
PHYSICAL REVIEW A VOLUME 42, NUMBER 9 1 NOVEMBER 199P

Intrinsic optical bistability for coated spheroidal particles
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We present results on the nonlinear-optical response for a series of dielectric particles having
nanometer sizes that are coated with a metallic shell. Using the freedom of changing particle
shapes and coating thicknesses, we optimize the threshold intensity for intrinsic optical bistability.
The metallic shell creates an enhanced local field in the nonlinear core. We report threshold inten-

sities for silver-coated CdS as low as 12 W/cm'.

I. INTRODUCTION

Engineered dielectric properties of heterogeneous ma-
terials for special applications has been a well-developed
field for many years. ' Recent research has discovered the
possibility that enormous enhancements can be expected
for nonlinear-optical response in composite materials
containing metal particles. Composite materials are
made from small grains of semiconductor or metal parti-
cles that are dispersed in a glass matrix or a liquid. The
particles are much smaller than a wavelength, but still
large enough to be considered a bulk material, i.e.,
several nanometers in diameter.

There are two reasons to expect enhanced nonlineari-
ties in these composite materials: (i) the particles have
nanometer sizes and therefore the quantum confinement
of the carriers can lead to increased binding and
enhanced oscillator strengths, and (ii) the local electric
field inside the particles can be enhanced due to the
difference between the dielectric properties of the particle
and the host material. In metal particles the surface-
plasmon resonance is used to obtain a strong enhance-
ment of the local field.

In previous papers, we reported calculations predicting
intrinsic optical bistability (IOB) in a composite material
consisting of silver particles embedded in a silica matrix
near the surface-plasmon resonance. ' In these materials
IOB occurs without a cavity because a resonance in the
medium can be dynamically shifted by changing the in-
tensity of the light in the medium. In our earlier paper,
we obtained a threshold intensity of 200 MW/cm for
silver particles. The threshold intensity can at best be re-
duced to about 20 MW/cm by optimizing the shape of
the silver particles. There is not much more that can be
achieved with metals alone because the nonlinear
response of these materials is weak. Furthermore, the ab-
sorption of electromagnetic waves is considerable so that
the concentration of meta1 particles must be kept small.

The surface-plasmon resonance has also been proposed
as a mechanism to increase the intrinsic nonlinearity of
coated spheres. We have studied these particles and op-
timized the coatings to produce enhancements of the
nonlinear Kerr coefficient of several orders of magnitude.
The coating offers another important degree of freedom
in engineering the properties of the medium to find the
largest nonlinear effects. For instance, the core of the
particle can be chosen as a material which has an intrinsi-
cally large nonlinear response, such as a semiconductor
nonlinearity due to an exciton resonance. The metal
coating material is then chosen to enhance the field at the
resonance frequency by using a surface-plasmon reso-
nance effect.

Both the shape changes and the coating of the particles
give us the freedom to optimize the threshold intensity
for IOB in these new materials. ' This is reported in this
paper. The rest of the paper is organized as fo11ows. In
Sec. II we develop the theory treating single particles, the
effective-medium theory and propagation effects. In Sec.
III the results for several materials are reported and the

optimization of these properties is discussed. We use ex-
perimental parameters for the semiconductors CuC1,
CdS, and GaAs, for the silver and for the silica glass host
material dielectric properties. Finally, in Sec. IV we
present our conclusions.

II. THEORETICAL DEVELOPMENT

This section is divided into three parts: single-particle
properties, effective-medium calculations, and propaga-
tion effects. In the first part, we present calculations for
coated spheroidal particles. The second treats a medium
consisting of a low concentration of these particles,
which are oriented with respect to one another; the result
is a dielectric function that treats the medium as homo-
geneous on the macroscopic scale, which is of course an
effective medium. The third part uses the effective-

42 5613 1990 The American Physical Society



5614 KALYANI%'ALLA, HAUS, INGUVA, AND BIRNBOIM 42

medium dielectric functions in Maxwell s equations and
discusses the method of solution of the resulting equa-
tions.

A. Single particles

r, =(Ii, /a, ), (2)

where b, and a, are the minor and major axes of the par-
ticle at the outer surface of the shell, respectively.

