
PHYSICAL REVIEW A VOLUME 42, NUMBER 9 1 NOVEMBER 1990

Quantum theory of atomic position measurement using optical fields
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A simple quantum theory of recently suggested optical techniques for ultrahigh-resolution posi-
tion measurement and localization of moving atoms in beams is presented. Both the internal and
center-of-mass motion are treated quantum mechanically so that the limitations on the ultimate po-
sition resolution due to atomic motion and wave-mechanical diffraction are included in the analysis.
The techniques utilize a miniaturized form of Raman-induced resonance imaging in which optical
fields are used to make transitions from a long-lived initial state to a long-lived final state. The final

state is shifted by the spatially varying potential of an applied force field in order to correlate the
atomic position with its resonance frequency. Spatially varying level shifts are obtainable by using

very large Zeeman field gradients or spatially varying light shifts in a small interaction volume.
This results in very high spatial resolution. The atomic transit time across the optical-field region is

limited by focusing to an ideal diameter that minimizes the spatial resolution length. The results of
the analysis show that nanometer spatial resolution of the initial-state position distribution is attain-
able. Under appropriate conditions, the final-state spatial wave function can take the form of a
minimum-uncertainty Gaussian wave packet obeying Ex' =5/2. Such states may prove useful in

studying one-dimensional wave-packet motion in applied potentials.

I. INTRODUCTION

Recently there has been substantial progress and in-
terest in the creation of atomic distributions which vary
over small length scales. In atomic beams, such distribu-
tions arise by diffraction, ' periodic spatial modulation,
channeling, focusing, and cooling. In general, the dis-
tributions exhibit momentum-space coherence and are of
both practical and fundamental interest. These develop-
ments have been spurred on, in part, by the advent of
practical laser-cooling techniques. Important applica-
tions include atomic interferometry, gyroscopes, and the
creation of submicrorneter structures by atomic deposi-
tion. '

While techniques exist to create suboptical-wavelength
atomic spatial modulation and interference in atomic
beams, methods for detection have been limited princi-
pally to hot wires. Only in Ref. 3 is optical absorption
used to determine the atomic position distribution. In
that work, atoms are channeled in an off-resonant optical
standing wave. Due to the spatial variation of the light
shifts in the standing wave, atoms at a node resonate at a
different frequency than atoms at a peak in the optical
field. Thus, a two-peak absorption spectrum is obtained
in which the height and shape of the peaks vary when the
atoms are redistributed by channeling, compared to when
they are not channeled. Since the channeling field and
the spatially varying light shift which causes the channel-
ing vary with the same scale of length, the true periodic
structure of the channeled atomic distribution could not
be directly measured in the experiments. While the posi-
tion resolution obtained was adequate (although not
specified in Ref. 3), it was limited by the spontaneous
linewidth for the transition employed as well as by
Doppler broadening. Further, the diameter of the in-
teraction region (4.6 mm) was chosen to achieve channe1-

ing without heating. In this case, the interaction time is
long enough for the atoms to be redistributed over dis-
tances comparable to an optical wavelength. For op-
timum position resolution, our calculations show that the
interaction time of the atoms with the measurement field
must be much shorter, since the atoms must move no
more than the optimum resolution length. This is much
shorter than an optical wavelength for the large light
shifts employed in the experiments.

The purpose of this paper is to analyze a recently sug-
gested class of techniques which may prove useful in
achieving much higher spatial resolution of moving
atoms using optical fields than has been obtained previ-
ously. We begin by reviewing the principa1 features of
the method using heuristic arguments and then proceed
to the detailed derivation.

The basic method, Fig. 1, is to use a spatially varying
potential V(x), which makes the resonance frequency of
simple atoms position dependent, analagous to magnetic
resonance (MR) imaging. Unlike conventional MR imag-
ing, the proposed method employs Rarnan-induced reso-
nance imaging using optical fields. The use of optical
fields permits the measurements to be made in very sma11
volumes with very large spatially varying potentials,
which leads to quantum-mechanical limits on the ulti-
mate measurement accuracy. As shown in Fig. 1, the
atoms enter the Raman interaction region in a long-lived
initial state (i) which is not shifted by the potential V(x)
and make a transition via two optical fields to a long-
lived final state (f) which is shifted by the applied poten-
tial. In this way, the atomic position and its resonance
frequency are correlated. The total number of atoms em-
erging in the final state is measured downstream from the
Rarnan region. This signal is proportional to the number
of atoms in the initial state which make a transition to
the final state near the position where the optica1 fields
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FIG. 1. Atomic-position measurement by Raman-induced
resonance imaging. Atoms enter the Raman interaction region
in an initial state i with some spatial distribution along the mea-
surement axis x which is to be measured. The initial-state am-

plitude A, (y, x) is presumed to be specified at the plane y =y&
centered in the Raman fields Q&, 02. A spatially varying poten-
tial V(x) shifts the final state fwithout affecting the initial state
i and correlates the Raman resonance frequency with the atom-
ic position along the x axis. Atoms which are detected down-
stream in state f are those which have made the i ~f transition
in a narrow spatial region hx where the Raman fields are reso-
nant for the i ~f transition.

are resonant with the Raman transition. The goal is to
measure prepared incident atomic distributions without
modification due to trapping or channeling, by appropri-
ately limiting the interaction time. These techniques ex-
amine interesting features of quantum-mechanical posi-
tion measurement and should make it possible to localize
atoms to much better than an optical wavelength for ap-
plication to a variety of interesting experiments. For the

Sm or ' Yb systems we are currently studying, it
should be possible to achieve position resolution of =70
A.

An important feature of the analysis is that it deter-
mines the ultimate spatial resolution attainable for mov-
ing atoms in large spatially varying level shift gradients
which correlate the atomic resonance frequency with po-
sition. The results should have important bearing on ex-
periments which measure the interaction of atoms with
surfaces.

Finally, it is shown below that the center-of-mass wave
function for atoms which emerge in the final state is high-
ly localized and, under appropriate conditions, can take
the form of a minimum uncertainty Gaussian wave pack-
et. These results complement recent work on atomic and
molecular internal state wave packets.

For optimum position resolution, it is necessary that
both radiative and Doppler broadening, as well as the
laser linewidth, be negligible compared to transit-time
broadening. In some cases, a one-photon transition from
the ground state is adequate. This would require a long-
lived excited state, large spatially varying level shifts, and
high atomic-beam collimation. Alternatively, a Raman-
induced resonance between long-lived ground states can
be used, as mentioned above and described below.

