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Stability of solitary waves in a nonlinear birefringent optical fiber
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In this paper the pulse solutions to the pair of partial differential equations governing light in a
nonlinear, birefringent fiber are considered. A direct proof of the nonintegrability of the equations
is given and attention is restricted to the stationary solutions. These are parametrized in terms of
the physical conserved quantities and the relationship between the conserved quantities indicates
when certain pulse solutions become unstable. This theoretical prediction is tested against numeri-

cal simulations.

INTRODUCTION

In a birefringent "monomode" optical fiber there are
two polarization modes that need to be considered. ' The
small birefringence arises from a geometric and a materi-
al contribution. The material contribution is caused by
the strain within the glasses forming the core and clad-
ding averaged over the cross section of the fiber with the
average weighted according to the intensity of the light.
The geometric contribution comes from the ellipticity of
the core of the fiber breaking the cylindrical symmetry.
We can model a large range of behavior in these fibers by
considering the slowly varying amplitude of a single-
frequency carrier wave. If we assume that both the
coefficients of dispersion and the group velocities are
identical for the two polarization modes, that the disper-
sion is purely second order, and that the only nonlineari-
ty is a cubic Kerr effect, then the amplitudes of the en-
velopes of the two modes are governed by

ie, +e«+y e+a(e e')e+b(e e)e'=0,
where e is a vector of the complex amplitudes of the en-
velopes of the carrier beam, g is the birefringence tensor,
and a and b are the coefficients of the Kerr nonlinearity
tensor. The tensor g is real, symmetric, and traceless, so
a real basis transformation will cast it into the form
(o „). The two modes parallel to these principal axes of
y are called the fast and slow modes. We normalize ac-
cording to convention so that a+b =1, leaving the in-

tensity in dimensionless units and giving the equations re-
lating the fast and slow components of e = ( u, v) as

iu, +„u+utc+(a~ ~u+ ~u~ )u+(1 —a)(u +v )u*=O,

iv, +u„—thou+a((u( + (v( )v+(1 —a)(u +v )v*=0,

where the subscripts t and z denote differentiation with
respect to normalized time and distance down the fiber.

If we restrict attention to waves in a single principal
mode (either u =0 or u =0), then we get the simple non-
linear Schrodinger equation for the nonzero mode

t g, + g„+ting+ ~g~ /=0, P= u, u .

Considerable analytical and numerical work has been

done for cw light and various pulse initial conditions.
In their paper, ' Tratnik and Sipe use a variant of
Hirota's method" to generate a new exact solitary-wave
solution to the coupled equations modeling a pulse of
light with energy in both principal modes of the
birefringence. This solution bifurcates from a single-
mode soliton solution, which becomes unstable for large
energies. They conjectured that the bifurcation point was
the onset of the instability. The instability of single-mode
solutions both for pulsed and cw light has been the target
of much of the discussion. The development of the insta-
bility is a major change in the solution's behavior caused
by a small change in the intensity of the solution past
some threshold. This is the ideal behavior for a switch,
and it is this switching that has generated the interest in
the phenomenon.

This paper will outline a direct demonstration involv-
ing the conserved quantities of the coupled differential
equations of the system's nonintegrability by inverse
scattering. It will then isolate those conserved quantities
whose existence is implied by the underlying physics and
which can have any bearing on the dynamics of the solu-
tions to the equations. It will use these to give a physical
parametrization of the solutions and relate them with one
another for the various families of solitary-wave solu-
tions. These relations give a novel insight into the stabili-
ty of the single-mode solitons. This is used to make a
new prediction for the onset of instability of a class of
solitary-wave solutions, which is confirmed by numerical
experiment. Finally, the implications of this instability
for the mixed-mode solitary wave are considered with
special regard to the conjecture made by Tratnik and
Sipe in Ref. 10.