The spheroidal coordinates g, and g, define the outer
surface of the core and the shell. When the core-shell in-
terface is used the coordinate is g, ; g, denotes the inter-
face between the shell and the dielectric host.

The coordinates g„are succinctly defined in terms of
the eccentricity of each surface. The eccentricity of the
core-shell interface e, =(1 r, )' and th—e eccentricity of
the shell-host interface e, =(1—r, )'~ . For a prolate
spheroid the coordinate in the coordinates are

We consider spheroidal particle shapes, as illustrated
in Fig. 1. Each small particle is taken to be composed of
a spheroidal core of a given aspect ratio

r, =(b, /a, ),
where b, is the minor axis and a, is the major axis. The
particle shell is confocal with the core; the ratio of the
minor to major axes is

Em —
y E TPl (6)

where Eo is the applied field in the host medium and y
is called the enhancement factor:

(5)

The dielectric function e,&
is the complex linear part of

the core dielectric function, g,' ' is the complex Kerr
coefficient for the core material, and EI is the electric
field in the core of the particle. Our Kerr-medium results
are compared with specific models which include satura-
tion in CuC1, CdS, and GaAs to show that our values are
well within the limits imposed by the Kerr-medium ap-
proximation. The shell is metallic and has a complex
dielectric coefficient e„which is assumed independent of
the field. The particles are embedded in a host dielectric
material, which is assumed to be have a linear, lossless
dielectric response ez.

Since the nonlinearity is restricted to the core region,
we need only calculate the local field in the core to find
the enhancement of the optical-nonlinear response. Since
we assume that the particles are small compared to the
wavelength [i.e. (2ir/A, )na, «1, where n is the index of
refraction of the metal], the quasistatic or Rayleigh ap-
proximation can be used. For the general case of the
confocal spheroids (considering the z axis to be the direc-
tion of the symmetry axis of the particle} we obtain the
expression for the local field in the core material:

g„=1/e„.
For the oblate spheroid the coordinate in the coordinates
g„are imaginary and given by

= [( 1 —e2 )/e2 ]1/2 (4)

(1+A, }(1+A, )ei, e,

(e, +A, e, }(e,+A, ei, )+I™(e,E, )(e, ——
ei, )

(7)

In the following development, the nonlinearity is re-
stricted to the core region and is taken to be of the Kerr
type. The dielectric function for the core material is thus

We label the nondegenerate axis with the superscript
m =0 and the degenerate axes are labeled with the super-
script m =1. The minor axes are degenerate in a prolate
spheroid and the major axes are degenerate in an oblate
spheroid. We note that the denominator of Eq. (7} is a
quadratic function of

I EL I, through the field dependence
of e, given in Eq. (5). Therefore the relationship between
the local-field amplitude and the applied-field amplitude
is a cubic equation. The constants A, are shape factors
for the inner spheroid. A, are shape factors for the
outer spheroid. I J are the shape factors which depend on
the volume fraction of the shell. For the prolate
spheroids the constants are (p=c or s )

&) (g„) Qi (g„)

FIG. 1. Coated confocal spheroids. The core material is the
nonlinear medium and the shell is metallic.

The functions P„(x) and Q„(x) are the associated
Legendre functions of first and second kind. The primes
denote derivatives of these functions with respect to the
argument. For oblate spheroids, substitute ig„ for g„ in
the arguments of the functions. We shall use the conven-
tion in this paper of quoting results for the prolate
spheroids and the oblate spheroid results are obtained by
substitution of i( and g in the arguments of the special



INTRINSIC OPTICAL BISTABILITY FOR COATED. . . 5615

I m

In the case of the coated sphere (i.e., in the limit
e„((1 ) the shape coefficients reduce to

Am

functions. The functions I™introduced in the right-
hand side of Eq. (7) are given by

~P(k, ) QP (k, )
(9)

Q (g, ) pp (f, )

O

a
0$

I m
a,

a,

3 (10)

Substituting these values in Eq. (6), the solution for the
local field of coated spheres is independent of the direc-
tion of the applied field and we drop the superscript m;
the expression is

9&h Es
E Eo.

