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Nonlinear theory of the degenerate quantum-beat laser: Lasing without inversion
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We present the nonlinear theory for lasing without population inversion in the degenerate A-type
quantum-beam laser by using the density-operator method. The master equation for the degenerate
quantum-beat laser is derived, from which the equation of motion for the mean photon number is

obtained. The conditions for lasing without population inversion are discussed, which are the same
for linear and nonlinear theories. The corresponding Fokker-Planck equation is obtained, and the

possibility of diffusion coefficient reduction is discussed.

I. INTRODUCTION

Lasing is usually accompanied by population inversion.
The requirement of the population inversion is due to the
stimulated absorption.

Lasing without population inversion was suggested
some time ago by utilizing the splitting of emission and
absorption spectra caused by atomic recoil. ' The recoil
splitting will be large enough to have practical usage only
for very high-frequency light, e.g., x rays. A most in-
teresting possibility of obtaining noninversion lasing or
amplification has recently been proposed by Harris and
studied by him and others. Harris analyzes the
difference between the emission and absorption spectra of
a three-level atom due to Fano interferences. ' The
quantum-beat laser' ' concept was originally advanced
as a means of quenching spontaneous-emission noise.
The lasing medium in such a device consists of three-level
atoms with the upper two (closely spaced) levels driven
by a coherent microwave field. It has been shown in re-
cent papers that lasing without population inversion can
be reached in the degenerate A-type quantum-beat laser
system' ' with two lower levels instead of two upper lev-
els. The A-type degenerate quantum-beat laser (Fig. l)
can display gain even when only a small fraction of the
atoms are in the upper level ~a ). However, in that pa-
per' we used the perturbation method (keeping to the
second order of the coupling constant) and only worked
out a linear theory for lasing without population inver-
sion in the A-type degenerate quantum-beat laser. In this
paper, we present the nonlinear theory for the lasing
without population inversion using a density-operator
method.

i ( v t + ttt )

V=gg)g 0 )+Wg2a 02+ —,'WQe " 0„+H.c. , (2)

where a (a) is the creation (annihilation) operator for
the light field, 0 = ~a)(a~ (a=a, b, c), cr&= ~c ) (a~,
o2=Ib)(aI, and a„=~c)( b, g, and g2 are atom-field

coupling constants.
First we transform into the interaction picture. The

interaction Hamiltonian in the interaction picture is
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V =—'RQe ' 0 „+H. c. ,

where co„+co,b =2v and cob, =v„(co,&=co,—co&) have

been assumed and 5= —,'cob, . The equations of motion for
the state vector and density operator in the interaction

la&

ing Rabi factor is Qe '~ where 0 is the Rabi frequency
and P is the phase of the microwave. The Hamiltonian

for the system is"'

H =Ava a+ g %co tr + &,
a, b, c

II. THE MODEL AND SOLUTION

Consider a three-level atom, as shown in Fig. 1, inside
a cavity with frequency v. The atom has three levels, the
upper level ~a ) and two lower levels ~b ) and ~c ). The
transitions between ~a} and ~c) and between ~a) and
~b ) are induced by the light field (cavity mode), while the
two lower levels, ~Ib ) and ~c ), are strongly coupled by an
external microwave of frequency v„and the correspond-

FIG. 1. Energy-level diagram for degenerate A-type
quantum-beat laser.
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picture are

dt fi
I1('& = ——'v'Ip&, (4)

p—'= —(v—'p' p'—v') .
dt fi

(5)

i(e—'~o +e '~a )sin —t .P P

The equations of motion for the state vector and density
operator become

—lq& = ——'vip&,

Second, we make the following unitary transformation
U, transforming into a second interaction picture" from
the interaction picture:

U =exp[ (—i /2)Q(e'~cr„+e '~tr„)t]

= la &&al+(lc &&cl+ lb &&bl)cos—t
0
2

+c„+,(t)lc, n+1) .

From the equation of motion Eq. (7) and the interaction
Hamiltonian Eq. (9b), we find"

a„(t)= — a„(t)—i [G2 —V'n + lb„+,(t)
I

+G) vn +lc„+()t)], (12a)

~ I
b„+)(t)= — b„+,(t—) —iG2&n + la„(t), (12b)

and high-frequency terms, going as e' ', have been
dropped. This interaction Hamiltonian Eq. (9b) is our
basic starting point for further deduction.

