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A system of coupled nonlinear Schrodinger equations (NLS) governs the interaction of propaga-
ting pulses in two-mode nonlinear optical fibers and directional couplers. Using NLS solitons as tri-
al functions in an averaged Lagrangian formulation, ordinary-differential-equation (ODE) approxi-
mations for the pulse dynamics are derived. These ODE's give a criterion for two pulses to attract
one another and form a bound state; they also describe the dynamics of the complicated oscillations
these pulses undergo in this bound state. In addition, the ODE dynamics show that collisions be-
tween these pulses are generally inelastic, in that there is an exchange between translational energy
and internal energy (due to pulse-width oscillations). The results of the ODE theory are verified by
comparison with numerical solutions of the governing partial differential equations.

I. INTRODUCTION

Propagation of distortionless pulses in polarization-
preserving nonlinear optical fibers and waveguides is de-
scribed by soliton solutions of the nonlinear Schrodinger
(NLS) equation:
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Due to their distortionless propagation, it has been pro-
posed to use these solitons as information bits in long-
distance optical communication systems. If the fiber or
waveguide supports two distinct propagating modes, the
interaction between the modes is modeled by a nonlinear-
ly coupled system of NLS equations. When the coupling
is only through instantaneous intensity overlap (as in cu-
bic Kerr media), such a system describes the interaction
of optical solitons in birefringent fibers, directional
couplers, and two-mode fibers. This interplay between
solitons is of current interest because of the constraints it
imposes on soliton-based optical communication systems.
It will be shown that two spatially separated solitons,
representing two distinct information bits, may attract
and form a bound state or a single soliton can split apart
into separate mode components, thereby leading to a de-
gradation of transmitted data. Furthermore, it will be
shown that complicated dynamics are exhibited by the
two interacting solitons, in which their positions oscillate
about one another and their envelope shapes deform as
they propagate down the length of the fiber.

Previous investigations of coupled solitons in two-
mode nonlinear fibers have used numerical simulations or
analysis of the Hamiltonian formulations of the govern-
ing equations. Numerical simulations have shown the at-
traction and formation of bound states between two soli-
tons and the reshaping of the pulse envelopes as the
bound pulses oscillate about each other. ' However, the
dynamical trajectories followed by the interacting pulses
are not clear from the numerical data presented.

Analysis of the Hamiltonian has shown that the oscilla-
tions in pulse positions are periodic if the position dis-
placements are small and has produced a potential func-
tion for pulse attraction, giving a threshold conditon for
two solitons to form a bound state. However, pulse en-
velope shapes were assumed fixed in the analysis, an as-
sumption not verified by the numerical experiments.
Furthermore, no quantitative comparisons were made be-
tween the derived soliton dynamics and true dynamics.

This paper presents analysis of interacting solitons in a
nonlinearly coupled system of NLS equations using the
average variational principle. Here the temporal shapes
of the pulses are assumed to take a specified form but
shape parameters such as pulse position and width are al-
lowed to evolve as the pulses propagate down the fiber.
With this assumption, the system of NLS equations
simplifies to a reduced Lagrangian problem. By taking
variations of the Lagrangian with respect to each pulse
parameter, the evolution equations for the parameters are
determined. By this procedure a finite-dimensional
ordinary-differential-equation model of the original
infinite-dimensional partial-differential-equation system is
obtained, with savings in both analytical complexity and
numerical computation. This variational method (as well
as its Hamiltonian counterpart ) has been utilized previ-
ously to analyze solitons in systems of uncoupled and
coupled NLS equations. Although it limits the evolu-
tion of the pulse shape to the ansatz chosen and so shape
changes cannot go beyond those modeled by changes in
the shape parameters, this method has been shown to
give quite accurate descriptions of the evolution of per-
turbed NLS solitons. ' '" Also, this variational method
gives accurate dynamics of solitons in weakly birefringent
fibers 'z

