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Two- and one-photon transitions in a three-level atom inside a cavity with arbitrary damping
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Different aspects of the interaction of a three-level atom with a single-mode radiation field are
studied inside a cavity with damping. It is demonstrated that two-photon transitions emerge from
cascade one-photon transitions by increasing the detuning parameters of the levels. It is also shown
that a simulation of the two-level atom with one-photon transitions can be achieved by changing the
detuning parameters adequately. In all cases, the influence of cavity damping is examined. Finally,
we point out that the second-order field correlation function approaches its minimum value for
t~~ in some cases.

I. INTRODUCTION

In the present paper, different aspects of the interac-
tion of a three-level atom with a single-mode radiation
field in a cavity with arbitrary damping will be treated.
The same model without damping was also investigated
by other authors. ' The damping, however, plays a very
significant role in experiments since no ideal cavities ex-
ist. The importance of the present model is verified by
the large number of experiments performed with Ryd-
berg atoms. In this paper the three-level atom model
will be used for two different investigations. First of all,
the two-photon transition will be demonstrated in the
model. Second, it will be shown that the two-level atom
can be simulated by a three-level model. Since the in-
clusion of cavity damping makes the problem so complex
that only numerical calculations are possible, we restrict
our investigations to the so-called:- type of the three-
level atom. In our previous paper we presented some
preliminary numerical results for the same model in the
case of the resonant cavity mode. In the present paper
our calculations go into more detail, and the inhuence of
the detuning of the atomic levels will be discussed explic-
itly. Moreover, new statistical properties, such as anti-
bunching of the radiation field caused by the cavity
damping, will be pointed out.

The paper is organized as follows. In Sec. II we set up
exact equations of motion for the expectation values
(EV's) of interest. In Sec. III we give numerical results
for different detunings in the case of two-photon transi-
tions. In Sec. IV the two-level atom will be simulated in
the three-level atom model by adequate choice of the lev-
el detunings. In Sec. V we study the statistical properties
of the field by examining the second-order correlation
function. In Sec. VI we draw a conclusion and compare
our work with that of other authors who, instead of ex-
act Hamiltonians as in our model, used effective Hamil-
tonians for description of the two-photon transitions.

II. EQUATIONS OF MOTION
FOR EXPECTATION VALUES

Here, we set up equations of motion for the = type of
the three-level atom interacting with the single-mode ra-

diation field inside a damped cavity. Furthermore, we re-
strict ourselves to the one-electron case. The direct tran-
sition between level 1 and 3 is not allowed (see Fig. 1).
The Liouvillian for our model reads as'

LX= [Ht +Hn, X]+iAX,

where the Hamiltonians' H& and H&t (8= 1) are given by

Ht =to(a a+b3b3 b,b—, )+to2(b, b, +b2b2+b3b3),

H„=—htb, b, +b,„b,b3+(g ahab)+ri ab3b2+H. c. )

(3)

(H.c. denotes the Hermitian conjugates). The cavity

C

&z

)k lk

FIG. 1. Different detunings in the cases of the =-type three-
level atom [see Eqs. (22) —(27) for case descriptions]. For case A
we plot the resonant case without detuning. For case C the de-
tuning parameters are 5I= —6„%0 (exact two-photon reso-
nance). For case F the detuning parameters are chosen so that
the transition process simulates a two-level atom (hl WO,
5„=0).
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damping in Eq. (1) reads as

A . . =tc([a,a ]+[a, a ]), (4)

{b,, b, j =b, b +b, b;=5;,

Ib, , b, I
=0= th, , btj,

[a,at]—=aa —a a =1, [b, ,a]=0 .

where a is the cavity-damping constant. Further, in Eqs.
(2)—(4) we used bj and b as creation and annihilation
operators of an electron at level j, and a and a as those
of a photon in the single-mode field with frequency co.

The energy levels are denoted by co, j=1, 2, and 3, the
coupling constants for the transitions 1~2 and 2~3 are
given by g =(g+)* and ri =(rI+)*, respectively, and
the detuning parameters are

For the fermion and boson operators the following com-
mutation relations hold

=[f/ (t)]', i =1,2, (10)

d„+(t)=Tr[(a )"a"+ b3b, p(t)j=[d„(t)]", (11)

where n, (t) is the mean photon number, zo(t), i =1, 2,
and 3 is the occupation probability of the ith level.

