nonlinear interferome-
ter, the noises entering through the two input ports do
not interact. They are squeezed individually by the sym-
metric signal (pump), assuming, of course, that the linear-
ization approximation is valid.

+Ax(z)f, (x)+Du, (z, x) (2.6)

f„(x)=
np

x np——tanh x U (x),p (2.7)

f0(x)= Uo(x),

f (x)=xUo(x),

(2.8)

(2.9)

where AR', 50, Ap, and Ax are the perturbation operators
associated with the photon number, phase, momentum,
and position and b, u, (z,x) is the continuum part. The
four functions used in the expansion are

. BU 1 BU'a. 2a. +' ' (2.1)

The nonlinear Schrodinger equation is quantized by re-
placing the positive frequency amplitudes by photon an-
nihilation operators. In the time domain, the equation is

np npf (x)= tanh x Uo(x) .
2 2

{2.10)

Their shapes are illustrated in Fig. 4. Further, it has been
shown that one may project out any one of the operators
by multiplication by an adjoint function and integration.
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the result of a homodyne detection with the local oscilla-
tor wave form proportional to the projection functions

The operators obey the following equations of motion:
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(2.24)

~ I

(2.25)

~ 0 with the solutions
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hh(z) =b,h(0),

68(z ) =68(0 ) + z ER'(0),
4

(2.26)

(2.27)

FIG. 4. The perturbation functions due to change of np Hp,

pp, and xp.

bP(z) =bP(0),

»(z) =»(0)+zbP(0)
(2.28)

(2.29)

Separating u into two Hermitian operators

Q —Q] +i@2

one has

b&= ff„u,dx,

b,8= ffsu2dx,

p 142dx

»= ff„u,dx .

The four adjoint functions used in the projection are

f„(x)=2UO(x),

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

where z is the propagation distance. Note that the linear-
ization establishes linear relations between the input and
output operators; the system transformation is fully
determined by the classical properties of the soliton,
namely, by the photon number of the soliton and the
propagation distance.

The physical significance of (2.26) —(2.29) is simple.
The photon perturbation and the frequency perturbation
are preserved during soliton propagation. The phase per-
turbation is coupled to the photon number perturbation
by the Kerr effect, and the position perturbation is cou-
pled to the momentum (center frequency) perturbation
because a change in frequency is associated with a change
of soliton velocity via GVD.

If one assumes at z =0 the quantum soliton state is a
coherent pulse state, then the variances of the four opera-
tors at z =0 are

1 x "0fe(x) =2 ——tanh x
np 2 2

nof (x) =tanh x Uo(x),

Uo(x), (2.17)

(2.18)

(b,8 (0)) = „'f }fs(x—)i dx = 0.607

(bh (0)) = ,' f ~f„(—x)~dx =no, (2.30)

(2.31)

f, (x)= xU&(x) .
2

no
(2.19)

Their shapes are also illustrated in Fig. 4.
With (2.12)—(2..19), it is easy to prove that the opera-

tors obey the familiar commutation relations:

[b h, b, 8]=i,
[»,nohp]=i .

(2.20)

(2.21)

The very important physical consequence of this for-
malisrn is that one may measure any one of the operators
by a suitable choice of a local oscillator excitation of a
balanced homodyne detection. Indeed, projections of the
kind appearing in (2.12)—(2.15) have been shown to be

(bP (0})= —,
' f ~f (x)~ dx = (2.32)

&»'(0)&=-,' f If, (x)l dx=
no

(2.33)

The variances at nonzero z can be calculated according to
(2.26)—(2.29).

