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%'e calculate the spectrum of third-harmonic generation (THG) for multimode fundamental input

fields. We consider input fields from (1}a laser with gain on several cavity modes, (2) pulses with

short temporal duration, and (3) frequency-modulated input fields. The effects of phase modulation

in the nonlinear medium on the spectrum of the THG field are considered. Using the estimates by
Miles and Harris [IEEE J. Quantum Electron. QE-9, 470 (1973)] for the nonlinear susceptibilities

g "{—3';~,co, co) and y"'( —co', co, —cu, co) in alkali-metal vapors, we find that phase modulation can

profoundly affect the efficiency and the spectrum of the THG. Generally, the self-phase modulation

of the fundamental will tend to reduce the phase matching of an intense fundamental field and the
third harmonic and thereby lower the conversion efficiency. New frequencies not contained in the
set of frequencies co„+co„+co,„,where Ico„ I are frequencies in the fundamental laser spectrum,
are created even at relatively low conversion due to phase modulation. Effects of cross phase modu-

lation are also studied.

The theory of wave mixing [sum-frequency generation
(SFG), difference-frequency generation, second-harmonic
generation (SHG), parametric oscillation, third-harmonic
generation (THG)) for cw fields was formulated over 25
years ago' and descriptions of these processes are avail-
able in many fine texts. A theoretical description of
three-wave mixing for multimode time-dependent input
fields (as opposed to cw single-frequency time-
independent input fields) has recently been presented. '

Analytic solutions were developed for the time-dependent
intensities of the output fields. These solutions differ
dramatically from those for single-mode fields. New fre-
quencies in the sum-frequency output spectrum and in
the input-field output spectrum are created and grow in
magnitude as the input intensities are increased. The
output spectrum broadens under conditions of strong
nonlinear coupling, ultimately reaching the phase-
matched bandwidth limit of the nonlinear crystal. For
SHG, the growth of the bandwidth with increasing input
intensity of the fundamental and with increasing non-
linear coupling strength is very much reduced compared
with the SFG case. At the highest conversion strengths
the spectral bandwidth of the second harmonic actually
shrinks. In previous studies of SHG and SFG, the band-
width of the output in these processes have been assumed
to be the sum of the bandwidth of the fundamental fields.
These estimates were based upon perturbation theory.
Generally, the bandwidth of SHG and SFG depend on
the intensity, spectral character of the input fields, and
the conversion strength of the nonlinear medium.

Here we present results of calculations for THG for
multimode fields. In particular, we study the effects of
the interplay of third-harmonic generation and phase
modulation (due to the quadratic Kerr susceptibility of
the nonlinear medium) on the resulting spectrum of the
THG. The nonlinear susceptibilities for THG and phase
modulation, y' '( —3co;co,co, co) and g' '( —co;co, —co, co)

are of the same order of perturbation theory in the funda-
mental field, and therefore one might expect that, for ar-
bitrary frequency co, the effects of both phenomena
should be simultaneously considered. Resonance with
energy-level differences in the medium may, however,
make one of these susceptibilities larger than the other
Using estimates from the classic work of Miles and
Harris for the third-order susceptibilities for THG and
self-phase modulation in alkali-metal vapors at Nd: YAG
(neodymium-doped yttrium aluminum garnet) and ruby
frequencies, we find that phase modulation can profound-
ly affect the efficiency and the spectrum of THG. Our
calculations do not include considerations of beam profile
and self-focusing, as they are plane-wave calculations.
However, our conclusions should remain valid when such
effects are included.