By using the Liouville equation dp/dt = iLp(t)—for
the density operator p(t), we obtain a closed set of equa-
tions of motion for the EV's, for k =0, 1,2,

In the following we set up the equations of motion for the
EV's, for k =0, 1,2, ... :

nk(t) =Tr[(at)"a "p(t)) (g)

z/(t)=—Tr[(a )"a "b; b;p(t) j, i =1,2, 3,
f/, +(t) =Tr[(a )"a"+'b;+&b p(t) j
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FIG. 2. Atomic-level occupation probabilities zo(t), i =1, 2, and 3, occupation inversion S=zo(t) —zo(t) and mean photon num-

ber n, (t) as functions of the scaled time gt, g=(~g ~
+ ~Irt 1

)' ' for real coupling constants g =g . The time evolutions are plotted

for the resonant = type of the three-level atom in the case of an initial coherent field (n, (0)=1a1 =10) inside an ideal cavity with

different detuning parameters: case A, 51= —6„=0;case B, 51= —b, =5g; case C, b I
= —6„=10g.
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dna
~ — 1+ — 2+

d~

—= nk = —2lcknk+ik(g fi, I +g fk I
—H. c. ),

zk= 2—akzk. +i[/ (fk++kfk+I )
—H c ] i

zk = —2~kzk +i [ g
—fk++g (fk++kfk+, )

—H. c.],
zk = 2a—kzk+i( ri —fk+ —H c ),
fk+ = ——(2k+1)lrfk ++i—rg

+—
[z&+, —zk+, —(k+1)zk]+ri (dk++k—dk—,)+blfk I,

fI, = —(2k+1)~fk +i [—g
+—[zk+, —zk+, (k+—1)zi, ] (+d—k*+6„fk ), ,

—

di, = —(2k+2)~dk—+ +i [g+[f„+—, +(k+2)fk ] ri fk+1 (kl+~r )dk

(12)

(13)

(16)

(17)

(18)

In our calculations we use the initial condition that the
atom is in the jth energy level and the field in a coherent
state ~a), with mean photon number n, (0)=(a a)o

(0)—
i

2k

z/(0)= ~a~ "5~, i =1,2, 3, . . .

(20)

(21)

p(0)=lj)&jlli &(~ . (19)

The initial values of the EV's in Eqs. (12)—(18) for
k =0, 1,2, . . . are determined by

(the remaining expectation values are zero at the initial
time).

The different detuning parameters (for example, see
cases A, C, and F in Fig. 1), for which we shall solve the
above Eqs. (12)—(18), read as
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FIG. 3. Same as Fig. 2 for the cavity with damping, ~=0.001g, and other detuning parameters: case C, Al = —5, =10g; case D,
6~=10g, 5„=—9g; case F, AI=10g, 6„=0.
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5 = —5 =0 for case A,I r

5 = —5 =5g for case B,I r

b, = —6 =10g for case C,1 r

(22)

(23)

(24)

f the2 —5 we pot ea1 th atomic occupation probabilities o
'

& r
= 1 2 and 3 the occupation inversion,levelszo t, E =, , an

(28)

~1 10g ~r = 9g for case D, (25)

6I=10, 5„=—7g for case E,

6I =10g, 6„=0 for case F, (27)

whereg=(ig'
i +ill

III. NUMERICAL RESULTS FOR DIFFERENT
DETUNINGS IN THE CASE OF TWO-

PHOTON TRANSITIONS

In this section we solve numerica y q .11 E s. (12)—(18) for
h

' 't'
1 conditions (20) and (21), with j =3, taking into

account the detuning parameters of cases A- . 'g .

and the mean photon number n, (t).
In Fig. 2 we plot the numerical results for the case of

the exact two-photon resonance
'

e inside an ideal cavity
@=0). The different detuning parameters are given y

cf. Fi . 1). From Fig. 2 it can be seen quite
1 h t the increasing detuning leads to a mos p

feet two-p oton transi ipn t t nsitions. The characteristic
~ ~

el the almost vanishing oc-two-photon transition, name y, e a
n life-babilit at intermediate level 2, the long i e-cupation pro a i i y a

nc of the revivaltime of the collapses, and the low frequency o
osci ations, are'll e clearly exhibited for case C in Fig. 2. In

to the extentfi ure the detuning is increased only to e
1 12 11that the influence of the intermediate eve

In Fi . 3 case C, we explore the influence of weak cavi-
ransition. It can be seen

am litudes of the revival oscillations decrease as
a consequence of the cavity damping, u e
features of the undamped case pare still reserved. T e

ofcavity losses are on y
v' '

1 isible in the pronounced decay o
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in: ~=0.08g.FIG. 4. Same as ig.F' 3 for a larger cavity damping.
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the mean photon number.
None of the cases D —F plotted in Figs. 3—5 will be dis-

cussed in this section. These cases, namely, concern the
simulation of a two-level atom (one-photon transition) by
changing the detuning parameters of the two-photon
transition case and will be discussed in Sec. IV. In the
case of strong damping (cf. case C in Fig. 4), the cavity
losses are so large that no collapse or revival phenomena
may appear. As it should be, the occupation probability
of the highest level 3 decays to zero, and that of level l
increases to one with time. The intermediate level 2 plays
almost no role, and its occupation probability remains
zero. The mean photon number decays exponentially.