III. THE RING INTERFEROMETER

The ring interferometer is shown in Fig. 3(a) in its fiber
realization. If the interaction of the counterpropagating
pulses is neglected, then the interferometer can be
"developed" into a conventional Mach-Zehnder inter-
ferometer, Fig. 3(b). The linearization of the fiber propa-
gation law linearizes the interferometer. The symmetry
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of the ring balances the interferometer. Suppose that the
scattering transform of the first mirror is

0, = ' (0, +0,),v'2

0,= ' (0, —U, ),
2

the transformations through the Kerr media are

O, =oO,o',

(3.1)

(3.2)

O, =oU, o'
(here, 0 is the propagator of 0 in the fiber), and after the
output mirror,

0'i= —(Os+ U6),
2

(3.3)

j~s= ~- (~s —U6)v'2 (3.4)

In the absence of a nonlinear medium, the scattering
transform of the second mirror sends C', out of port 7,
and Oz out of port 8. In the linearized approximation,
the nonlinear medium does not change this response. In
other words, the fluctuations in the two arms do not in-
teract. Thus, even if the noise level of the soliton injected
into port 1 is much higher than that of vacuum fluctua-
tions, which is the case when it is regenerated in an oscil-
lator, the squeezed vacuum emerging from port 8 is
unafFected by that noise.

The output operators are, when 0 is linearized,

6&7=58), (3.5)

number of atoms, f is the dipole moment operator, and
~ ~ ~

Sz is the reservoir fluctuation operator. S„is so normal-
ized that (S„S„)represents the average photon flux in-
cident upon the cavity. The equation for the dipole mo-
ment is'

1/2

r—2+tg e P+ " s
Bt N

(4.2)

where & is the population inversion operator, I is the di-
pole moment decay rate, and Sz is the dipole moment
noise operator. The equation for the population inver-
sion operator is

—O'=A-
Bt

SP

+ i2g( |I)'f—2'0)+S, (4.3)

where A is the pump rate per atom, 7
p

is the spontaneous
lifetime, and Sz is the pump noise operator.

In (4.1)—(4.3), the variables are functions of the short-
term variable x, expressing the time dependence of an in-
dividual phase, and the long-term variable t, expressing
the overall evolution of the pulse train envelope.

When the dipole decay rate I is much larger than the
photon decay rate, and population decay rate 1/~, , the
dipole operator can be eliminated adiabatically. The re-
sulting equations are

1/2

= —&0+ g N' —ig „S,+&yS„, (4.4)

kx7 =5x ) +zpkp )

np
687=6,8, + zoh&, ,4

(3.6)

(3.7) (O' Sz —Szf )+NSp, (4.5)

IV. THE EQUATIONS OF THE LASER MEDIUM

Note that the expectation value of the field in the cavi-
ty is different from that in the fiber by a factor of &2.
We shall denote the cavity fields by f'and U to distinguish
them from the fiber fields. According to Ref. 11 and in
the notation of Ref. 12, the cavity internal field operator
t is described by the equation

—P = —& 0' —igxR+&t s„
Bt 2

(4.1)

(3.8)
and a similar set of expressions for the operators emerg-
ing from port 8 that are all determined from the injection
into port 2. Here zp is the fiber length and the photon
number np refers to the photon number of the soliton
pulse propagating in one direction of the ring. One
should note that we have included explicitly the phase
shifts due to linear propagation and classical Kerr action
on the soliton itself, with respect to which all the phases
are defined. These phase shifts can be taken into account
by proper choice of the carrier frequency of the oscilla-
tor.

where

is the total inversion operator and

P=NA

(4.6)

(4.7)

np np=&2 sech x
2 2

We assume that the bandwidth of the medium is
sufficiently broad so that it accommodates the full spec-
trum of the pulse. Then the time dependence of the ab-
sorption of the saturable absorber becomes negligible and
the noise associated with the absorber can be incorporat-
ed in the stationary noise sources already included in the
above equations. In the steady state, the gain must be
equal to the loss so that

is the total pumping rate.
Denote the steady state value of N by Np and that of V

by

Vo=&2UO

where y is the photon decay rate, g is the gain factor pro-
portional to the dipole matrix element, N is the total

~=gx.
2 r (4.8)
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The noise is, by assumption, small so that it does not
enter into the relations describing the steady state. The
average population is given by