To explain the Raman-induced resonance imaging
method in more detail, suppose that an atomic beam is
prepared in an initial long-lived internal state (i) with

some interesting spatial distribution perpendicular to the
atomic-beam propagation axis. To measure the spatial
distribution, the atoms enter an interaction region con-
taining two optical fields of frequencies Q, , Q2 which can
induce Raman transitions between the long-lived initial
state and a long-lived final state f. The interaction region
also contains a spatially varying potential which makes
the Raman resonance frequency dependent on the spatial
position of the atom. For simplicity, suppose that the
spatially varying potential is due to a uniform force F
which affects only the final state (f) of the atom. The po-
tential is taken to vary linearly along the x axis, which is
perpendicular to the atomic-beam propagation direction,
and which ultimately will become the measurement axis.
For concreteness, let xoF be the shift of the final state due
to a uniform Zeeman Geld, and —xF be the shift of the
final state due to an additional Zeeman shift or light shift
which varies linearly in space. The net potential can be
written as

V(x —xo)= —(x —xo)F .

Further, suppose that the atoms which enter this poten-
tial in the internal state (i) are not shifted. In this case,
the i fresonan-ce frequency varies linearly in space, so
that a resonance field of sufticient frequency resolution
can cause i ~f transitions in a highly localized region b,x
along the x axis. The position resolution hx is deter-
mined by the potential-energy change b, V=Fhx and the
frequency resolution Acu according to

where T* is the effective interaction time which deter-
mines the frequency resolution. If a one-photon optically
allowed transition is employed, then the frequency resolu-
tion will be limited by Doppler and radiative broadening
as well as by laser-frequency jitter. All of these
deficiencies are remedied by using a copropagating-wave
Raman-induced resonance between long-lived states (i)
and (f) via some off-resonant intermediate state (I) as
shown in Fig. 2.

The optical fields Q&, Q2 are taken to copropagate. By
choice of the difference frequency Q2 —Qz, a Raman reso-
nance with the i~f transition frequency cof; can be
made to occur at the point x =xo along the measurement
axis. The Raman fields are derived by A /0 modulation
from the laser field co so that the difference frequency is
easily made very stable. By using an off-resonant Raman
transition and copropagating fields, the laser jitter, beam
divergence, Doppler shifts, etc., drop out, since only the
difference frequency enters. This technique was em-
ployed previously to obtain Raman-induced Ramsey res-
onances using optical fields, where 100-Hz resolution was
readily obtained. ' By monitoring the total count rate of
atoms in state f emerging from the Raman region versus
uniform Zeeman shift (which varies xo), the incident spa-
tial distribution in state i is determined. Only initial state
atoms near x =xo, the point at which Q, —Q2= cof;, con-
tribute to the signal.

The use of optical fields in the measurement leads to a
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FIG. 2. Level scheme and Raman fields.

b,x„,=Qfiv„/F . (3)

For modest atomic-beam collimation and a two-wire
magnetic-field gradient, suboptical-wavelength position
resolution is readily attainable.

For a highly collimated atomic beam, v„no longer lim-
its the interaction time. In this case, the acceleration due
to the applied force and diffraction out of the resolution
length limit the smallest regions which are measurable.
For the acceleration limit, the optimum value of the in-
teraction time is such that (F/2M)T =Ax. For the
diffraction limit, the interaction time must be such that a
particle localized into a region of length Ax spread only
over distances comparable to hx, i.e., (R/2Mb, x ) T =hx.
In either case, with Eq. (2), the optimum resolution is

1/3

aceel 2~@
(4)

which we will refer to as the acceleration limit. To
achieve this limit, we must have v„(iri/(2Mhx„„&), as
shown below. For a 10' -Hz/cm light-shift gradient, the

number of new features which are listed briefly here.
(1) Spatially Varying Level Shifts. Two-wire magnetic-

field gradients as developed for atom-deflection applica-
tions can be used to achieve spatially varying level shifts
F/h =10' Hz/cm over millimeter length scales. Over
smaller maximum distances, very large spatially varying
level shifts can be obtained by using the light shifts of in-

tense, nonresonant intersecting laser beams (not the Ra-
man beams). In this case, more than 10' Hz/cm is feasi-
ble. Spatially varying shifts this large have been used in

atom-channeling experiments, but application to position
measurements which yield the incident spatial distribu-
tion have not been explored. When the interaction time
is optimally limited as described below, exceedingly high
spatial resolution is attainable.

(2) Spatial Resolution. When long-lived states (i,f ) are
chosen for measurement, the interaction time T' is deter-
mined by the atom transit time T across the Raman re-
gion. In this case, the use of optical fields allows the in-
teraction time to be limited to an optimum value by
focusing. The optimum value of T is determined by the
criterion that the atom not move across the ideal resolu-
tion length during the measurement. The simplest limit
is due to the atomic velocity component v along the
measurement axis. In this case, the optimum interaction
time is T=b,x/v„. With Eq. (2), the optimum spatial
resolution is given by

0

optimum resolution is about 70 A for samarium and the
required collimation for a beam of speed 6X10 cm/s is
50 grad, which is not too stringent.

(3) Uncertainty limit S. ince the force due to the spatial-
ly varying potential acts on the atom only after it makes a
transition from the initial unshifted state, the momentum
uncertainty imparted by the force, Ap, is approximately
equal to the maximum momentum imparted, FT. Using
Eq. (2) we see that the final state is created with a spatial
resolution and momentum spread which obey the uncer-
tainty relation Ex' =A. In Sec. III B it is shown that
minimum uncertainty packets can be created under ap-
propriate conditions.

(4) Detection. The method for detecting the final state
(f) need not have any spatial resolution since the mea-
surement is done by the Raman region. Only the spatial
integral of the final-state fiux is needed, therefore a
variety of final-state detection schemes are possible.
These include resonance fluorescence, and single-atom
methods such as photon burst and photoionization,
which have been successfully applied to trace-element
measurement.