The present work presents the results of the average
variational principle as well as numerical simulations of
the coupled solitons to give a better understanding of
their dynamics and to indicate the extent to which the
Lagrangian method may be used to model such problems.
It will show that, by allowing an internal degree of free-
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dom in the assumed ansatz for the interacting solitons,
the ordinary-differential-equation (ODE) model gives
pulse dynamics which have qualitative characteristics of
the true dynamics which were unobserved in previous
analysis. Moreover, over a range of parameter values,
quantitative accuracy of the ODE model to true dynam-
ics is shown to be achieved. In particular, phase-plane
trajectories from both the ODE model and the numerical
simulations of the full partial-differential-equation (PDE)
problem are plotted together which will show the quanti-
tative accuracy achievable by this model.
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Governing evolution equations for nonlinear optical
fibers with two distinct modes operating in the anoma-
lous group-velocity dispersion regime are given by a sys-
tem of coupled NLS equations written in dimensionless
form as
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where u and U represent the complex-valued envelopes of
the two modes, t is the normalized reduced time, and x is
the normalized spatial variable along the fiber length.
Here, x is taken to be the evolution parameter. A is the
(scaled) coefficient of the nonlinear cross-phase modula-
tion (CPM) term and 5 represents half the difference in

group velocity due to linear birefringence. Using the
transformations

where parameters g, and V, represent pulse amplitudes
and velocities, respectively. Both (4) and (5) correspond
to the lowest-order NLS soliton. Although instabilities
have been observed for cases of strong coupling or for
asymmetric u and U pulses, these soliton solutions are
generally stable and robust to perturbations. Since both
superimposed and well-separated solutions have hyper-
bolic secant envelope forms, it is not unreasonable to ex-
pect that for moderate coupling strengths these sech
forms are preserved for pulses with intermediate separa-
tions. So, in the present analysis, a soliton-form ansatz
for the pulse shapes
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removes the linear birefringence term from (1) and rein-
troduces its eFect as an initial splitting velocity between
the modal components of a pulse as it is injected into a
birefringent fiber. This transformation gives
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For A « 1, (3) represents two-mode fibers or directional
couplers with weak intermodal coupling in the high-
intensity limit and, for A =—', , represents single-mode
birefringent fibers (where u and v represent the two-
linear polarizations). A =0 represents uncoupled NLS
equations and A =1 represents Manakov equations, '

both which admit soliton solutions as found by the in-
verse scattering transform method. '

A solution to (3) for exactly superimposed u- and U-

mode pulses is given by

is used, where the u-soliton shape parameters g, y, V, 8,
b, and cr (and their barred v-soliton counterparts) are real
functions of x. The parameters g, y, and 8'are related to
the three lowest-order moments of the u-soliton envelope
and represent, respectively, its amplitude, central posi-
tion, and width. The parameters 0., V, and b are related
to the three lowest-order moments of the u-soliton phase;
V represents the velocity of the soliton central position as
it propagates along the fiber length, and b represents the
frequency chirp of the soliton and is related to the change
of soliton width. Frequency chirping of optical pulses
has been proposed as a mechanism to achieve pulse
compression. "' Barred variables in (6) have equivalent
representations for the U soliton. Given this ansatz, the
evolution of the soliton parameters with respect to x is
determined by the averaged Lagrangian formulation
(note that for A %0, 1 the ansatz pulses are not solitons in
the strict mathematical sense —they are solitonlike
pulses).

The governing equations (3) restated in their Lagrang-
ian form become '

1. = J X(u, u*, v, v*)dt,

where the Lagrangian L is given by
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taking the variation with respect to each pulse parameter.

and (e ) represents complex conjugation. Note (7a) is a
function of x only since temporal forms of u and U are
given (6). A system of coupled ordinary differential equa-
tions for the pulse parameters are obtained by solving the
reduced variational problem

5 Ldt =0,

The resulting ODE system derived by this averaged La-
grangian formalism models the original PDE system.
Accuracy of this model in describing true pulse dynamics
depends upon how appropriately the pulse-shape ansatz
was chosen; it will be shown that, by inclusion of the
chirp parameter, the ODE model gives improved trajec-
tories as compared to those given by previous results.

III. PULSE PARAMETER EVOLUTION EQUATIONS

Solving the reduced variational problem, a coupled sys-
tem of eight ODE's for the soliton parameters is ob-
tained, with the u-soliton parameters given by
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and the U-soliton parameters given by
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where

K=g W,

K=g W

are constants of integration which arise out of the analysis. Note that these constants as well as two others,
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are related to three lowest-order conserved quantities
that the governing equations (l) obey
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where

I"=f ~y~ dt,

and now the Hamiltonian system has two degrees of free-
dom in y and W. Note (y, V) and ( W, b) are its conjugate
pairs. This system satisfies the reduced Hamiltonian,

J =i f (Vcp,
* V—*V, )dt,

H'= f" (lq, l' —I@I')«,

H =Hk+H;,

where

H =const,

(13)

W=W, b=b,
K=K .