NoP—
Sp

4 2

N0 f i V0 i
dx =0

R
(4.9)

where T~ is roundtrip time. Here I ~ V0 ~
dx =n, =2n 0 is

the photon number of a single pulse in the cavity.
To conserve the commutator brackets, S~ and Sz have

to satisfy the following commutation relations

[S„(t,x),S„(t',x')]=5(t t'—)5(x —x'), (4.10)

[Sx(t,x),Sz(t', x')]= —(8)5(t t')5(—x —x') . (4.1 1)

We can now linearize the equations around the steady
state. The equation for the small-signal field operator is

' 1/2—u = b A'V0 ig—8 g . 2N
at r ' r Sx+&yS„ (4.12)

1/2
2N

lg ( V0Sx —V0Sx )+NSp . (4.13}

In media with long relaxation time (long compared with
the cavity roundtrip time T„),the gain is pulled down by
the cumulative effect of all pulses within the relaxation
time. The gain change caused by one individual pulse is
small. Its effect on the pulse shape is small and we shall
neglect it. Within this approximation the short-term
time dependence (upon x) can be ignored in (4.13) and
the equation becomes

a' -., r T.
'

4 2

N0 f (V0v+ V0u )dx

' 1/2
2N

1 g f ( V0Sx —V0Sx )dx +NSt, .
R

and the equation for the perturbation of the population,
AA, 1S

4 2 4 2

Bt I 0 I 0 0 0~V i
bA' — N (V'u+Vu )

' 1/2
g . 2N 1S= VOT~ i2gI I T„

X f (V0Sx —SxV0)dx+NS
' 1/2

2N ~ —n
lg Sx+v'yS„. (4.17)

When i le, is small compared with the induced emis-
sion rate in (4.15), the contribution of the noise operator
Sz can be ignored. In this limit of high excitation, Eqs.
(4.16) and (4.17) become

Yo—u= —y f (V0u+V0u )dx+S,
Bt 2n,

(4.18)

S=&y S„+i f ( V0Sx —V0Sx }dx
2n, Q(y)
S~

l

&(o))
(4.19)

f„(x)=2 V0(x) (4.20)

1 x n,
fe(x) =2 ——tanh x

n, 4 4
V0(x ), (4.21)

For solitons, V0 can be assumed to be real and Eq. (4.18)
can be separated into equations for two Hermitian opera-
tors v, and v2, the in-phase and quadrature components
U =

U1 +152.
The photon number in the fiber ring splits into two

halves, so that the Kerr shift accumulated within the
fiber length is half of that which would be observed if the
entire pulse traveled through one single fiber. Because
the two arms of the ring interferometer act independently
and the noise in each of the input ports is squeezed in-
dependently, we may view the insertion of the ring into
the laser like an insertion of a single fiber of the same to-
tal length but with half of the Kerr coefficient. Thus all
functions f;(x) and f, (x) developed for the Schrodinger
equation of the form of (2.1) have to be redefined in terms
of a Schrodinger equation with a factor of —, in front of
the nonlinear term. The new f s are

1 1

TN +sp

4g2 nc

I T

If the relaxation rate
(4.14)

(4.15}

nf (x)=-,'tanh x V0(x),

4f„(x)= x V0(x) .
n

(4.22)

(4.23)

is fast, then one may eliminate b,A' adiabatically, obtain-
ing the equation for the field:

Subsequent multiplication by the adjoint functions in
(2.20) —(2.23) and integration over the short time scale of
the time parameter x produce equations of motion for the
four operators in their long-term evolution described by
the t parameter:

~ 4 T—v= —— V (V*v+V v )dx+S
Bt 2 I T„

with

(4.16)
a—5& = —yh6'+S„,
at

—AO=S
at

(4.24)

(4.25)
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—Ap =S (4.26) &bÃ(n)be(n ))

(4.27)—Ax =S
at

There are no "restoring forces" for 60, hp, and Ax. The
four noise operators are

S„=fdx&yS„,f„(x), (4.28)

1

2m

2
zo

64 TR

2

& b,e'(0) &Q(n +y )

+ y (bp(0) & wn —n ), (5.10)

S,= fdxv'y 5~2 — fs(»
&&&)

S~=fdx+y S„2— f (x),
&(~) .