II. THEORY

In the following, we consider the Raman-induced reso-
nance imaging scheme in detail. Schemes based on one-
photon transitions, when appropriate, yield analagous re-
sults and need not be derived in depth. A three-level
atom with states i, I,f, as shown in Fig. 2, enters a region
with a spatially varying potential which exerts a force on
the state f only. The atom enters the region in state i
which does not interact with the spatially varying poten-
tial and makes a Raman transition via two off-resonant
light fields to the final state. The transition occurs in a
localized region determined by the resonance condition
that the initial- to-final-state frequency ef; equal the
difference frequency of the two applied optical fields. The
total (spatially integrated) final-state fiux emerging from
the Raman region is monitored downstream as a function
of the Raman-field difference frequency or as a function
of cof; which can be tuned by means of an applied uni-
form magnetic field.

In this section, the integrated fiux of atoms in state f
exiting the Raman region is calculated at distances large
compared to the diameter of the Raman regions which
are assumed to be Gaussian. The steady-state amplitude
for the final state is calculated first, where it is assumed
that the wave-mechanical motion is important for the x
motion. An eikonal approximation is assumed to be ade-
quate for the y coordinate along the atomic-beam axis.
The Raman transition frequency mf; is taken to be very
small, so that the difference in the wave vectors of the op-
tical fields can be taken as zero. In this case, the net
recoil momentum of the atom in making the Raman tran-
sition is negligible. Finally, the optical fields are assumed
to be far enough off resonance with the excited state that
the excited-state amplitude can be adiabatically eliminat-
ed from the coupled amplitude equations which are de-
rived below.

The Hamiltonian for the three-level system of Fig. 2 is
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taken as

p2H= +H' ' p—.E(R t) (x——x )F'~
2M O

where H' ' is the internal Hamiltonian, P is the atomic
center-of-mass momentum operator, F'~ is the external
force operator, and x is the position along the measure-
ment axis. The electric dipole operator is p and the ap-
plied field is of the form

l(q'R 0& t)
E(R, t}= e ' +c.c.

2

and f and treating the right-hand side as a source.
To proceed, Eq. (8) is rewritten explicitly using the

rotating-wave approximation and takes the form

iA—+v V — A;(R, t)
2M ()~2

Qli ( } —iq.R —i(su& —t2()t
e AI(R, t),

21

iA 3 i—+v V — ——(x —x )F A (R, t)
2M ()x 2 )ri

2@2 i (q R—n2() —)/2[(y —
y( )/d)]2+ e ' +c.c. e

2

(6)

QIf (R} —iq R i(cu—i —t2&)t' A, (R, t),
21

—+v.V — At(R, t)() i' ()

Bt 2M ()x2

(9)

where the Raman fields are assumed to copropagate and
the diff'erence frequency Q, —Q2 is assumed sufficiently
small that the wave vectors are taken to be of equal mag-
nitude. The polarizations e& 2 are chosen so that each
field interacts with only one transition. The Raman-field
region is taken to be centered at a position y &

along the
atomic-beam axis and the laser 1/e intensity radius along
the y axis is d. Variation in the fields along directions
perpendicular to the atomic-beam axis is assumed negligi-
ble. The atomic wave function is taken to be of the form

ikR
~)p(R, t))= g —e """/ "A„(R,t)e "~n),

n

where the velocity of the particular atom being con-
sidered is v=()lk/M prior to interaction and it is assumed
that an initial velocity average will be performed at the
end of the calculation. The internal state of energy %co„
is ~]n ). With these assumptions, the time-dependent
Schrodinger equation yields equations of motion for the
state amplitudes A„given by

iA —+v V A„+ V A„+(x —xo)F„A„
t

= —g p,„E(R,t)e " A

where the force F„=F5„facts only on the final state.
We take the Raman difference frequency equal to the
i ~f frequency in the absence of the force: Q, Q2 cl)f;. —
Then we seek solutions for which the initial- and final-
state amplitudes are time independent but vary in space.
It is assumed that the velocity perpendicular to the laser
beams vy is large (i.e., a thermal speed), while the velocity
v„along the rneasurernent axis x is small. In this case, it
is convenient to make an eikonal approximation for the y
motion, retaining only the first spatial derivative term,
while for the x direction, both the first and second x
derivatives are retained to take into account packet
spreading. Equation (8) is then easily solved in perturba-
tion theory by finding the Green's function for states i

+iq R+i(~ —0 )i
e " '

A, (R, t}
21

Qtf(R} +iq R+i( f —n )t
e 'f ' Af(R, t)

21

At(R, t),

AI(t) =— QI;(R)

Ys ~

2i —id,
2

. e'q ' 'A;(R, t)

Qtf (R)

Vs
2i —id

2

f- e' 'i)"A (R t) . (10}

With Eq. (10), the evolution equations (9) for the initial-
and final-state amplitudes take the form

where Qt;(R) =pt, e, 8)(R)/A' and Qzf (R)
It Jf e2 @2(R ) /R and the spatial dependence of the fields

is given by the Gaussian distribution of Eq. (6). The con-
vective derivative term describes a straight-line trajectory
for constant velocity, the second derivative term in x al-
lows for difFraction (wave-packet spreading), and the
force term takes into account the spatially varying poten-
tial which affects only the final state.

It is assumed that the Rarnan fields are detuned far
from resonance with the intermediate state so that
coherent transitions from the initial state to the final state
are dominant over incoherent optical pumping. In this
case, the intermediate-state amplitude AI can be adiabat-
ically eliminated from Eqs. (9). Suppose that Q, -

Q2 cof ' c01' corf so that cor' Q ] Q)rf Q2: 6 Irl
the large-detuning limit, we have 5 &&y„q v, Qz;, Qgf,
etc. Letting Az(t) =at(t)exp( i ht ) in Eqs—. (9), the
intermediate-state amplitude is approximately given by
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8 iiri—+v.V— A, (R, t)
dt 2~ Bx'

Ql;(R)QIf (R)
Af,

7$
4 —ih

2

theory. This yields a spatial resolution function (see
below) which includes the effects of both classical motion
and difFraction of the moving atoms. In lowest order, the
initial-state amplitude A '(y, x) can be taken to propa-
gate neglecting the Raman fields. Further, the velocity
will be taken to have only x and y components. It is as-
sumed that the atomic distribution does not vary in the z
direction. Then, the initial-state amplitude satisfies

iA 3 i—+v.V— ——(x —xo)F A (R, t)
Bf 2m (jx2

8 8
Uy +U A '(y, x)=0 .

2M QX2
(12)

lfltf (R) l' Q„(R)Qif(R)
A, .