Third-harmonic generation has distinct advantages
over other methods presently available for generation of
light in the uv. Generally, light sources in the vacuum uv
(e.g., resonance discharge lamps) are cw sources (with the
exception of synchrotron radiation). The bandwidths of
these sources are difficult to control and their intensities
are generally low. Moreover, light obtained by SHG of
the fundamental, or by SFG with the second harmonic
with the fundamental, in nonlinear crystals, is limited to
wavelengths longer than 200 nm because of absorption in
the available nonlinear crystals in the vacuum uv spectral
region. Even the new nonlinear crystal BBO (P-barium
borate) is limited to wavelengths larger than 205 nm. In
contrast, THG in gases has been successfully employed to
produce light at the Lyman-alpha transition (121.6 nm)
to detect hydrogen atoms as reactants and products in
elementary reactions, e.g., H+ D2 D+ HD, F+H~
~H+HF, etc. ' Bandwidth control of the third har-
monic allows Doppler studies of the laser-induced
fluorescence or multiphoton ionization signal. The veloc-
ity distribution of the hydrogen atoms or molecules in-
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volved in the reaction can be deduced from the second
moment of the fluorescence excitation versus frequency.
Frequency and bandwidth control also allows the study
of isotopic substitution (H and D). Use of light pulses of
a few nanoseconds or less duration allows the study of
molecular dynamics under collisionless conditions.
When employing THG in gases to produce uv light, the
bandwidth and temporal duration of the pulses might be
better controlled.

The dynamical equations governing phase-matched
THG for plane waves are given in the slowly-varying-
envelope approximation by

~E (, )/~ = —', [xE3(E*, ) +pE, ) E",

F&(0,&) =exp(iso&w)E, (0,r)+c.c.

=exp{i ~&~) g E
&

-exp[i {6j~+P, ~. )]+c.c. ,

(3)

E, (0,r)=[1+2cos(hr)]/3 . (4)

where we have defined the cavity mode frequencies as
co, =co]+b j, 6 is the mode frequency spacing of the cav-
ity, and P, . are the phase shifts for the different modes.
We let the input beam contain three equal intensity
modes, i.e., n = 1, with equal amplitudes,
E, , =E, O=E, ,

=
—,, and phases tI), , =P, 0=/, , =0.

The slowly varying envelope is then given by

+g)E, /'E', ],
[ZE'+g'IE I'E +g'IE I'E ] .

(2)

Here E] and E3 are the slowly varying field envelopes of
the fundamental and third-harmonic fields, respectively;
~ is the local pulse time (r=t —z/c); z is the distance in
the medium; y, g, g', g, and g' are the nonlinear polariza-
tion coefficients for the four-wave-mixing processes in-
volving the fields E& and E3. The last two terms on the
right-hand sides of Eqs. (1) and (2) are self- and cross-
phase modulation terms, respectively. The coefficients y,
g, g', g, and g' depend on the nonlinear medium and the
frequency,

Reference 7 presented results of calculations for the
coefficients y' '(3')=g and g' '(co)=g for alkali-metal
vapors at the wavelengths 1064 and 694 nm. For Li at
A, =1064 nm, y' '(3') =1.25 X 10 esu and
gI '(co)=6.7X10 esu, so y' '(co)/y' '(3')=5.4. For
Li at A, =694 nm, y' '(3') =3.00X10 esu and
g' '(co)=3.2X10 esu, so y' '(co)/y' '(3')=107. For
K at A, =1064 nm, y' '(3')=2.61X10 esu and
y' '(co) =1.7 X 10 esu, so y' '(cu)/y' '(3') =65. For K
at A, =694 nm, g' '(3')=6. 17X10 esu and
y' '(co)= —2. 8X10 esu, so yI '(co)/y' '(3')= —454.
For the sake of simplicity, and because we do not have es-
timates of the susceptibilities g', g, and g', we will assume
that they are zero. We present results of calculations
with the ratio y' '(co)/g' '(3') equal to zero and to 100,
and are thereby able to clearly see the effects of phase
modulation on the spectrum of THG. Then, we point
out the effects of cross-phase modulation by including a
nonzero value for the cross-phase modulation susceptibil-
ity g'=y' '( —3';a), —co, 3').