H+~=2A f /q/'fq /'dt,

which, treating solitons as classical particles, ' indicates
that this system conserves individual "mass, " total
"momentum" and total "energy" of interacting solitons.
For the uncoupled system ( A =0), each NLS equation
separately conserves its mass (I",I"),momentum (J",J'),
and energy (H",H') (as well as an infinite number of oth-
er conserved quantities). ' With the nonlinear coupling,
although individual mass is still conserved, individual
momentum need not be. Only the sum of the two
momentums remains constant. H;"„," represents the e6'ect
of the coupling on the system energy. The inclusion of
the chirp parameters in the expression for the system en-

ergy allows soliton collisions to be "inelastic" —viz. , ener-

gy may be transferred from the relative motions of soli-
tons to excite internal pulse-width oscillations. More on
this subject will be said later. Pulse parameters o and 0.

drop out of the analysis since they are completely deter-
mined by the other parameters; this is due to the in-
coherent nature of the interaction —i.e., coupling in (3) is
independent of the relative phase between u and v.

Analysis of the pulse dynamics may now proceed by
solving the given ODE system. It is not possible to evalu-
ate the integrals in (8) and (9) explicitly, however, except
for some special cases. One such case is where the in-
teracting pulses are symmetric with respect to their mean
position, i.e.,

V= —V,

Hk(y, V, W)= —,
' V — F

2
2

H;(W, b)= b +—K—1 1

24 6 W

H; is a measure of the internal energy in each of the u

and v solitons taken up by pulse-width oscillations and is
the same as the formula for the internal energy of a per-
turbed NLS soliton. '

Hk is a measure of the energy in
the soliton pair taken up by relative motions of their
centers. More precisely, HI, is the kinetic and potential
energy due to the coupling of the u and v solitons; in fact,
F( ) is the potential function found previously for attrac-
tion between solitons where the pulse widths are assumed
fixed.

If frequency chirp is left out of the ansatz but the
width is allowed to vary, then (12c) and (12d) are replaced
by

B(y, W;K, A)=0,

which is an implicit equation for Win terms of y. The re-
sulting Hamiltonian system has only one degree of free-
dom and its trajectories are completely determined in the
(y, V) phase plane. Denoting this revised reduced Hamil-
tonian by carets,

H —+H,

H„
2

This simplifies (8) and (9) to
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and analyzing for a range of H values shows that, for
8 &0, pulses attract and form a bound state (y bounded
for all x), wherein the pulse central positions and widths
undergo periodic oscillations. Since the widths W are
completely determined by the central positions y, they
both oscillate with the same period. For H & 0, the pulse
pair has large enough initial separation velocity to over-
come the CPM-induced attraction. As x ~ ~, such
pulses "escape" and become well-separated solitons (5).
H=O gives the threshold between these two behaviors.
At this threshold, V in the revised Hamiltonian gives the
"escape velocity" V, for two initially superimposed
(y =0) solitons,

o. cosh' —sinho.F(a)=-
sinh'a

V= —'E 3 1+e 3 2
(14)

2y
8' '

In the (y, V) phase plane, H=O gives the separatrix
which separates the regions of bound and escaping soli-
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dispersive radiation from the pulses, a process which is
analogous to the production of continuous spectrum
modes in perturbed NLS solitons. ' This radiation dis-
rupts pulse dynamics by interacting directly with the soli-
tons and by carrying energy away from the pulses. Fig-
ure 4 shows that the ODE model feeds internal energy
back into the nonlinear kinetic oscillations, while in the
original governing PDE some internal energy is fed to the
radiating modes and is lost. This appears to be one of the
reasons that the two trajectories in Fig. 2 diverge, with
the oscillations of the true dynamics becoming smaller
than the oscillations given by the ODE model.

It has been shown that this radiation affects the dy-
namics of adjacent solitons over long distances in a com-
munication line, ' and so is not a desirable by-product of
pulse interaction. In particular, pulse dynamics are sensi-
tive to low-wave-number radiation which is observed nu-
merically as a low "shelf" at the tails of the interacting
pulses (Fig. 5). Such radiation propagates at velocities
close to that of the solitons and remains close to the
pulses and affects their dynamics over long time scales.