7$
4 —iA

2

YS
4 —iA

2

Equations (11) are readily solved in perturbation

The solution to this equation is determined by free-
particle propagation, where y/U plays the role of the
time. If the amplitude A; is specified in the plane located
at y, along the atomic-beam axis, then the amplitude at
an arbitrary position yz, xz is evidently given by

I I I 2 I
(0) k

1 [ 2 &1 y2 yl ) v ] —I(hk
1

/2m y2 yly e (13)

To lowest order in the Raman fields, the term on the right-hand side of the Af evolution equation (11) proportional
to Af may be neglected, since Af is assumed to be initially zero, prior to a Raman transition from state i (Tha. t is, we
neglect the light shift and optical pumping due to the weak nonresonant Raman fields. In practice, the Raman-field in-
tensities are adjusted to give equal light shifts which cancel for the i ~f transition. } The solution for the final-state am-
plitude in the y, x plane is then readily obtained by means of the Green's function which satisfies

a a ih 8 . F
2M

2-l(x —xo)
R

GF(yy2 x x2)=5(y —y2)5(x —x2)2M (jx2
(14)

The final-state amplitude is given by

—&I;(y2)&if(y2)
Af(y, x)= f dy2 f dx2GI(y, y2;X, X2) . . A,

' '(y2, x2),
VS

4 —ih
2

(15)

where the Rabi frequencies are taken to be Gaussian distributions centered at yi along the y axis [see Eq. (6)] but in-
dependent of x for simplicity (i.e., the ineasurement length is taken to be small compared to the radius and the Rayleigh
length of the Raman beams).

As shown in Appendix A, the required Green's function for propagating in a uniform force field is obtainable by
transforming to momentum space and is given by

GF(y, y 2,'X, X 2 ) = y yz

Vy

dk exp ik x —x z
—

U„2' Uy

F y y2

Uy

—i[(Ak /2M)][(y —y2)/(v )]

F y —y2 FU y —
y2X exp i (x——xo) i-

v 2A Vy

. F2
6Allf

y y2

Uy

(16)

In this form, the Green s function has a simple physical interpretation. Neglecting wave-packet spreading, integration
over k for the first exponential factor yields a 6 function requiring the atom to follow the classical trajectory during the
time (y —y 2 )/U . The second exponential takes wave-packet spreading into account. The last exponential factor is just
the phase acquired by the final state of the atom in propagating through the classical path in the potential due to the
force field.

In Appendix B, the integrated final-state fiux emerging from the Raman region is evaluated starting from Eq. (15) and
yields the following result:
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dx Af yx

QI' Qlf

1 s
4u —ih

2

—(u /2d ) —(2u+ /d )

—i[(Fv„)/(Av )]u+ u —i[(F)/(fiv )](x
&

—xo)u —i[(F )/12flMvy )]uF, , F
2 ~+~ — A y1 x1+ 2 ~+

2Mv 2Mu
(17}

Equation (17) gives the general result for the integrated
flux in the final state in terms of an arbitrary initial-state
amplitude specified at the center of the Raman region
y =y (, A;(y(, x }. To obtain the final-state count rate, this
result must be multiplied by the atomic density, the
atomic-beam velocity, and the transverse dimension of
the atomic beam perpendicular to the measurement axis.

III. RESULTS

In the following sections, the spatial resolution ob-
tained with the Raman-induced resonance imaging
method is examined first, in order to verify the statements
made in the Introduction based on heuristic arguments.
Then, the final-state wave function is examined to deter-
mine the momentum and position distribution of the
final-state atoms. For a plane-wave input in the initial
state, it is shown that under appropriate circumstances, a
minimum-uncertainty final-state wave packet may be ob-
tained.

A. The spatial resolution function

dx Af y, x

2
Ql;Qlfd&m

Vs —iA 4v
2

uniform magnetic field (i.e., on the resonant point xp).
Further, in an important special case, described below,
this result is to determine the general form of the sam-
pling function which measures the incident atomic distri-
bution in state i. We will refer to this sampling function
as the resolution function.

The Gaussian factors in the integrand of Eq. (17) con-
strain u+ to distances of order d. If the initial-state am-
plitude does not vary over distances of order
(Fl2M}(d/'u~ ), then the dependence of the amplitudes
on u+ may be neglected. This requires that the interac-
tion time d lu in the Raman fields be not too large, so
that the final state does not accelerate over distances
comparable to the length scale over which the initial-
state amplitude varies. In this case, the u+ integration is
readily done and the integrated flux then takes the form

Using the result given by Eq. (17), the spatially in-
tegrated final-state flux can be determined for any given
spatially varying initial-state amplitude A, (y, ,x). This
determines the dependence of the signal on the applied

X fdx(R)(x( xp)

X
~ A, (y, ,xI ) ',

where the resolution function R, is given by

(18)

00 1
R ((X I

—xp) = du, exp(2~d2)'/2

Fv d
+

2d' 8 fiv'
V

. F, . F2
u . exp i (x, —xp)—u —i u

Auv 12AMv

(19)

Physically, the meaning of this result is clear. The ex-
ponent in the Gaussian factor decreases as the Raman
beam radius d is made larger and the interaction time
longer, corresponding to higher-frequency resolution.
This tends to increase the spatial resolution and narrow
the resolution function. However, as d is increased, the
motion along the measurement axis due to ux tends to in-
crease the exponent and broadens the resolution function.
The acceleration of the final state leads to a phase factor
in the integrand which is cubic in the time (u /v„), as
one would expect using classical arguments. In addition,

diffraction also leads to a cubic time dependence of the
phase.

This result can be cast in a simpler form by using the
natural length scales for this problem which are discussed
in the Introduction. The form of the resulting resolution
function serves to justify the heuristic treatment of the
resolution limits.

It is convenient to express distance along the measure-
ment axis in units of the acceleration limited-resolu-
tion length, Eq. (4). The resolution length in turn leads
to the natural unit of transit time across the Rarnan
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region, To. Using (F/2M)Tp=bx„„, one obtains

To=(2M'/F )'~ .The corresponding unit of distance

along the atomic-beam axis, y, is just d0= V„T0. Defining
u =gd0, and expressing x

&

—x0 in units of bxa«e~, the
resolution function can be recast into the following form:

1
Ro«'( —xo }=

Xaccel

xt xp

~Xaccel
(20}

where

I(s)—f" d e a(g /—2)e —i sgn(F)sq —i(g /6)

27T

1 ( /2)
3

d i}—e '" 'cos sgn(F)s i}+
0 6

(21)

hx„,)r=
2~x accel

with sgn(F)=+1( —1) for a positive (negative} force.
Note that J dx', Rp(x ( xp) =1. The parameters appear-

ing in Eq. (21}are given by

d0
0.= + r4,

d2 d2

e
—s /2a

I(s)=
&2ira

(25)

According to Eq. (22), the parameter a is minimized for a
certain value of the Raman-region diameter d. Physical-

ly, the frequency resolution increases as d is increased.
This tends to increase the position resolution. However,
the velocity along the measurement axis v, causes the po-
sition to move during the measurement. Hence, an op-
timum diameter exists. Differentiating a with respect to
d, and setting the result equal to zero, one obtains

dn, =dplr and a, ,=2r . The corresponding resolution
function then is given by Eqs. (20) and (25) as

that the detailed shape of the resolution function is ob-
tained.