First, we investigate the deterministic time evolution of
the coupled three-level atom and one mode system which
is controlled by the interaction Hamiltonian Eq. (9b).
The state vector can be written as

lg(t)) = g a„(t)l a, n )+b„+,(t)lb, n +1)

t
(vp —p—v»—

c„+)(t)= ——c„+,(t) iG, v —n + la„(t),r
(12c)

with l)j/) =U lg ) and p=U p U. Here the interaction
Hamiltonian V is

V=U V U

=kg a e ' o cos t+io—e '~sin —t

where we have included the atomic decay and, for simpli-
city, taken the same decay rate I for the three levels. As-
sume that the atom is in a mixed state at initial time tp,
i.e.,

+g a e cr cos—t+io. e ~sin —t +H. c.i b, t 0 . ; . 0
2 2 2 1 2

IP„, (tp) & =a, la &+ab lb &+a, lc & .
(9a)

The initial state vector for the system at time tp is

(13)

We adjust the Rabi frequency 0 so that A=cob, =26,
and consequently V becomes

V=a (G)o)+G2cr2}+Hc. (9b)

where 6, and 62 are effective coupling constants

IQ(tp}) = Iff(tp))8 If„, (t()))

= pa, F„(tp)la, n )+abF„(tp)lb, n )

+a,F„(t())lc,n ) . (14)
G, =

—,'(g, —g2e'~),

G, =-,'(g, +g, e '&),

(10a}

(lob)
I

~ith the initial condition Eq. (14), we solve Eqs. (12) and
obtain

i (G; a, +62 ab)
sinx ( t t() ) F„+,( t() )—

( G 2+ G 2))/2

—(I /2)(t —to)a„(t)=e a,F„cosx ( t t p)—
—() 2/)( )(„) ( IG2 I'ag+G) G2a, )F„+)(tp)

b„ i)(t}=e
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(15a)
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/ '
IG I +IG

I

(15b)

(15c)
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x =[(G,G) +6~6~ )(n+1)]'

III. MASTER EQUATION

pf=Tr„, p= y &a~p~a&, (16a)
a.=a, b, c

where ~a&=U ~a&. Using Eq. (6), it is easy to prove
that

The density operator of the system satisfies the equa-
tion of motion Eq. (8). The reduced density operator for
the light field p is obtained by tracing over atomic vari-

ables, pf=r dtop f+ pf

i —dtor([a, G& p„+Gz pb, ]

+[a,G,p„+G,p b])+Xp (18)

whe«p &=&a~p~p& (a,p=a, b, c) .This is the contribu-
tion of one atom, which is pumped into the cavity at time
to, on the light field. To find the total change of the light
field due to many atoms, which is pumped into the cavity
regularly, we sum the contributions of all atoms which
are pumped into the cavity at times to(t with a rate
r."' Then we find the equation of motion for the densi-
ty operator of the light field,

a=a, b, c

&alpla& = g &alpla& .
a=a, b, c

(16b)
where we have used an integral to replace the sum. Here
Xpf stands for the cavity loss, which has the usual form'

Using the interaction Hamiltonian Eq. (9b) and the
equation of motion Eq. (8) and carrying out the trace, we

find the equation of motion for pf
Xp = — (a ap +p a "a —2ap at) .~C

2
(19)

p = —i(6) [a,p„]+6/ [a,pbg]+6][a, pg, ]

+6~[a p.b]» (17)

Here y, is the cavity loss rate.
The equation of motion of the elements of the density

operator of the light field pf is

(t)= i I—dtor[6', &n + la*(t)c„+,(t)+G f v'n + la*(t)b„+,(t) —6,&m + la„(t)c"+, (t)

—Gzv'm + la„(t)b'+~ (t)+Gz&n a„&(t)b"(t)+G~ n a„ 1(t)c"(t)

—G~ v'm a' tb„(t)—6', v'ma', (t)c„(t)]— (n +m)p„+y, (n +1)(m +1)p„+, +, .
2

(20)

Before making a further deduction, let us consider the atomic phases, i.e., the phases of a„ab, and a, . We assume
that ab and a, have a fixed phase relation between themselves, while they have no fixed phase relation with a, . There-
fore terms contain a, ab, o,',a, or their Hermitian conjugates will be zero after performing the integral. Now, we substi-
tute Eqs. (15) into Eq. (20) and carry out the integral over time to and find the master equation,

rG ~a, ~ [I (n+m+2)+6 (n —m)] 2r~G, a,'+Grab I v'(n+1)(m+1)
I +2I 6 (n+m+2)+6 (n —m) ' I +21 6 (n+m+2)+6 (n —m)

2rG ~a, ~

v'nm I r~G, a,'+Grab [I (n+m)+6 (n —m) ]
I "+2I G (n+m)+6 (n —m) ' I +2I 6 (n+m)+G (n —m)