We shall present calculations of the spectra and tem-
poral dependence of the third-harmonic output and the
fundamental output upon THG of a multimode funda-
mental field in the very low, low, and medium conversion
regimes. We consider three types of fundamental fields.
The first type is where the fundamental field originates
from a laser emitting light at several cavity mode fre-
quencies. The temporal dependence of the input electric
field, I', (O, r), can then be written as

The second type of field is a short-duration pulse with a
Gaussian envelope. The slowly varying envelope is given

by

E, (0,r) =exp[ (r to—)'/2o—'] . (5)

The third type is a frequency-modulated field with slowly

varying envelope given by

E, (0,r)=exp[iFocos(br)] .

We define the (dimensionless) coupling strength param-
eter u as u —=sup, [I,(w)]ai, yL, where L is the length of
nonlinear crystal through which the light propagates, and

I, (r) is normalized to ~E, (r)
~

. In what follows we desig-
nate very low, low, and medium conversion strengths as
follows: u =5X10, 5X10, and 0.5, respectively.
For each type of field, we perform calculations with these
conversion strengths.

Let us first consider the input fundamental field with
slowly varying envelope Et(0, v)=EO[1+2cos(hv)]/3 of
Eq. (4). In the very low and low conversion cases the
temporal dependence of the fundamental output is virtu-
ally indistinguishable in appearance from the input fun-

damental field because very little of the fundamental is
converted to the third harmonic. The conversion
efficiency to the third harmonic for the very low, low, and
medium conversion cases corresponds to 1.5 X 10
1.5 X 10,and 0.14, respectively when no phase modula-
tion is present. Figure 1 shows the temporal dependence
of the fundamental output and the THG output for the
medium conversion case without any phase modulation.
Here the depletion of the fundamental is clearly evident.
Figure 2 shows the intensity of the THG versus frequen-

cy for the very low conversion case, without and with
self-phase modulation of the fundamental included. In
this figure, the central frequency labeled 0 actually has a
frequency of 3', and the frequency scale is in units of A.
The calculated spectrum in Fig. 2 is a series of 6 func-
tions at frequencies 3', +md, m =0,+1,+2, etc. (the
electric field goes on forever so no linewidth is present),
and therefore the width of the lines at frequencies
3'�&+m 5, m =0,+1,+2, etc. are arbitrarily included.
We see that the spectrum of the third harmonic is some-
what broadened as a result of the phase modulation.
Note that the ordinate of Fig. 2 is plotted on a log scale,
and the total intensity in the additional harmonics intro-
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h t hase modulation. The

temporal depen ence o ed f the field is periodic and recurs outside
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arbitrarily to equal 3g. The temporal intensity pattern
obtained for the third harmonic without any phase
modulation o e unf th f damental is thereby recovere;

~ ~ ~

however, the frequency spectrum of the third harmonic is

without phase modulation. This cross-phase modulation
compensates the phase of the third harmonic so that it

'
h th lf-phase modulation of the funda-

mental. The total integrated intensity is then the same as

shows the intensity versus frequency for the medium con-
e. In Fi . 4(c) we have not drawn the intensityversion case. n ig. c

m =0, +1,+2, tc.,at frequencies away from 3'&+md, m =0. . . c.,
equa o zero1 t because this would make the figure unread-
able. Again, inclusion of phase modulation of the un a-
mental reduces the intensity of the third harmonic. This

dependence of the fundamental output and the THG out-
put in the medium conversion case with phase modula-
tion. In fact, the total third-harmonic intensity is less

duced by the phase modulation is not large. Figure 3
shows the intensity versus frequency for the low-
conversion case. We see that, in this case, the spectrum
is significantly broadened by the phase modulation in that
there is a ong progrh