According to Eqs. (20) and (21), the resolution function
will be approximately Gaussian if the parameter a is
large compared to unity, so that the cubic dependence
of the phase on q can be neglected. When the
velocity is so large that hx„,l &Ex„„~, which implies
v„)A'/2Mhx„„(, the factor r in a of Eq. (22) quickly
becomes large and Gaussian dependence dominates the
integrand. In this limit, the resolution function takes the
form

bx„,) =
1/2

2AV

2M%
0 y

(22)

Ro(xI —xp)=
exp

I 2
X) X0

hx„,)

~x„„&~
(26)

In terms of R0, the integrated final-state flux takes the
form

f dx I ~f (y, x) I'

&2'(riv,
=~R

dlFI f dx'I &;(y,x')I Ro(x' —xo}

&2vrfiv,

I

I' I&;(y(,x'=xp)I', (23}

where the approximate result is valid if the resolution
function is narrow compared to the length scales over
which the atomic distribution varies. The Raman transi-
tion probability is given by

2
QI; Qlf d +fr

T

Ys 4'
(24)

Note that the factor which multiplies the Raman transi-
tion probability in Eq. (23) is of the order of the position
resolution. The approximate result could, of course, have
been written down on the basis of physical arguments,
without detailed calculation. The important feature is

and dn„, =(v~/v„)bx„, (. Physically, the atom travels a
distance along the measurement axis just equal to the op-
timum resolution length during the transit time across
the Raman region. Note that the neglect of
Fu+u /2M' in the argument of the initial amplitude

A; in Eq. (17) is justified if A, varies slowly compared to
Fd,&, /2Mv„=(}i/2Mv„( bx„„(in this limit.

In the opposite limit when hx„,&
&hx„„&, i.e., when

v„((}l/2Mbx««(, the ratio r is less than unity and the
parameter a=do/d . Hence, as the Raman-region di-

ameter d is increased to order dp or greater, a decreases,
and the functions I(s) and Rp narrow. As a~0, it is
clear from the exact equation (21) for I(s) that the natu-
ral length scale for s is unity, since the cubic phase plays
the dominant role in the integrand. This corresponds to
spatial resolution comparable to the acceleration length.
The function I(s) is plotted in Fig. 3 for various values of
a.

When a is of order unity (1—2), the shape is nicely lo-
calized and is nearly Gaussian. However, if a is made
small, corresponding to a large Raman-region diameter,
the function I(s) is asymmetric. It oscillates on one side
and decays on the other. Physically, this is linked to the
fact that for a positive force, the final-state amplitude
created at x' to the left of the resonance position x0
within a distance of order Ax„„& accelerates to the right
and interferes with the amplitude created at x0. Hence,
the resolution function oscillates on the left side of x0 for
a positive force. However, final-state amplitude created
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for x' to the right of xo accelerates further to the right
away from xo and hence does not interfere. Thus, the
resolution function rapidly dies off on this side of xo for a
positive force. This behavior is, of course, related to the
wave function for penetration of a potential barrier which
varies linearly in position, but is opposite to what one
might expect because the final state is accelerated rather
than the initial state.

B. Minimum-uncertainty spatial wave packets

The process of measuring the initial-state distribution
via the Raman-induced resonance imaging method natu-
rally creates the final-state spatial wave function in the
form of a localized packet, since the i +f tr—ansition
occurs in a highly localized spatial region. Hence, the
method is well suited to the creation and study of spatial
wave packets and it is of interest to determine the
momentum and position spread of such a state. For this
purpose, we assume for simplicity that the initial state
takes the form of a plane wave with 2;(y&,x)= l. In this
case, the final-state spatial wave function after the Raman
region where y)y& can be evaluated starting from Eq.
(B6). The x', integration is straightforward and yields the
unnormalized state for an atom of initial velocity
v=6k/M as l(tf(y, x)=e'" Af(y, x). Choosing a nor-
malization constant so that J

" dx
i gf (y, x ) = I yields

the final-state wave function in the form

0.1—

0—
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0.1—
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s = (x' —x, )/ax „,
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FIG. 3. Spatial resolution function. The s axis denotes posi-

tion along the measurement axis in units of the optimum ac-
celeration limited resolution length (see text).

Pf(y, x)= 2md A'v

iFid 2

' 1/2 —1/2
ik R

2

X y2exp
Vy

2
F y y2 Fv y —

y2
exp i — (x —xo)—

vy 2A

F2

6AM

y-y2 '

Vy

(27)

(28)

Using Eq. (27), the momentum spread of the final-state

wave packet is readily evaluated, since differentiation
with respect to x just differentiates the phase factors and
evaluation of the expectation values then requires only
Gaussian integrals. The momentum spread is found to be

(bp)—:p —p ~=M (hv„) +
2Vy

reasonable approximation. With adequate beam collima-

tion, the acceleration limit is attained and yields

(hp )'= [(Fd)/2' )] .
The position spread also can be evaluated from Eq. (27)

using integration by parts and the identity
T

I IF y& y2
dQ Q expl Q

i6 Vy

where the first term arises from a thermal average over
the transverse velocity spread and the spread in the longi-
tudinal velocity v along the atomic beam is ignored for
simplicity. For a supersonic atomic beam, this is a

I

This yields

2'
iF/Av i

'AVy ()F', 5(y2 —y 1 )
l y2

(29)