Nevertheless, the ODE model as is still gives a better
understanding of how CPM coupling of two solitons ex-
cite mutual and internal oscillations and gives quantita-
tive accuracy of true pulse dynamics for pulses close to
the exact soliton solutions of (3), with savings in both
analytical and numerical complexity. How to appropri-
ately include higher-order momentum and radiation in
the pulse-form ansatz is the subject of current work.

B. Escaping solitons

For superimposed u and v solitons with initial splitting
speed fast enough to overcome mutual attraction due to
CPM, the solitons escape and become well-separated
solutions (5) as x~~ (plus any emitted radiation).
When the pulse widths are assumed fixed, a threshold for
solitons to escape has been derived, giving a separatrix in
the phase plane dividing the regions of escaping and
bound states. For initially overlapping pulses, this
threshold gives a minimum splitting speed, or "escape ve-
locity, " for two interacting solitons. From (13), using the
same arguments as for the bound-state solitons, for ini-
tially unchirped pulses, the loss of initial kinetic energy
into the excitation of internal width oscillations
effectively increases the escape velocity from that given
by the previous analysis. This suggests that it is not just
the detuning of the soliton central frequencies which sta-
bilize coupled solitons against escaping, but that changes
in higher-order moments of the soliton phases also con-
tribute to the stabilization. To obtain this improved es-
cape threshold, the ODE system (12) must be solved.
The change in the escape velocity for certain values of A
is given in Table I. It is seen that this change is greater
for larger values of A. Numerical simulations of the
governing equations support the larger escape velocities
obtained from the ODE model.

Conversely, if instead of initial conditions (15) pulses
have initial chirp b&0, then the transfer of energy from
internal to kinetic motions can cause a decrease in the in-
itial velocity necessary for escape. Thus the presence of

0.1
2
3

no-chirp

0.252
0.596

chirped

-0.26
-0.75

frequency chirping in solitons injected into a birefringent
fiber may destabilize the bound state.

For the case of escaping solitons, the transfer of energy
between Hk and H; as the pulses evolve in x may be seen
in Fig. 6. After an initial period of exchange, Hk and H;
both approach constant values as x ~~. This quantifies
the obvious fact that the two processes, one for the kine-
matic pulse-center motions and the other for the internal
pulse-width changes, effectively decouple for escaping
solitons. The length of x for which Hk and H; undergo
significant changes may be considered the "interaction
length" for the two interacting solitons.

Analysis of the ODE model (12) suggests two possible
types of behaviors for escaping solitons. In one behavior,
occurring when the splitting velocity is large compared to
the escape velocity, widths of the escaping solitons oscil-
late due to the excitation of internal oscillations and the
solitons become, in effect, perturbed NLS solitons. ' In
the other, occurring where the splitting velocity is close
to the escape velocity, width increases linearly in x as
x ~ ~ but at the same rate as y increases (i.e., a=const).
The latter case is of interest since, in the limit x ~~, the
interaction solitons should decay, with pulse amplitude
g-1/~x, until they completely break apart into linearly
dispersive radiation. Linearly dispersing pulse solutions,
which are the asymptotic limits of this case, have been
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ing solitons as the pulses evolve in x. Initial conditions (15)
with V0=1.5 &0=1, and A =

—,. ( ) Hk and( ———) H, .

TABLE I. Escape velocity V, for given values of A from no-

chirp (14) and chirped (12) analyses.

Escape velocity V,
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Nq ~

FIG. 7. Intensity plot of
~
u

~
showing shadow solitons, for ini-

tial conditions (15) with Vo=0.75 (near threshold), go=1, and
A = —', . Plot rotated to show end profile. The ~v~ envelope is

mirror symmetric with the
~
u envelope about t =0.

analyzed previously for the uncoupled NLS system. '

However, this escape behavior could not be replicated in
numerical simulations of the coupled NLS. Numerics do
suggest, however, that the linearly increasing widths
herald the formation of shadow pulses, small daughter
pulses which split off from a soliton in one mode to prop-
agate alongside or "shadow" the soliton in the other
mode (Fig. 7). The width increase and the accompanying
longer soliton interaction time predicted by the ODE
theory may allow local nonlinear CPM effects to invali-
date the single NLS soliton assumption used in the an-
satz.

Numerical simulations show that the process of escape
is noisy in that appreciable radiation is emitted from the
separating solitons. As mentioned earlier, the possibility
of including radiation in the ansatz (6) is the subject of
current work.