(n+m)pf (t)+y, v'(n+1)(m+1)pf+, +&(t), (21)

where 6 = ~6, ~
+ ~Gz~, and r is the pumping rate. In the deduction we have made the approximate pf(to)=pf(t),

since the dynamics of the light field is governed by the cavity lifetime y, , which is much longer than the atomic life-
time 1 ', and thus within the main integration time (t —2/I to t) pf does not change appreciably, while the value of
the integration from —00 to t —2/I is negligible due to the exponential decay factor. For the detail of the deduction
see the Appendix. Letting

2rG
p2

B 4G
A

1a,„=—(6', a, +6[at, ),
G

then the master equation becomes

(22a)

(22b)

(22c)
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pf
—,
' Ala, [n +m +2+(8/4A)(n —m) ] Ala, b

&'(n +1)(m +1)
1+(8/2A)(n +m +2)+(8 /16A )(n —m) ' 1+(8/2A)(n +m +2)+(8 /16A )(n —m)

A la. I'&nm —,
' Ala, „l [n +m +(8/4A)(n —m)]

1+(8/2A)(n +m)+(8 /16A )(n —m) ' 1+(8/2A)(n +m)+(8 /16A )(n —m)

Vc
(n +m)p„+y, &(n+1)(m+1)p„+, +~ . (21')

This master equation is the basic equation of our follow-

ing discussion, which is similar to the master equation of
an original single-mode laser except terms containing
a,b I

. The role of a, I
is a gain, which corresponds to

the spontaneous and stimulated emission due to the pop-
ulation in the upper level. The role of Ia,b is similar to
the loss, which corresponds to the stimulated absorption
due to the populations in the two lower levels. It is from
these terms that we can find the possibility of lasing
without population inversion.

I

state photon statistics
'

~+~ & y&~~&+y„&l~,b '~
CXg

y, B

Z[n +(A/8}(1+y, A a,b I )]

where Z is a normalization constant.
Consider the average photon number ( n ) which

satisfies the following equation of motion:

—(n)= gnp„, „
d

n

IV. LASING WITHOUT POPULATION INVERSION

The equation of motion for the diagonal elements can
be obtained from Eq. (21') by putting m = n

A a, '(n+1)

1+—(n +1)B
A

Ala„l'(n ) —y, (n),
1+—(n )

A

pf
A (n +I)la. I' f
1+ (n +—1)

A

A (n +1)la,b I

+]. +~
1+ (n +—1)

A

(24}

where Eq. (23) has been used. In steady state, the average
photon number is

Anla, I'
Pn —l, n —1

1+—n
A

Anla, b
I'

1+—n
A

y, npf „+—y, (n+1)pf+& „+~ . (23)

A (Ala. l' —Ala„l' —y, }
n

y, B (2&)

where (n ) )& I has been assumed, and (n +1)= (n )
used.

It is quite clear from Eqs. (24) and (25) that lasing
without population inversion is reached when the follow-
ing two conditions are met:

On the right-hand side of Eq. (23) there are six terms,
and they can be interpreted as probability flows which
can be expressed by arrows in a probability flow diagram,
as shown in Fig. 2. The number attached to each arrow
indicates which term in Eq. (23) it represents. The first
and third terms stand for the spontaneous and stimulated
emission; the second and fourth terms for stimulated ab-
sorption, and the final two terms for the cavity loss. Us-
ing the principle of detailed balance, we find the steady-

(26a)

(26b)

for lasing and noninversion, respectively. From the
definition of a,b, Eq. (22c), we have

, [IG)a, I'+ IG~ab I'
62

+2
I G, G2a, ab I cos(0+ 9b, )], (27)

i0b
where G, Gz =IG, G~le' and a,*ab =la, able '. The
last term in the right-hand side of Eq. (27) is the interfer-
ence term. Assuming Ia, I

( Iab I, we find that when the
following condition:

n-I
IG I'+IG I'& IG, I'+ G,

FIG. 2. Diagram of probability flow for the degenerate A-

type quantum-beat laser.

CXb

+2 G, Gz cos(0+8„,) (28)
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is valid, we may have lasing without population inver-

sion. It is very clear that this condition can be met if and
only if there is coherence between the two lower levels,
i.e., 0b, is fixed.

Furthermore, if
I a, /a& I

=
I Gz/G, I, we have a,b

=0.
In this case (a,b =0), any small amount of population in

the upper level, which can be much smaller than the pop-
ulations in the two lower levels, will lead to lasing if the
cavity loss is small.