(bx) —=x —x
2

Ivy
Fd

2
Fd 3 y y&

2~V 2

2

Vy Mvy 4 4vy

where the overline on the v„ terms indicates a thermal
average over the initial transverse velocity spread and the
vy spread is again ignored. For these equations to be val-

id, the observation point must be after the Raman region,

I

so that y —y, must be somewhat greater than d.
Using the position and momentum spread, the uncer-

tainty product can be obtained. The most interesting
case is that of high collimation where the spread in v
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satisfies hv„&vari/(Mbx„„~ ) and the acceleration limit is
achieved. In this case, the transverse coherence length of
the incident beam is greater than hx„„~ and the force I'
imparts a momentum larger than the transverse thermal
spread. Neglecting the transverse velocity spread terms,
the uncertainty product then takes the form

6

(b,x) (hp) = 1+ +
4 d 16 d

2

(31)

IV. CONCLUSIONS

The calculation of the form of the resolution function
and of the final-state wave function above justifies the
statements made in Ref. 7 on the basis of heuristic argu-
ments. The results for the ultimate spatial resolution
Ax„„~ show that very high spatial resolution is attain-
able for large spatially varying final-state level shifts. For
example, a samarium atomic beam of nominal speed
6 X 10 cm/s in a level shift gradient of 10' Hz/cm yields
a spatial resolution =70 A. To obtain this resolution, it
is necessary that Ax„„(bx,«,~

which is equivalent to
v„&A'/(2Mb, x„„~). For the above conditions, this re-
quires v„&3 crn/s corresponding to a beam collimation
better than 50 pm. The optimum Raman beam intensity
1/e radius d is about 140 pm in this case. Note that the
Doppler shifts due to divergence of the Raman beams

where do is the natural unit of distance along the
atomic-beam axis in the acceleration limit, Eq. (22). For
observation points not too far after the Raman region,
y —y, is of the order of Raman region size d and Eq. (31)
shows that a minimum uncertainty state is rapidly ap-
proached as the radius d is reduced somewhat below do.
Physically, this is easy to understand. When the radius d
of the Rarnan region is reduced below the size do which
achieves optimum position resolution in the acceleration
limit, atomic acceleration and diffraction during the tran-
sit time across the Rarnan region are negligible. In this
case, the atom in its rest frame sees a Gaussian frequency
pulse without chirping. Due to the linear spatial varia-
tion of the final-state potential, the Gaussian frequency
distribution selects out a Gaussian spatial distribution for
the final-state wave packet. This follows from Eq. (27)
when the quadratic terms in the phase due to v„and cu-
bic terms due to the acceleration are neglected, which
leads to a Gaussian spatial wave function for the final
state.

cancel if the beam radii are matched at the focus.
For large spatially varying level shift gradients, the fre-

quency resolution required to obtain the optimum spatial
resolution is not as stringent as for small gradients. In
this case, a simple one-photon transition may be applic-
able with long-lived excited states to achieve very high
spatial resolution. For example, in ' Yb, this method
can be applied to excite the 'So~ P, transition and ei-
ther absorption or resonance Auorescence in the interac-
tion region can be directly measured by modulating the
level shift gradient as done by Salomon et al. In this
case, for suboptical wavelength spatial resolution the
recoil momentum for a one-photon process will be negli-
gible compared to the momentum imparted by the spa-
tially varying potential.

An important application of the Raman-induced reso-
nance imaging method is in the development of tuo-point
correlation techniques. By employing two pairs of Ra-
man difFerence frequencies, it is possible to access two
separated spatial points with high spatial resolution. The
final states for each of the regions can be made either
identical or different so that the contribution of each re-
gion to the total detected signal can be made either dis-
tinguishable or indistinguishable. The use of two-point
correlation measurements opens up the possibility of
achieving the atomic analogue of the optical intensity
correlations originally explored by Brown and Twiss. In
this type of technique, only the transverse coherence
length needs to be longer than the spatial separation be-
tween detection regions. This type of detection can be
applied to perform atom antibunching experiments and is
likely to be of use in studying atomic spatial coherence.

The simplicity of the proposed optical measurement
methods suggests that experiments based on these tech-
niques may be useful in studying quantum-mechanical
features of atomic-position measurement in general. " In-
teresting applications include the creation and study of
one-dimensional wave packets, which, as shown above,
can be rninirnurn-uncertainty Gaussian states under ap-
propriate conditions. The evolution of position-squeezed
states' also may be observable with one-dimensional har-
monic wells based on spatially varying light-shift poten-
tials.
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APPENDIX A. DERIVATION OF THE GREEN'S FUNCTION FOR PROPAGATION IN A UNIFORM FORCE FIELD

According to Eq. (14) of the text, the required Green's function satisfies

i' 8 . I'
i

—i(x —xo)—+e GF(y,yi;x, xi)=5(y —yi)5(x —xi),2M g~~
(A1)

where a positive infinitesimal (e) is added to the equation to ensure causality. The Green's function can be found by
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Fourier-transform techniques. %e begin by assuming the form

6(y, y', x,x')= f f dk dk„G(k, k )e
(22r )

Substituting Eq. (A2) into Eq. (Al) yields

(A2)

f f dkzdk» 2 ikzvz+ik„u„+ k2+i x—o+e 6(k, k„)e' (2~)2

2~2
(A3)

The integral involving the derivative of the exponential, which arises from the x-dependent term in Eq. (Al), can be in-

tegrated by parts assuming 6(k, k =+~ ) =0. The surface terins then vanish, and the Fourier transform is found to

satisfy

' " +l kyuy+k„u„+ k2+ xo —le G—(ky, k„)=e y
x g 0 (A4)

Note that the same equation is obtained by Fourier transforming Eq. (Al) with f f dy dx exp —i(k y+ k„x ), provided

that 6 (y ~+~, x ~+ oo )~0. This equation is readily solved using an integrating factor. Let (for FWO)

Sk.' F
6(k~, k, )=A(k, k„)exp i ——k u +k„'v„+ " + —xo ie d—k,' (A5)

where a is an undetermined constant. Then,

F BA (k, k„)
Bk

kx ~~X F, —ik y' —ik„x'
=exp i — kv+k'v + +—x —ie dk' eF yy 2M

(A6)

This has the solution

k k"
x „$ x F, —ik y' —ik x'

A(k, k )=— dk" exp i —k v +k'v + +—x —ie dk' e
F x F y y x x 2M g 0 (A7)

Then

i2
tt

—ik y' —fk x' k„ Ak F6(k, k )=— dk "e ' " exp i —k—u +k'u + + —x ie dk'—
x F x F k" "" 2M i5x

(AS)

where the constant a in Eq. (A5) drops out. As k„~oo, 6(k, k„)~0 for positive F, since exp( (equi/F) f „"„—)~0. To
X

ensure that 6(k„~—oo )~0, we must take b= —m. However, if F &0, we need b=+ ~, so that k„")k„. Then,
again as k„—++ ~, 6 (k, k„)~0.