(6 +2E, }(e,+2eh )+2(a, /a, ) (e, —e, )(e, Eq
—)

a
CS—

0.0 13.0 28.0 38.0 52.0 86.0
)PcWlcm')

FIG. 2. Applied-field intensity vs local-field intensity for ob-
late spheroids with a silver shell and CuC1 core. Field applied
parallel to the symmetry axis.

We return now to the general relationship between the
applied field and the local field inside the particle given
by Eq. (6). We introduce two new scaled variables x and
y. The square of the amplitude of the fields is denoted as

I Em I 2

and

y = I9e, e„EO I' . (12}

The modulus squared of Eq. (6) is succinctly expressed
when we introduce the notation

D =Do+Dg IEL I' (13)

for the denominator of the enhancement factor in Eq. (7).
Equation (6) is transformed into the cubic equation

ID~ I'x'+2 Re(DOD f )x'+ IDOI'x —y =o . (14)

Re(} denotes the real part of the quantity in parentheses
and the asterisk superscript is complex conjugation of the
variable. When this equation has three real roots in x for
one value of the applied field y, the medium exhibits a
bistable response. Each particle exhibits an intrinsic bist-
able phenomenon because it does not depend on feedback
from an externa1 cavity. The condition for the existence
of optical bistability in a single particle is

4Re(DOD* } 3IDOI ID, I' (15)

In the rest of this paper we test for the existence of IOB
for various shell and core materials and optimize the
geometric shape and the volumes of the core and shell
materials.

The local-field intensity versus the applied-field intensi-
ty is shown in Fig. 2. We have chosen CuC1 for the core,
and the laser operating wavelength of 386.72 nrn, which
is close to the biexciton resonance. The shell material is
silver and the host material is silica glass. The data for

IE I'=(lyol'cos'~+ ly I'»n'0}IE I', (16)

where 8 is the angle that Eo makes with the axis m =0.
both yo and y &

depend on
I EI I

through e . The second
term has a small enhancement factor and for 0 small, sin
8 is also small. For instance, when Iol =0.3, the second
term in Eq. (16} is only a 10% contribution to the total
expression without accounting for the dominance of the
enhancement factor yo. In this example, the orientations

the linear dielectric constant of silver were taken from
Ref. 11 and we used data for silica glass from Phillip. '

The nonlinear susceptibility y,' ' was calculated from the
exciton-biexciton model for CuC1 the salient features of
this model are presented in Sec. III. The threshold inten-
sity is at point A in Fig. 2 and the local field jumps
discontinuously to the upper branch when the applied
field is increased; beyond this the applied intensity at
point A is about 60.5 kw/cm at a wavelength 386.72 nm.
This represents a reduction of 10 over the threshold in-
tensity of uncoated metallic spheroidal particles. It
would be of great interest to synthesize particles of a
prescribed geometry to precisely engineer the nonlinear-
optical response. Further results for other materials are
given in Sec. III.

The foregoing results are made for one particular
orientation of the spheroidal particles. If the individual
particles are not perfectly aligned in the medium, then
the threshold intensities will be different among the col-
lection of particles. However, this dependence is relative-
ly weak, as we now show.

According to Eq. (6), the components of the local field

(EL EL ) have diFerent enhancement factors yo and y, .
Let us assume that we are tuned near the surface-
plasmon resonance for m =0, i.e., Iyol &) Iy, l. The mag-
nitude of the local field is related to the enhancement fac-
tors and the applied field by
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can differ by +20 without significantly changing the
threshold intensities.

B. ES'ective-medium approximation

%hen the nonlinear particles are dispersed in a host
dielectric, the optical properties of the composite materi-
al will be quite different from the homogeneous host ma-
terial. Nevertheless, an effective dielectric function can

be used to describe the average optical response of the
heterogeneous medium.