'
1 ogression of higher harmonics that are

created. Moreover, the intensity of the third harmonic is
significantly reduced relative to the non-phase-modulated
case. This results because the fundamental field is self-
phase modulated and therefore steps out of phase with
the third harmonic, which is not phase modulated. We
now introduce a cross-phase modulation of the third har-
monic via the nonlinear susceptibility g', which is ta en
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could be easily seen in the figure. With cross-phase
modulation, the total integrated intensity and the tem-
poral shape of the third harmonic is then the same as in
the case of no phase modulation whatever. Figure 9
shows the intensity versus frequency for the medium con-
version case. The spectra of the third-harmonic radiation
without and with phase modulation are dramatically
different. In order to observe the effects of phase modula-
tion as the conversion strength increases we have plotted
the spectrum of the fundamental and the third harmonic
for the very low, low, and medium conversion cases in
Fig. 10. We see that for the low and medium conversion
cases, phase modulation introduces oscillations in the
spectrum of the fundamental. As the intensity of the fun-
damental or the propagation length increases, phase
modulation shifts intensity away from the central fre-
quency co& and spreads it into surrounding frequencies in
a well-known manner. ' The temporal pattern of the fun-
damental intensity is unaffected by the phase modulation
(phase modulation affects the frequency, not the ampli-
tude). Figure 11 plots the temporal dependence of the
fundamental output and the THG output in the medium
conversion case with phase modulation. The reduction of
the intensity of the third harmonic due to phase modula-
tion of the fundamental is clearly evident but there is no
effect of the phase modulation on the intensity of the fun-
damental versus time.

We now consider a frequency-modulated input field,
exp[iFocos(b, r)], and arbitrarily take Fo= 1.4. The in-
tensity of the input field is constant with time, and the
fundamental and third-harmonic output intensities are
also constant. The conversion efficiency in the very low,
low, and medium cases is 2.58X10, 2.58X10, and

0.205, respectively, without phase modulation. With
phase modulation the conversion efficiency is
2. 12X10, 4.22X10, and 2.62X10 ', respectively.
With both phase modulation and cross-phase modulation
(g'=3( as above) the percent conversion is the same as
without phase modulation. Figure 12 shows the intensity
versus frequency with and without cross-phase modula-
tion for the low conversion case. Note that the relative
intensities with cross-phase modulation are significantly
increased (by a factor of 61) relative to the case without
cross-phase modulation.

In summary, we have seen that the effects of self- and
cross-phase modulation of the nonlinear medium on the
spectrum of the THG can be quite dramatic. Generally,
the self-phase modulation of the fundamental will tend to
reduce the phase matching of an intense fundamental
field and the third harmonic, and thereby lower the con-
version efficiency for THG. Using the estimates of Miles
and Harris for the nonlinear susceptibilities
y' '( —3co;co,co, co) and g' '( —co;co, —co, co) in alkali-metal
vapors, we find that phase modulation can profoundly
affect the efficiency and the spectrum of THG. We have
seen that the cross-phase modulation of the third har-
monic by the fundamental may compensate for the self-
phase modulation of the fundamental, depending, of
course, on the value of the cross-phase modulation sus-
ceptibility, y' '( —3co; co, —co, 3co ) and its relation to
y' '( —to;ro, —co, co). We believe that, generally, the effect
of the cross-phase modulation of the fundamental field by
the third harmonic will be much less significant, because
the intensity of the third harmonic is generally much
smaller than that of the fundamental. We have calculat-
ed the spectrum of THG for multimode input fields (i)
originating from a laser with gain on several cavity
modes, (ii) of the form of pulses with short temporal
duration, and (iii) frequency-modulated input fields. We
have shown that new frequencies not contained in the set
of frequencies co&;+co& +co&k are created even at relative-
ly low conversion due to the effect of phase modulation.
We conclude that great care must be exercised if we want
to control the spectrum and the bandwidth of the THG
in gas media and that the effects of self-phase modulation
of the fundamental may significantly lower the conver-
sion efficiency of intense fundamental beams.¹teadded. After submission of this manuscript, Pro-
fessor S. E. Harris made me aware of a paper by Zych
and Young, " which reports THG experiments in Xe-Ar
mixtures that indicate that cross-phase modulation,
g' '( —3ro;ro, —co, 3ro), alters the index of refraction of the
third harmonic of 354.7-nm radiation.
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