CONSERVED QUANTITIES

The simple, single nonlinear Schrodinger equation,
governing pulses in a single principal mode, has been ex-
tensively studied and is known to be integrable. ' In par-
ticular, it has genuine soliton solutions (as opposed to sol-
itary waves) which do not interact apart from transla-
tions as they pass through one another. This raises the
question of the integrability of the coupled equations:
can the same multisoliton behavior be seen involving
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both polarization modes? A Painleve property can be
defined for partial differential equations" analogous to its
definition for ordinary differential equations, ' which ap-
pears to hold for precisely those systems of equations
which are integrable. It has been shown' that for a&1
the coupled equations do not possess this property,
strongly suggesting that they are not integrable.

A more direct proof of nonintegrability by inverse
scattering can be given in terms of the conserved quanti-
ties. The equations have four obvious, physically mean-

ingful, geometric symmetries, transform ation s which

map solutions of the equations into other solutions of the
equations. Furthermore, as the equation is Hamiltonian,
Noether's theorem' assigns to each of these symmetries
a corresponding conserved quantity taking the form of
the integral of a multinomial in u, v, and their t deriva-
tives.

The equations are invariant under a Galilean shift
which physically corresponds to a change in the reference
frequency of the carrier beam and which maps solutions
according to

—r(1 4/) V z+ I(1/2) Vt
( t y

r(1/4)V z (-i(1/2)V(
( t y

7

and to which Noether's theorem assigns the conserved
quantity

I, = t u '+~~v ' —2iz utu*+vv* dt .

This invariant is the initial "center of mass" of the solu-
tion.

The equations are trivially invariant under the phase
rotation

u (z, t)( e' u (z, t), u (z, t)~e' u (z, t)

and have

12 = f "(lul'+ lul')dt

as the corresponding constant of the motion. In the con-
text of optical fibers this invariant is the total energy of
the solution.

The equations have no explicit dependence on t and
hence

u (z, t)~u (z, t —At), u (z, t)~u (z, t At)—
must be a symmetry. This t translation gives

+ ~
(u, u *+v,v*)dt

as its conserved quantity, which can be thought of as the
"momentum" of the solution.

Similarly, the equations have no explicit dependence on
z so

u (z, t)~u (z —bz, t), u (z, t) u {z—bz, t)

must be a symmetry. This has the Hamiltonian integral
as its conserved quantity:

I.= f —(lu I'+ lu, I')+.(Iul' —Iul')

+;-(lul'+, ul')+alul'lul'

+,-'() —a)[u (u*)'+(u*) u ]dt . (4)

Note that the values of the initial center of mass (I, ) and
the momentum (I3) are irrelevant as a t translation can
alter I, and a Galiliean shift to a different reference fre-

quency can alter I, without either one affecting the dy-

namics of the solution. However, the energy I2 and the
Hamiltonian I4 cannot be altered in this way and this pa-
per will closely link their values with the behavior of the
stationary solutions of the equations.

The simple nonlinear Schrodinger equation remains in-
variant under the transformation

K ~cx K, a~a
as well. In this way we can assign "orders" to all the in-
tegrands of the conserved quantities. By our choice of
notation the integrand of I„scales by a".

For integrable systems the inverse scattering transfor-
mation predicts an infinite sequence of independent con-
served quantities. Each of these is the integral over the
real line of a multinominal in u, v, and their derivatives,
with one of each order. ' Noether's theorem gives an ex-
plicit transformation of the partial differential equation
corresponding to the integral of any multinomial in a
function and its derivatives and states that the transfor-
mation derived in this way from a conserved integral
must be a symmetry, i.e., it maps the differential equation
onto itself and one solution onto another. We can gen-
erate the most general fifth-order multinomial with arbi-
trary coefficients and determine its corresponding trans-
formation. The computations required are individually
quite simple, but the expressions involved are very large
and the REDUcE algebraic manipulation package was
used to eva1uate them. Requiring this transformation to
be a symmetry of the coupled equations gives relations
between the coefficients which, when resolved for the case
a&1, imply that I~ =-KI3, giving an algebraic proof that
there is no independent fifth-order conserved quantity.
This lack of a fifth-order conserved quantity, the ex-
istence of which would be implied by integrability
through inverse scattering, explicitly demonstrates the
nonintegrability of the system by this method. For the
case a =1 the system of partial differential equations
reduces to Manakov's equations, which are known to be
integrable. '