IV. SUMMARY AND CONCLUSIONS

An averaged variational principle using NLS solitons
with varying parameters as an ansatz has been used to
analyze the soliton-soliton interactions in a system of
nonlinearly coupled NLS equations. The parameters
chosen are essentially the lowest-order moments of the
soliton envelopes and phases. The variational principle
gives a straightforward Inethod to determine the evolu-
tion of the pulse parameters which are considered to be
of significance and reduces the original infinite-
dimensional PDE system for the pulse waveforms to a
finite-dimensional ODE system for the pulse parameters.
It has been shown that the inclusion of frequency chirp-
ing and width variations and the additional internal de-
gree of freedom it gives in the resulting Hamiltonian sys-
tem causes soliton-soliton collisions to be inelastic.
Furthermore, it has been shown that their inclusion al-
lows energy to be exchanged between the kinetic pulse-
center motions and the internal pulse-width oscillations.
When the solitons form a bound state, this causes soliton
dynamics to lie on quasiperiodic orbits. When the two
solitons escape, this causes an increase in the threshold
escape velocity and acts to stabilize the bound state for a
given value of Hamiltonian energy. Moreover, greatly
improved quantitative accuracy in predicting soliton dy-
namics compared to previous ODE models is achieved.
This work also shows that to obtain models with an even
higher degree of approximation to the true pulse dynam-
ics, the effects of higher-order envelope moments and ra-
diation, which draws energy from internal oscillations
and away from the solitons, must be included in the
pulse-shape ansatz. This is the subject of current
research.

ACKNOWLEDGMENTS

The authors would like to thank Professor Alejandro
B. Aceves for helpful discussions initial to this work, and
David J. Muraki for many valuable discussions
throughout the course of this work and for providing his
numerical routines. This research was supported in part
by grants from the National Science Foundation (Applied
Mathematics, Grant No. 8451768 and Scientific Comput-
ing Research Equipment Grant No. 8905616) and by a
grant from the Air Force Once of Scientific Research
(Mathematical Sciences, Grant No. 85-0150).

'A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
2C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987);

Opt. Lett. 12, 614 (1987); IEEE J. Quantum Electron. QE-25,
2674 (1989).

3S. M. Jensen, IEEE J. Quantum Electron. QE-18, 1580 (1982);
Y. Silberberg and G. I. Stegeman, Appl. Phys. Lett. 50, 801
(1987).

~B. Crosignani and P. Di Porto, Opt. Lett. 6, 329 (1981).
~E. M. Wright, G. I. Stegeman, and S. Wabnitz, Phys. Rev. A

40, 4455 {1989);C. R. Menyuk, Opt. Lett. 12, 614 (1987); J.
Opt. Soc. Am. B 5, 392 {1988).

V. V. Afanasyev, Yu. S. Kivshar, V. V. Konotop, and V. N.
Serkin, Opt. Lett. 14, 805 {1989).

7E. Caglioti, B. Crosignani, and P. Di Porto, Phys. Rev. A 38,

4036 (1988).
8G. B. Whitharn, Linear and Nonlinear Waues (Wiley-

Interscience, New York, 1974).
D. Anderson, Phys. Rev. A 27, 3135 (1983); D. Anderson and

M. Lisak, ibid. 32, 2270 (1985);Opt. Lett. 11, 174 (1986).
' D. Anderson, M. Lisak, and T. Reichel, J. Opt. Soc. Am. B 5,

207 (1988).
D. Anderson, M. Lisak, and T. Reichel, Phys. Rev. A 38, 1618
(1988); M. Desaix, D. Anderson, and M. Lisak, ibid. 40, 2441
(1989).

' D. J. Muraki {private communication).
'3S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov.

Phys. —JETP 38, 248 (1974)].
A. C. Newell, Solitons in Mathematics and Physics (Society for



42 DYNAMICS OF COUPLED SOLITONS IN NONLINEAR. . . 571

Industrial and Applied Mathematics, Philadelphia, 1985).
~~D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1

(1982).
' G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, Phys. Rev. A

40, 5063 (1989).
D. J. Kaup and A. C. Newell, Proc. R. Soc. London Ser. A

361, 413 {1978).
t8J. Satsuma and N. Yajima, Prog. Theor. Phys. 55, 284 (1974i.
' K. Smith and L. F. Mollenauer, Opt. Lett. 14, 1284 (1989).

L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyuk,
Opt. Lett. 14, 1219 (1989).