Since, in our case, the volume fractions of the particles
are very low (f-10 —10 ), a much simpler descrip-
tion will suffice. If each of the coated inclusions were
treated as a dipole, their contributions were summed up,
and net polarization found for the medium, one could
determine the effective dielectric function. For a single
particle, the dipole moment (see the Appendix) is

Eo r (e, —e„)(e,+A, e, )+G (e, —e, )(e„+A, e, )

4~ (e, +A, e, )(e, +A, e„)+I (e, —
&, )(&, —&„)

(17)

where the two new coeScients in the numerator are
(m =0, 1)

I' 5 3

g (g —1),4m c z

3 2 s s (19a)

P) (k, )Q) (k, )

Q) ($, )P) (g, )

and for a prolate spheroid

(18a) and the oblate spheroid's volume is defined by
3

V= — (,(g, +1) . (19b)

P) (, )
7 = (1+5 o)

Q) (g, ) g, (g,
' —1)

(18b)
The density of particles in the medium is N; the polar-

ization when the particles are oriented in the same direc-
tion is

where 5 o is the Kronecker delta. We give the explicit
result for the oblate spheroid:

P) (i, )=(1+5 0)
Q) (ig, ) g, (g, +1)

(18c)

V is the volume of the coated particle. The volume of the
prolate spheroid is

I' =Np (20)

where p is given by Eq. (17).
The displacement field is related to the electric field

and the polarization by D = e& E+4~P. The polarization
is proportional to the volume fraction of the coated parti-
cles, which is denoted by f=NV. Since the average
dielectric tensor is defined by D=e E, we find that it is
diagonal and its components are given by

fr ~k (e, —~k)(~, +A, e, )+G (e, —~, )(~k+A, ~, )
m 6h+

(e, + A, e, )(e, + A, e„)+I™(e,—e, )(e, e„)— (21)

C. Propagation

We start with the wave equation for plane waves prop-
agating along the x axis. %e have for m =0 the z polar-
ization, and for m = 1, the y polarization of the light

4
x 2 c2 cjt2 c2 Qt2

(22)

The nonlinear response is contained in the effective
dielectric function e of Sec. IIB. %e introduce the

We remind the reader that Eq. (21) assumed that the
particles are oriented inside the medium, but otherwise
they have random positions. From Eq. (21) we note that
the material exhibits both a linear and a nonlinear
birefring ence.

slowly varying envelope function Eo(x, t), which is relat-
ed to the electromagnetic field E by

i(kx —era) (23)

aE, l aE,+
Bx Ug

c —Re(e)
Eo =0 . (24)

2ug Re(e, )

The group velocity is u =c k/co Re(e, ). This equation

where co is the angular frequency of the laser light. In or-
der to simplify the notation, we suppress the subscript m
on Eo and k. The wave number k depends on the polar-
ization and is chosen as k =(tu /c )Re(e, ), where e)
is the linear portion of the effective dielectric function in
Eq. (21). This choice of k leaves a first-order differential
equation for the slowly varying amplitude
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is the basis for our study of light propagation through the
heterogeneous material.

III. RESULTS AND DISCUSSION

Using the results of Sec. II we have performed numeri-
cal calculations on four different core materials coated by
silver and with the host medium silica. For single parti-
cles we first optimize the particle shape and coating
thickness so as to obtain the lowest value for the critical
intensity at a particular frequency. The final optimal
shape depends on the driving frequency of the laser, and
the threshold values are very sensitive to the detuning.
The sensitivity is dependent on the width of the reso-
nance in the core material. This sensitivity will be dis-
cussed below.

Once the lowest thresholds at the appropriate laser fre-
quency are achieved, we determine the nonlinear change
of the dielectric constant in the transition between the
two branches of the local-field solutions. The core ma-
terial chosen in Fig. 2, CuC1, was selected because of its
wide band gap and large nonlinear response. Our values
are taken from Haus and co-workers; the exciton-
biexciton model has provided a good description of the
nonlinear response below 77 K.

The dielectric function in the steady-state regime is
given by

TABLE I. Model parameters for CuCl.

4mg)
2

gz
COe

COb

Pe
3 b

5

27.5 meV
1.8 X 10 MJ meV'/cm
3202.7 rneV
6372.5 meV
0.03 meV
0.3 meV

effect on the propagating field in the CuC1-silver-
silica —composite medium. The dielectric function has a
second discontinuity as the applied-field intensity is de-
creased; at point B in Fig. 2 the local field intensity can
no longer be sustained at a large value and it collapses to
a much smaller value on the lower branch.