'

S„=fdx+y Sg(+ f„(x).

(4.29)

(4.30)

(4.31)

(bx (Q)bx(n')) =
2'

ZQ

TR

+ y(bx'(0)) S(n n—).

(5.12}

(bp (n)bp(n'}) = (bp (0))5(n —Q'), (5.11)

V. SOLITON EVOLUTION AND THE SPECTRA

a
b, R (t }—= yb, R (t)+—S„(t), (5.1)

zo n,
b, 0(t)= —be(t)+S, (t),

Bt Ttt 8
(5.2)

bP(t)=S —(t),
t

ZQbx(t)= —bp(t)+S„(t).

(5.3}

(5.4)

Upon every pass, the fluctuations of the operators are
acted upon by the ring reflector. If the effect per pass is
small, it can be added to the time rate of change ascribed
to the laser medium. The effect is converted into a rate
by division by the roundtrip time TR. We write

These are rather interesting results. The spectrum of the
photon fluctuations is Lorentzian. The phase fluctuations
have a contribution that corresponds to a random walk of
the phase. This contribution is the standard phase noise
of an oscillator. There is a contribution due to the pho-
ton fluctuations producing phase fluctuations in the Kerr
medium. In the frequency range smaller than y, they add
to the standard random walk. This is analogous to the
frequency noise enhancement in a semiconductor laser
due to the a parameter that couples gain fluctuations to
index fluctuations. ' The position fluctuations are to be
expected in a passively mode-locked system in which
there is no pulse-timing reference. The position fluctua-
tions are enhanced by the momentum fluctuations. In
fact, the result found here is identical with the result
found by Gordon and Haus in their investigation of
long-distance soliton propagation in the presence of
amplifier noise which led to the Gordon-Haus limit. '

DISCUSSION

Here ZQ is the normalized fiber length.
Using (4.11) and (4.12) and assuming at t =0 the quan-

tum state is the vacuum state, it is easy to prove that in
the case of high excitation,

(S„(t}S„(t')) =y(be'(0) )5(t t'), —

(Ss(t)Ss(t')) =2y(b8 (0))5(t —t'),
(S~(t)S (t') ) =2y ( bp (0) )5(t t '), —

(S„(t)S„(t')) =2y(b, x'(0) )5(t t') . —

(5.5)

(5.6)

(5.7)

(5.8)

There is no cross correlation between these noise opera-
tors.

Equations (5.1)—(5.4) are easier to solve in the Fourier
transform space. The noise spectra are

& bR t(n)be(n') &
= y

& be'(0) &5(n —n'),
2m Q+y

(5.9)

M6

I

f squeezed

M 3

vacuum

FIG. 5. A modified laser and squeezer.

We have developed the theory of the noise and squeez-
ing in a laser that produces counterpropagating solitons
in the fiber-ring reflector. The fiber soliton was necessary
to allow for a large phase shift 4 so that the squeezing
parameters p and v can be made large.

The main advantage of the proposed scheme is that the
fiber length required for squeezing could be made much
shorter, using the internal intensity of the laser, than
when a fiber interferometer is excited by pulses derived
from the output of another laser. One may consider the
system shown in Fig. 5. Here the squeezing is performed
in a Kerr medium inside the ring reflector that does not

output
pulse
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necessarily possess negative GVD. One may imagine it
to be a section of fiber as well. The net negative group-
velocity dispersion is produced by the prism arrangement
in the main cavity. If the phase shift per pass and GVD
effect per pass are small, a solitonlike pulse will form in-
side the cavity. However, by definition, the squeezing in
the ring cannot be large. If the phase shift is indeed
large, then the equations of the system become difference
equations and analytic solutions become more diScult.

However, it is likely that squeezing ought to be possible
also within this configuration. Certainty about this
awaits further analysis.
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