Noting the definitions of e,b, G„and G2, we have
e b

=0 when

(29)

In Table I we list four groups of values for the ratios
gz/g„ab/a, and the phase of the microwave as exam-
ples where a,b

=0. Let us have a close look at the fourth
example. The phase of the external microwave makes the
effective coupling constants the same, G, =G2. The two
lower levels have the same population and a phase
difference ~. Because of the interference the total proba-
bility of the absorptive transition becomes zero. Thus
any small amount of population in the upper level will re-
sult in lasing without population inversion.

Physically, lasing without population inversion is a
phenomena of quantum interference. When an atom
makes a transition from the upper level to the two lower
levels, the total transition probability is the sum of the
a ~b and a ~c probabilities. However, transition proba-
bilities from the two lower levels to the single upper level
are obtained by squaring the sum of the two probability
amplitudes. When there is coherence between the two
lower levels this can lead to interference terms yielding a
null in the transition probability corresponding to photon
absorption. From Eq. (23), we see that the contribution
of the transition from the upper level to the two lower
levels comes from the first and third terms on the right-
hand side; and the vice versa transition comes from the
second and fourth terms. In the first and third terms
there is the factor 6 Ia, I

= IG f a, + IG2 a, , which is

TABLE I. Four groups of values that lead to e,b =0.

—3

+3
m./2

V. FOKKER-PLANCK EQUATION

In this section, we transform the master equation (21')
into a Fokker-Planck equation for the Glauber P function
by expanding the field density operator p in terms of the
diagonal P representation. For the density-matrix ele-
ments pf, the expansion is

2 ene4 PI

p„„= d aP(a, a*,t)e
&n!tn!

(30)

where P (a, a', t ) is the Glauber P function. Neglecting 1

compared with
I al as large mean photon number is as-

sumed, we obtain the following Fokker-Planck equation
for Glauber P function

just the statement that the total transition probability
from the upper to the lower levels is the sum of the indi-
vidual transition probabilities. In the second and fourth
terms, the corresponding factor is G

& e, +G2 eb . This
is just the statement that the total transition probability
from the two lower levels to the upper one is the square
of the sum of the two individual probability amplitudes.
Therefore there are interference terms for the absorption.
The interference terms lead to reduction, and even can-
cellation of the stimulated absorption due to the two
lower levels and consequently lead to lasing without pop-
ulation inversion.

P(a, a', t)= ———(la, I

—la, t, I ) a+, a* + A a, I

8, A p 2 8

Ba Ba Ba

——
( a, l +Iabl ) a — a" M(a)+B 2 2 B B ~c

8 ' Be 2

B Be+ e*
Bu

P(a, a*,t), (31)

where

M(a) = 1+—lal—B 2 B B e+ e'
2A Be Be*

B' B Be — e*
Be Be*

(32)

I

is enough for a discussion on laser intensity and fluctua-
tions, the Fokker-Planck equation becomes

P(a, a*,t)= — d ——d, +2 D
Bt Be Be

Equation (31) contains all orders of derivatives with
respect to a or a* because of the inverse operators M(a).
Expanding Eq. (31) up to second-order derivatives, which

B2 C}2+ D + D, , P(a a*,t),
Be2 aa

B e2 a a

(33)
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where

a a B1+—aa
A

7c (34a)

(34c)

8(la. I' —Ia„I')«
4[1+(8/A)«*]
8(la. I'+ la„l')«

(34b)
8[1+ (8 /A )aa*]

4Ala, l +8(la, I +la,&l )«"
D

8[1+ (8 /A )«']
8 ( I ~. I' —

I ~,g
I')«'

4[1+(8 /A )«"]
Next, we express the Fokker-Planck equation in terms

of intensity and phase, I and P, through the relation

a =&Ie'

feet coherent pumping ( Ia&, I
=0) situations,

D(~) /D(n)
44»~ (38)

A (l~. ' —I~,g I') =y, [1+(8/A)I],
y, [l~. I'+(8/2A)I(l~. I'+ l~„l')]

D~~ =
4I(l~. I' —l~„l')

In order to have the same intensity in the two situations,
the pumping rate or the atomic populations must be
different. We can easily obtain the ratio

2
1 ~b Q

1 —— +
2 cx cx

(39)

(40)

BI
4A

2
CXb

a,

2'
a, 1+ I

2A

(41)

where D&'& and D&&' are the diffusion coefficients for non-
coherent pumping and perfect coherent pumping, respec-
tively. For a given intensity, we have

a a a' a'P(I P, t—)= — dt — d~+ Dtt+ Dt~r)t
' ' dI (jP

where
XP(I,P, t), (35)

dr =I

d~=0,
1+(8/A )I (36a)