STATIONARY SOLUTIONS

Consider for a moment the X =1 soliton of the non-

linear Schrodinger equation in its simplest form
)

Q(t, z) = 2' ' 'ae"* =sech(at ) .

1t)) ag, t~a 't, z~a z .

However, the coupled system is not invariant, as it has a
scale imposed on it by K. To rescale the coupled system
in a similar manner to the single equation it is necessary
to scale
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Note in particular the decoupling of t and z in the solu-
tion. Motivated by this, for a general set of coupled non-
linear Schrodinger equations we may look for solutions

e(t, z)=e' 'e(t),

such that

5X=I 5u(x) +5v(x}
+ oo 5X 5X

QO 5u 5U

(H (e)—toE(e) )
~

=0,
e

(5)

where we define the variational derivative of a functional
X[e] to be

where co is an arbitrary real number and for our particu-
lar coupled set of equations e(t) satisfies the ordinary
differential equation

e«+y e+a(e e*)e+(I—a)(e e)e*=coe .

The only conserved quantities relevant to the behavior
of solutions of a general set of coupled nonlinear
Schrodinger equations are the energy and the Hamiltoni-
an. The other two can be set to arbitrary values using the
symmetries of the equation. The relevance of the Hamil-
tonian and the energy to the stationary solutions can be
seen most clearly if we rewrite the ordinary differential
equation as a variational problem:

+5u (x)' +5v (x)* dt,5u* 6U*

which for simplicity we write as an inner product
(5e,5X/5e). This variational formulation of the equa-
tion immediately gives us a very powerful result: if a
family of stationary solutions are continuously
parametrized by a set of variables then the values of the
energy integral and of the Hamiltonian integral depend
only on co.

Suppose 5(H (e)—cooE (e) )=0 has solutions
e(t)=8'(t; co,o,)))}where A, may well be vector valued.
Define H(to, l, ) =H(e(t; co, )(. ) ) and E(to, A. )

=E(e(t; to, ).()). We have

5X 5J 5X 5X
5u

'
5v

'
5u " ' 5v'

Be
(~oo,&), (H (e)—iovE (e) )

)

5
~. :=)., 5e e = 8'(co0, A, 0)

=0

as the second element of the inner product is zero by (5). By the linearity of the inner product we have

Bia
(toe,X), (H(e)) =~oo, (E(e))5 B~ 5

BX ' i.=i.,' 5e e=s(cuo, i.o) M, A=i.
o 5e e=5(co0, A.&)

The first element of each inner product is the variation of a function as its parameter A, is varied. The second is the vari-
ation of the value of a functional as the function it is evaluated on varies. Therefore, by its definition, the inner product
of the two expressions is the evaluation by the chain rule of the variation of the value of the functional as the parameter
is varied, i.e.,

BH BE
(a)o, A, ) =too (coo, A, ) (6)

In the same manner we may deduce

(co,&o), (H(e) —~DE(e))
Be 5
Bco cu = cu 5e0 e =5( ct)0, A.0

=0,

Be 6
()o, )I.O), (H (e) ) =coo, (E (e) )

Be 5
Bco co —cu0 5C e =p( ~, )}( ) Bco ti) —co0 5c e =e(~0, X0)

i.e.,

BH BE
( co, A,o ) —coo ( co, ~ )

Bco cu = co Bco0

If we now calculate the cross derivative of H from (6) and (7) we see that

(7)