With Eqs. (A8) and (A2), the Green's function then takes the form

I2

G(y, y';x, x')= f f dk dk„e ' " —f dk,"e " exp i f —k u—+k,'v„+ " +—xo dk„'
21r 2 F b

" F k„-

(A9)

To incorporate the boundary conditions in an F-independent manner, it is convenient to change variables, letting
k„=(FIA)r, k„'=(FIR)r', and k„"=(FIR)r". Further, let b"=bl(FIR). Note that if F)0, dk„=~FIfi~dr and if
F &0, dk„= —~Flfi~dr In either case, .f" dk„~ ~FIR~ f" dr, since the limits of integration change sign with the

sign of F according to the above substitution. Then, with P:F IA, the Green's —function takes the form

6(y,y';x, x')=~P~ f dr e'~'"f dr"e '~' " exp —i f dr' Pr'u + r' +Pxo
2& b" 2M

ik [y —y' —u (v.—~")]
dk e

y 2'
(A 10)

The last factor is just 6(y —y' —v (r—r")). To ensure forward propagation, we want G~0 if y &y'. This requires
~& ~". Hence, we take b"= —~ independent of the sign of F. Then the Green's function becomes
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2

G(p p';xx')=I()l f" e(e e e''f*'
e(e e'e"*'exp —i f 'de (')e'e„+ e'+pxe 5(p —p' —e(e —e")) .

2K 7" 2M

(A 1 1)

By construction, r ) r", so that the fi function in Eq. (Al 1) is zero unless y &y'. In this case, the r" integration is readi-
ly carried out to obtain

G(y, y';x, x')=8(y —y') drexp iPrx —iP r — x' exp —if, dr' Pr'v + +Pxolpl - . . y
—y', . ~, , tip'r'

V —oc U r—(y —y')/U 2M

(A12)

The ~ integration in the phase is then carried out and yields

QQ 1
G(y, y';x, x')=8(y —y') dr exp iPr(x —x')+iP x' e'~',

Uy
—oo 277 Uy

(A13)

where the phase (t) is given by

y(r)= pu„ry —y + pv

Uy 2 V

&p' y —y'+ %', y —y' &p'

e

(A14)

It is convenient to make the substitution k =pr in Eq. (A13). In this case, for p) 0, f" dr~ f" dk/Ipl. For p(0,
f "„dr~f "—dk/Ipl = f" dk/Ipl. The Green's function is then given by

G(y y''x x')= y y dk exP ik x —x' —u„
8(y —y')

v
—" 2m' v

y

. haik y —y' . iriP y —y'
'2M v '2M'

y —y'
Xexp ip (x' —xo)+i

v 2 Vy

2
. &p'

6M v
(A15)

fhe form of Eq. (A15) can be improved somewhat by noting that in propagating the final-state amplitude, the integra-
tion over x projects out the plane-wave component of wave vector k', where k' 1s the coefficie of —x 1n the phase
which appears in the integrand above. With the substitution k =k —p[(y —y )/v ], k may be eliminated in favor of'

the integration variable k'. Then, eliminating the (') and using fip=F, one obtains

8(y —y') „1 y —y
GF(y, y2, x,x2)= f" dk exp ik x —x2 —v„

Uy 2'' vy

F
2M Vy

C

. Ak V Vz
exp —i

2M v

V V2

Vy

F V
—

yz Fv
&& exp i (x ——xo ) i-

fi v 2A

F2
'6AM

y-V' '

Uy

(A16}

which is identical to the Green s function given in Eq. (16) of the text.

APPENDIX B: DERIVATION OF THE INTEGRATED FINAL-STATE FLUX

To proceed, it is convenient to perform the x 2 integration in Eq. (15) first. From Eqs. (13) and (15) this requires eval-
uation of the integral

Vz V&I= f dzxG (Fy, zy, x,x }2exp ik, x2 —x', —v„
Vy Vy

k2i Vz
—

V
exp —i

2M
(B1)
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Using

I~&& —&4&f dx~ e ' '=5(k —k, ) (82)

yields

e(y —
yq )I=

Uy

3' 3'1
exp ik1 x —x1 —u„

Vy

3' 3'z

Uy

Ak1
exp —i

2M v„

Uy

F 3' 3'z .Fuz 3' 3'z
X exp —— (x —xv) —i

v 2A Vy

T 3
3' 3'2

6AM
(83)

The k, integration required by Eqs. (15), (83), and (13) is done next. This requires evaluation of the integral

1I, = dk exp ik x —x' —v12 1 1 x
Uy 2M Uy

F V Vz yi
2M u

Mv
exp +i x —x1 —v„2~ 2A(y —y, )

' "
v~

'2 2
F V 3'z

Vy 2M v

' 1/2

(85)

where the observation point y is chosen downstream from the Raman region such that y —y, &&d, and d is the radius of
the Rarnan region. Since the Gaussian shape of the Raman regions constrains yz—-y, to within a distance d, the e
function which appears in Gz can be taken equal to unity and the yz integration region formally extended to infinity.
With this result the final-state amplitude takes the form

A&(y, x)=— Ql; QII

Vs

4' l 6
x1A; y1,x1

X yz exp

'2
yz

d

F y —yz Fu„y —yz F
Xexp i —(x — )xoi—

'5 uy 2A v 6AM

3' 3'2

Uy

3

X exp

Mv y —
y1'+l X X1 U~

2'(y —y, )
' "

v~

iA y
2M u

1/2

2M uy

'2 2

F y yz

(86)

where the Rabi frequencies are evaluated at the peak of the Gaussian field distributions.
Our goal is to calculate the spatially integrated final-state flux at large distance downstream from the Raman region.