(36b)

AI

D A

4I [ 1+(8 /A )I]
&& [I~.I'+(8/2A)I(l~. I'+ l~,g I')] . (36d)

From Eq. (36b), it is clear that the phase of the laser field
is not locked. This is because we only have atomic coher-
ence between the two lower levels but no atomic coher-
ence between the upper level and the two lower levels.
The steady-state laser intensity can be found from Eq.
(36a) by I=dt =0

A(A a. l' —Ala„l' —y, )I= (37)

This is the same as Eq. (25). We can see from Eqs. (36c)
and (36d) that the phase and intensity diffusion
coefficients will be reduced, when the laser operates
without population inversion, compared with the situa-
tion of no atomic coherence.

Let us consider the ratio of two diffusion coefficients in
noncoherent pumping ( I a,& I

=
—,
'

I a& I
+ —,

'
I a, I ) and per-

where Ia, l, Ia„l, and Ia, l are the populations needed
to obtain the given intensity in the noncoherence pump-
ing situation. The ratio is the same no matter what is
changed, the pumping rate or the atomic populations.
From Eq. (41), we see that the ratio can be very small,
when Iab and Ia, l

are very near Ia, l, i.e., the phase
coefficient is reduced greatly. It is due to the depression
of the stimulated absorption, which leads to the reduc-
tion of the population of the upper level, and consequent-

ly, the reduction of the spontaneous emission. However,
the reduction is not large enough to reach noise quench-
ing.

VI. CONCLUSION

In this paper, we use the density-operator method to
present the nonlinear theory for the degenerate
quantum-beat laser which can be operated without popu-
lated inversion. From Eqs. (24), (25), and (28), we can
conclude that the lasing without population inversion is
independent of the intensity of the laser field. In other
words, the conditions for lasing without population in-
version are the same in the linear and nonlinear theories.
We also worked out the Fokker-Plank equation in the
Glauber P representation and pointed out the reduction
of diffusion coefficients when the laser operates in the sit-
uation of no population inversion. The lasing without in-
version is due to the atomic coherence between the two
lower levels. For perfect coherent pumping we can have
perfect lasing without inversion.
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We write Eq. (20) in the following form:
APPENDIX

pf (t)=r [6*, &n +1I&(m, n)+Gz &n +1Iz(m, n) —G&Vm +1I& (n, m) —Gz&m + lIz (n, m)

+G, &nI; (n —l, m —1)+G2&n Iz(n —l, m —1)—G*, &m I, (m —l, n —1)—Gz &m I2(m —1,n —1)],
(A1)
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where

I~(m, n)= —i f dtoa "(t)c„+,(t),

I~(m, n)= i— dtoa'(t)b„+, (t) .

First we calculate I, (m, n ). Substituting Eqs. (15a) and (15c) into (A2}, and letting r = t to—, we obtain

(A2)

(A3)

I&(m, n) = —I dr e cosG&m +1 rsi nG&n +1 r pf (t)

(G,a,'+Gras )(IG, I a, +G, G~ ab)
sinG&m+ lrcosG&n+1& pf+, +&(t)

G

(G)a,'+Grab}(IGpl'a, —G~Gfab) .
sinG m + lr pf+, +,(t)63 t

(A4)

(A5)

where the approximation pf (to}=pf (t) has been used. Here, we have noted the fact that the terms containing

a,'a„a,'ab and their Hermitian conjugates are equal to zero because of no coherence between Ia ) and lb ) (or lc )).
Performing the integration we obtain

G, la, l +n+1[1 +G (n —m)] IG&a,'+G~abl G, &n+1[1" +G (n —m}]
pn+t, +1(t}

I +21 G (n+m+2)+G (n —m)2 h™ [1 +21 G (n+m+2)+G (n —m) ]G

(G,a,'+Gras )(IGNI a, —G, Gz ab)&m +1
+ [r +G (m+1))G

Similarly, Iz ( m, n ) is calculated

Gzla, l
&n+1[I +6 (n —m)] IG, a,'+G&abl G&&n +1[1 +G (n m)]—

I' +21 G (n +m+2)+G (n —m)2 n™ [I' +21 G (n+m+2)+G (n —m) ]G

(G)a,'+Grab)(IG) I'ab —G,G f a, )&m+1
[I'+G'(m +1)]G

Substituting Eq. (A5) into (Al) it is easy to obtain Eq. (21).

(A6)
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