We numerically solve Eq. (24) using standard integra-
tion methods. The thickness of the medium is 5 pm.
Figure 4 is a plot of the applied-field intensity inside the
medium for four values of the input intensity. The inten-
sity of the applied field is continuous; at small values of

4mg )
6'

c 6~+
s ~ — '~z, ~'

(25)

The complex detuning parameters for the exciton reso-
nance are

5 =coe co l 1'e

and for the biexciton resonance they are

(26a)

—Nb 2Ct7
—1 P b (26b)

The numerical values of the coefficients are given in
Table I. The Kerr coefficient is given by

I I I I

0.0 13.0 28.0 88.0 52.0 86.0
(kW/ears )

2 2
47Tg ]g

(27)

o (b)
we have checked the convergence of the Taylor series ex-
pansion in our numerical results.

For the results reported in this paper, the dispersive
contributions to the detuning are (co, —co)/y, = —118
and (co&

—2')/y& = —133.3. This is far from either reso-
nance and the y', ' is dispersive; the absorption contribu-
tion is less than 1% of the dispersive portion.

The change of the real and imaginary parts of the aver-
age dielectric function, Eq. (21), are plotted in Figs. 3(a)
and 3(b). These changes are much smaller due to the
small volume fraction of particles in the medium

f=10 . In CuC1 both the real and imaginary parts of e

increase for the high local-field branch, i.e., after the
applied-field intensity exceeds the value given at point A

in Fig. 2. The increase in the imaginary part of F is
directly related to an increase in the absorption of light in
the composite medium, which will have a significant

O
O—

I I t I

0.0 13.0 2B.O 39.0 52.0 B5.0
I (kW/cm )

FIG. 3. (a) Real and (b) imaginary parts of the effective

dielectric function for CuCl-Ag particles embedded in silica;
f= 10
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TABLE III. Model parameters for GaAs.

7x

12.6
48.8
0.1 meV

1515.5 meV
150 kW/cm2

p(5+i)
5 +I+iEL/ //E, i

(28a)

where 5 is the detuning of the laser from the exciton reso-
nance and is given by

(28b)

where y„ is the resonance width for low intensities. The
parameter ~E, ~

is the saturation field for the excitation.
In Tables II and III we quote the equivalent intensities
Io =(cn/8m ) ~EO . The parameters for CdS and GaAs
are found in Tables II and III. The Kerr coefficient for
the two-level model is

(29)

in our studies the maximum value of the Taylor-series ex-
pansion parameter is 0.1. For CdS we chose the ratio of
detuning to resonance width as 5=4.75 and for GaAs it
is 5=3.79. In these materials we are tuned below the res-
on ance.

Table IV summarizes our results for the three semicon-
ductors discussed above. The laser wavelength and

geometric factors are reported along with the expected
switching intensity and the change of the
semiconductor's refractive index. The changes are small
and they are consistent with the Kerr approximation we

made in the numerical results. The conversion between

energy in eV and wavelength in nm is sensitive to the

nance and help lower the threshold. GaAs has a band
gap in the infrared, and the silver dielectric constant is
broadened at these frequencies; a two-level model applied
to the material at 77 K as well. ' The values of y' ' are
also complex for these materials and their values are
determined from a two-level atomic model taken from
the literature. ' '

The dielectric function for the two-level atomic model
1s

conversion factor. the relation
E(eV) = 1239.854/A, (nm).

A fourth entry in Table IV includes the polymer core
polydiacetylene (PDA). The advantage of PDA is its
small linear dielectric constant a=2. 2 and low absorp-
tion. The aspect ratio was made smaller than the other
materials. We found a small change of the refractive in-
dex. The Kerr coefficient is g,' '=10 esu for PDA,
which is much smaller than the value used for the semi-
conductors. The switching intensity is still reasonably
small at 4.3 MW/cm, but not as low as the semiconduc-
tor core materials, which have much larger values for
x',"

We use

IV. CONCLUSIONS

We have presented results on a composite material
consisting of metal-coated particles with a nonlinear core.
We have optimized the particle shape and coating thick-
ness to obtain low thresholds for a set of four core ma-
terials. In this paper we reported results on oblate
spheroids, although similar results were obtained with
prolate spheroids.