The final-state atomic fiux is proportional to J =v
~ AI(y, x)~ for the case of a collimated atomic beam. The total sig-

nal is then N ~ I ldz dx J, where the integrals extend across the atomic beam from —~ to ~. In order to take the

limit y —y, ~ ~ when the observation point is well outside the Raman region, it is necessary to do the infinite x-z in-

tegration before taking the large-y limit. In this way, all of the fiux is included at each value of y. Since the amplitude
is z independent, only the x integral need be explicitly done. Using dummy integration variables x', ,yz and x", ,yz' for
the final-state amplitude given in Eq. (86) and its complex conjugate, the required integral is given by
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Af y, X X— OI] QIf

7$
4u —ih

2

x1 dx1'A, y1,x1 A,
'

y1,x1'

MU

2A'(y —y, )
1 Vx

Uy

2
3' 3'1

X X1 V~
Vy

2

2M Vy

x f" f" dy'dy" exp

Mv
Xexp i

(» —vt)'+(y&' —»)'
2

I 2 2

F 3' 3'2

2M v~

.F y2 yz
exp i — (x —xo)

Uy

II 2 2
F y y2

Uy

r

Mv F
X exp i — 2 (x

3' 3'2
(x x))

Uy

F2
X exp

3' 3'2

Uy

3
3' 3'2

Uy

(87)

Note that the two terms proportional to (Fu„/2R)[(y —y&)/u ] cancel in Eq. (86), and hence do not appear in Eq.
(87).

At this point, the x integration is straightforward. We begin by rewriting Eq. (87) in the form

f ~ Af(y, x)~ dx =
7s

4U —id
f dx', f dx", A, (y„x', )A;*(y„x", )

(y&
—y, )'+(y,"—y, )'

X f2dy2 exp
oo co d2

.F V&
exp —i—

Uy

XO

.F'[(v —v l )' —(v —y~')']
exp —i

6A'MU

.F'[.(v —v'»' —(v —v ~' )']
Xexp i

8A'Mv (y —y, )

.F[x i (y —
V~ )' —x'i'(y —y&')']

Xexp i
2A'v (y —y, )

Mv
Xexp i

2A(y —y, )

3' 3'1
X1+Vx

Vy

2

x '&' +v„ I„, (88)
Uy

where

3' 3'1
4m

2M u

F(y~' —yz) Mu (x', —x", ) F[(y —yz) —(y —yz') ]
dx exp ix

Au A(y —y, ) 2fiv (y —y, )

and

=5(x", —x', +e) (89)

~(y&',y&)=, [(y~' —yi)' —(y~ —yi)'] .
2MV

(B10)

With Eqs. (88) and (89), one obtains
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Qf y~X X—
Vs

4v —ih
L

vy

.F y2 y2
X exp —i-

fi

y2 y2' exp

F2
xo exp i

RMV

(yz —yi )'+(yz' —yi }'
d2

g(y —y, )

[(y —
yz }'—(y —y z')'1

6

F[x i (y —yz }'—(x i
—~}(y —y 2')']

X x
& A,. y &,x & A,.

'
y &,x &

—e exp i
2A'U y

—y,

Xexp iMvy 2E x]+v„ 2A(y —y, ) (Bl 1)

In order to display explicitly the reality of the right-hand side of Eq. (Bl 1), it is convenient to make the substitution
x', ~x', + (e/2). Equation (B1 1) then takes the form

2

Qf y~X X

Vs
4v

(yz —yi )'+(yz —yi }'
X dy,'dy,"exp—

00 00 d

where

I II I
Iy(y, ,y, , X

i )
X Jdx; 2; y), x 1 +

L

(B12)

l(y —yz}'—(y —
yz )'l

Mv y —
y&+ x i+Ux

vy

F2
4(y2y2 xl}

g (y2 y2}xo+
AVy RMV

2fiu (y —y~) 2RU~(y —y, ) 2

l(y —y 2)' —(y —y 2')']

6

(B13)

Note that the right-hand side is invariant under complex
conjugation if the substitution y z~y z' is made (e changes
sign).

Next, we take advantage of the fact that the observa-
tion point y is chosen downstream from the Raman re-
gion at y„such that y —y, »yz —y, =d. In this case, it
is convenient to make the substitution u& =y2 —

y& and
uz=yz' —y&. Then, (y —yz)" —(y —yz )", which appears
in the phase P can be written in the form
(y —

y&
—u&)"—(y —y, —uz)" and expanded exactly in

powers of (y —y, ) » u; =d. Hence,

= —4(y —
y& )'(u

&

—uz)+6(y —
y& )'(u

&

—u 2)

(y —y' )2 —(y —y" )2= —2(y —y )(u —u )+u —u

(y —yz)'+(y —
y 2

)'
(B14)

These results are substituted into Eq. (B13)and terms are
collected which are proportional to (y —y, )" where n

runs from +2 to —1. It is found that all terms vanish
except for the one with n =0. The phase then takes the
form

P(u„uz, x', )=—

=2(y —y, )2 —2(y —y, )(u, + uz )+u i +u 2,

e= (u —u ).F
2 1

—4(y —y, )(u, —uz)+u, —uz,

(y —y,')' —(y —y,")'

= —3(y —y, ) (u, —uz}+3(y —y, }(uf —uz)

—u)+u2,

(u
~ uz)(x ~ xo)

AVy

(u, —uz}
2hv

F2
(u, —uz)' .

12RMV
(B15)
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The phase does not depend on the distance from the Ra-
man region y, to the observation point y. This is reason-

able, since the integrated Aux at observation points well

outside the Raman region (y —y, »d) should be in-

dependent of the observation position even when

I

diffraction and acceleration are present. Note that the
phase does not separate into two terms which are func-
tions of u, and u2 due to the cubic dependence on

u, —uz. With Eq. (B15), the integrated final-state flux is

given by

f dx
I A/(y, x)l =

~$
4v —id

2

fdx', f" du, f du2exp—
Q i +92

d2

X exp ~ (u ( u2)(x )
—xo)+ (u )

—
u 2 )+ (u —u )3

(B16)

where e(u ~, u2 ) is given in Eq. (B14).
»nce the phase Eq. (B16) is dependent principally on the difference between u

~
and ui it is convenient to make the

variable change u+ =(u, +u2)/2 and u =u, —u2. In this case, the Jacobian of the transformation is unity so that
du&du2=du+du . Integration is over the entire plane. Substituting u, =u++(u /2) and u =u —(u /2) into
Eq (B16),one obtains

dx A~ y, x
Ql, QII

7$
4'

f dxI f" du f du+exp
Q

2

2d
exp

2Q +
d2

FUx . F
Xexp —i

z u+ u exp i —(x I xo)u —i — u i
~Uy iUy 12iriMU

F FX A& y& x& u+u A' y& xI+ u+u . (B17)
2MU

' '
2~U & +

Equation (B17) gives the general result for the integrated flux in the fina state in terms of the initial state amplitude
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