B H BE B E
BcoBX 0 BA, 0 BcoB~

(co, )(.) „)= (cu, A, } ) ), +too ()o, k)
Cd —CO0

B~E
{co,A, )

~0

(6')

(7')
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Equating these two expressions for the cross derivative
gives

i.e., the energy of the solution is not a function of any pa-
rameter other than co. From this result and either of (6)
or (7), we derive

Schrodinger equation

u =2'~ exp(i coz ) A
I sech( 3 It), U =0 (fast mode)

u =0, U =2' exp(i coz ) A&sech( A 2t) (slow mode)

where A I
=(co—I~)' and A2 =(co+I~)' . These solu-

tions, however, are parametrized in terms of co, which we

may replace. We calculate E for these stationary solu-
tions to get

BH
(co, k) =0,

A, =ko

so that the Hamiltonian integral is similarly a function of
co only. If the function E(co) is invertible then we can
substitute for co in any expression for a solution to give a
physical parametrization and we may calculate the func-
tion H(E) relating the two relevant physical quantities of
the system.

If we restrict our attention to the particular coupled set
we are considering here we can see that the ordinary
differential equation clearly has the single-mode solutions
corresponding to the solitons of the single nonlinear

Et„I=4(~—&), E@,„=4(co+a.)'~ 2,

and can substitute for co to get a more physically mean-
ingful parametrization in terms of the energy of the pulse:

u =8 ' E exp[i [(E/4) +x jz}sech(Et/4),

U =0 (fast mode)

u =0, U =8 ' Ee px[i [(E/4) a]zIse—ch( Et/4)

(slow mode) .

In addition, Tratnik and Sipe' found a family of mixed-
mode solutions
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FIG. 1. Plots of the fast and slow components of a mixed-mode solution for energies equal to and above the bifurcation point and
t, =t2=0. Note that in graph {a) (at the bifurcation point) the mixed-mode solution is exactly coincident with the pure fast-mode
solution. For all these plots ~= 1. The solid and dotted lines give the fast-and slow-mode components, respectively. Both energy and
time are measured in normalized, dirnensionless units. (a) E =5.657 =E,.„„,(b) E=7.07, (c) E = 8.49, {d) E =9.90, ( ) E =11.3.
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8' AiexP[A&(t —tl )+icoz]I 1+[(A,—Az)/(A i+ Az)]exP[2Az(t —tz)])

1+exp[2 Az(t t,—)]+exp[2 A, (t —tz)]+[(A, —Az)/( A, + A, )] exp[2A, (t —r, )+2Az(t t—z)]

8' Azexp[Az(t —tz)+icdz]I 1 —[(A l
—Az)/A i+ Az)]exp[2A &(t —tl)]I

1+exp[2Az(t t—, )]+exp[2A, (t —tz)]+[(A, —Az)/(A, + Az)] exp[2 A, (t —t, )+2 Az(t —tz)]

These solutions are bound states of two single-mode soli-
tons, one in each principal mode, with energies giving
them the same value of co. The two solitons have fixed
positions given by t, and t2. In Ref. 10 the special form
of this solution, given by the adapted Hirota's method,
was used to demonstrate that the total energy of the solu-
tion did not depend on t, —t2. This is a simple example
of the general result above. However it is derived, we
may use the independence of E from t, and t2 to calcu-
late the energy of the mixed-mode solution in the limiting
case of ~t, —tz~~ ec when the mixed mode solution is

simply two well-separated single-mode pulses and the en-

ergy is the sum of the energies of the two soliton solu-
tions

E(co)—4[(co K) +(izl+K) ] .

We may invert this to give a physical parametrization of
the mixed-mode stationary solution

E"+ 1024K

64E

of 2' lower than the bifurcation energy. As the ordi-
nary differential equation has a variational representation
(5) of extremizing H for a fixed value of E, such a turning
point might be expected to correspond to some change in
the behavior of the solutions. We will see that what it
corresponds to is the loss of stability of the solution.