The results presented in Sec. III (see also Table IV)
show that the CdS core is by far the best material for fur-
ther study. We have found a switching threshold of 12
W/cm. This represents a reduction of over six orders of
magnitude from our previous results with silver particles
alone.

In the event that the optimum shape and coating thick-
ness cannot be fabricated, we still expect that very low
thresholds can be achieved using these materials. Our in-
tensities are within the limits of validity of the Kerr ap-
proximation and the changes of the refractive index are
small.

The materials also have the advantage of a relatively
low-absorption coefficient, so that the particles can be
packed to a high density in the host medium. At high
densities, dipole-dipole interactions become important;
this problem is currently being investigated.

As candidate materials to exhibit the intrinsic bistable
eff'ect, we propose that the material CdS be investigated
further; it has an extremely low switching intensity. The
technology for fabricating these particles in nanometer
sizes is already achieved; new techniques need to be
developed to coat the particles and engineer their shape.
It is important to have precise control over the particle
shapes; small variations will significantly shift the reso-
nant frequency. The threshold intensities of these materi-

TABLE IV. Parameters for selected materials.

Material

CuCl (oblate)
CdS (oblate)
GaAs (oblate)
Polydiacetylene

(oblate)

Geometry
a, /a,

0.922
0.128
0.892
0.922

0.678
0.762
0.436
0.361

(nm)

386.7
485.35
818.32
810.45

Switching
intensity
kW/cm2

37.1

0.012
29.3
4.33 X10'

—0.143
—0.352
—0.01

0.0002
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als are well below the saturation values. The switching
times of CuC1 will be subnanosecond; this combined with
the low-threshold intensity makes this material particu-
larly promising for further investigations and possible de-
vice applications. We are optimistic that this new class
of materials will provide real progress toward photonic
materials that have potential device applications.
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which reduces Eq. (A4) to

E,[P—, (g)+BQ, (g)]P, (g)e™". (A7)

APPENDIX

The single-particle geometry is determined by the ec-
centricities of the core and shell, and the thickness of the
metallic coat. In addition, we impose the constraint that
the outer surface of shell be confocal with the surface of
the core. If the foci of the spheroid are at +c/2 then

The boundary conditions can now be applied to Eq.
(A7). Across each interface, we require (a) the potential
to be continuous and (b) the normal component of D to
be continuous:

(A8)

(g2 b2)1/2 (g2 b2)l/2
c 2 s s 7

g[1—($ /g )]/=g[1 —(b/g )] (A2)

a, e, =a, e, . (A3)

This reduces the number of independent parameters to
two. We pick these to be the aspect ratio of the core
(which defines e, i, and the ratio of the core and shell ma-

jor axes.
To solve for the local field in the core of the particle, it

is convenient to work with the appropriate spheroidal
coordinates system (g, il, p). ' In this system, surfaces of
constant g are spheroids, those of constant il are hyper-
boloids of two sheets, and those of constant y are planes
containing the e, axis.

We take the spheroid with its symmetry axis along the
e, direction, the incident field Ep=Ep e, for m =0, and
Ep=Epe for m =1. Since we are in the quasistatic re-
gion (A, «a, ), we only need to solve Laplace's equation,
the general solution to which can be written

e=y ~i, [Pi (k)+Bi,mQl (4)]Pi (n)e' ' «4)
l, m

This expansion is used to write the potential for the three
regions: the core, the shell, and the host material exter-
nal to the particle. For very large distances from the par-
ticle the potential is

Note the p~ will not have a term in Q i (g) as this is
divergent at (= 1. Solving Eq. (Ag) for the potential in
the core,

ij/. =B.Pl (k)P1 (i)) . (A9)

Defining A, , A, , and I™as in Eqs. (6) and (7), and solv-

ing Eqs. (AS), we find the local field in the core to be

Em ~ Em (A10)

where y is given by Eq. (7). Next, to find the dipole
moment of the single particle, we look at the potential
outside the particle:

(A 1 1)

The first term is the potential due to the external field.
The second term in the expression [i.e., the term in

Qi (g)] is the potential due to a dipole. Hence its
coefficient —(c/2)EOB, is related to the induced dipole
moment of a particle. The second term decays asymptot-
ically as 1/r; the coefficient is related to the dipole mo-
ment, which is given in Eq. (17).
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