NUMERICAL STUDIES OF STABILITY

Numerical studies have been performed wherein vari-
ous ¹oliton pulses were launched near the two modes
and the effect of varying ~, the measure of the
birefringence of the fiber, was observed. Pulses in the fast
mode were always stable, but the slow mode solutions
were sometimes subject to a bimodal instability. It was

I I I I I I l I I I I I I I I I I I I I I I I I

Note that the constraint that co) x for A, to be real gives
these solutions a minimum energy E;„=4(2 )K' I. When
the energy takes precisely this threshold value the
mixed-mode solution and the slow-mode solution are
coincident (Fig. 1). Furthermore, for all mixed-mode
solutions the slow-mode component will have at least this
amount of energy.

The independence of the values of the energy and
Hamiltonian from parameters other than co is only valid
for continuous parametrizations. The three types of solu-
tion we have, fast mode, slow mode, and mixed mode, are
distinct and the functions E(lo), H(Ill), and H(E) need
not be the same for them all, and indeed are not. We
may calculate the function H(E) for all three types of
solution to get

E(E +48K)H„, E =

~ M

0
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Figure 2 gives the graphs of these three functions.
Note that each point of the line corresponding to the
mixed-mode solution represents an infinite family of solu-
tions parametrized by t, —t2 and that the point where the
mixed-mode solution bifurcates from the slow mode can
be seen at E =4(2K)'I . Only the curve corresponding to
H, i,„(E)has a minimum, which is at E =4K', a factor

Energy

FIG. 2. Graphs of the Hamiltonian integral vs the energy in-

tegral for the three types of stationary solution. This particular
figure is plotted for K= 1, but is typical of all the graphs. Solid
line, slow mode; dotted line, fast mode; dashed line, mixed

mode.
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have been found to be stable. This is not particularly
surprising since for large values of the separation of the
fast- and slow-mode components, t, —tz, the slow mode
component always has an energy greater than that at
which it becomes unstable and the fast mode solution is
too far separated to be able to stabilize it. Similarly for
energies just above the bifurcation energy, E =4(2tt)'
and for arbitrary values of t, —tz, the solution is virtually
identical to the unstable pure slow-mode soliton, and
again will be unstable itself. Numerically we find no sta-
bilization of the slow-mode component by the fast-mode
component for any value of t, —t2 in the mixed-mode sta-
tionary solutions, and as the energy in the slow mode
exceeds the instability threshold, all the mixed-mode
solutions seem to be unstable.

CONCLUSION

In this paper we have considered the coupled nonlinear
Schrodinger equations for a simple model of a
birefringent optical fiber. The conserved quantities of the
equation have been used to demonstrate that it is not in-

tegrable by the method of inverse scattering.
The stabilities of both the single-mode stationary solu-

tions corresponding to the single-soliton solutions of the
simple nonlinear Schrodinger equation, and Tratnik and
Sipe's family of mixed-mode solutions were considered
and related to the values of the energy and Hamiltonian
integrals for the particular types of solution. This pro-
vided a very simple, analytic means to determine the on-

set of instability for a pulse involving only two scalar
quantities. The technique should be contrasted with
linear perturbation schemes, which often cannot be
solved analytically, though of course there are excep-
tions, ' and which tend to lead to very complicated nu-
merical problems. Furthermore, it is a global analysis,
not relying on local perturbations around the stationary
solution.

Tratnik and Sipe's result that the energy of the mixed-
mode solution, which is a bound state of two single-mode
solitons, is independent of the separation of those two sol-
itons has been shown to be a special case of a far more
general result. An analytical expression has been given
for the energy at which the slow-mode solution becomes
unstable. This energy is a factor of 2' below the energy
at which the mixed-mode solution is created. This sug-
gested that the mixed-mode solutions are unstable, which
has been numerically confirmed for a wide variety of pa-
rameters.
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