IV. SIMULATION OF THE TWO-LEVEL ATOM
BY CHANGING THE CORRESPONDING

DETUNING PARAMETERS

In an ideal cavity (a.=O), by letting the detuning pa-
rameter b „ to go to zero, the cases D-F in Fig. 5 emerge
from Fig. 2, case C. In this way the one-photon transi-
tion (Fig. 5, case F) emerges from the two-photon transi-
tion (Fig. 2, case C) step by step. From Fig. 5 it can be
seen that, by letting the detuning 5, to go to zero, the
strong initial influence of the level 1 vanishes and the

influence of the intermediate level 2 becomes stronger
step by step. Finally, for 6, =0, the occupation probabil-
ity of the level 2 will behave quite analogously to that of
the level 3 ~ This means that we get effectively a two-level
atom, since the level 1 does not play any role in the radia-
tion process.

In the case of cavity damping, the following can be
seen. In Fig. 3, cases D and F, the numerical results for
small cavity damping are plotted. The comparison and
Fig. 5, D and F, with Fig. 3, D and F, shows that the os-
cillation amplitudes of the revivals are damped, but that
the form of the curves is retained. Only for the mean
photon number are the cavity losses clearly visible (ex-
ponential decay). In the case of strong damping, the oc-
cupation probabilities of all levels change drastically (cf.
Fig. 4, D and F). For b„=0, the occupation probability
of level 1 is almost zero. Further, the occupation proba-
bility of level 3 decays to zero and that of level 2 in-
creases to nearly one.

V. SECOND-ORDER CORRELATION FUNCTION
OF THE RADIATION FIELD

(BUNCHING AND ANTIBUNCHING)

In order to investigate the properties of the radiation
field, we calculate numerically the second-order correla-
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FIG. 5. Same as Fig. 2 (ideal cavity) for other detuning parameters: case D, 61 = 10g, 6„=—9g; case E, 5& =10g, 6„=—7g; case
F, 51= 10g, 5, =0.
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FIG. 6. The time evolution of the normalized second-order correlation function g" (t) for different cavity dampings, ~=0, 0.001g,
and 0.08g, in the case C of the detunings, AI = —6, =10g, and case D, 61 =10g, 5, = —9g, for the same initial coherent field as in

Fig. 2.

tion function:

((a ) a )v
—(a a ), ni(t)

g (t)= —1.
(ata )2 n', (t)

(29)

In Figs. 6 and 7, we plot g( )(r) for different detuning
(C-F) and damping parameters. In these figures the
bunching and antibunching phenomena can be observed.

In the undamped cases C and F (vv =0), collapses and re-
vivals appear; whereas, in the case of collapse, g' '(t) =0,
the revival oscillations show both bunching and anti-
bunching features. In intermediate cases D and E ()t=0),
the antibunching effects almost disappear. The ampli-
tudes of the oscillations of the revivals will be damped by
small cavity losses to the extent that antibunching ap-
pears only at the very beginning of the time evolution (cf.

~ = 0.001 g
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FIG. 7. Same as in Fig. 6 for the detuning parameters: case E, 6& = 10g, 5, = —7g; case F, b, I
= 10g, 5„=0.
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Fig. 6, case C, and Fig. 7, case F). In cases C, D, and E,
the antibunching wi11 disappear by increasing cavity
damping (a.=0.08g ).

An interesting phenomenon arises in the case of a
simulated one-photon transition (case F in Fig. 7). The
large damping leads to a completely antibunched radia-
tion field in the time limit:

(30)

Of course, for t ~~, the radiation field will approach the
normal vacuum.

In order to get more information about this new affect,
we explore the exact two-level model as far as the anti-
bunching is concerned. This case is examined in Fig. 8

for ~=0.08g. A comparison of this figure with Fig. 7,
case F, ~=0.08g„shows that the second-order correlation
function exhibits more structure in the three-level model.
In both cases the same limit, Eq. (30), regarding the anti-
bunching, will be achieved for large times. In the case of

g(2) p—

—1--
0 80 160

gt

FIG. 8. The time evolution of the normalized second-order
correlation function g' '{t) in the case of a real two-level atom

in a damped cavity {~=0.08g ) for the same initial coherent field

as in the previous figures.

the two-level atom, this effect can be also demonstrated
analytically. By use of the method developed in our pre-
vious paper, it can easily be shown that the result of Eq.
(30) can be obtained (x (g ) for the atom being in the ex-
cited state ~2) and the field in the Fock state ~p ) (p is the
number of photons) initially. Namely, for mean photon
numbers n, (p, t ) and n2(p, t ), it holds that

n, (p; t ) = (2p ~a a exp( itL ) ~2p
—)

p+—
[2F( —p, —

—,'; —', ;exp( 2at)}—F—( —p, —,'; —;exp( 2at)}]ex—p( st)+n, (—p, t), p &0, (31)

where

n, (p, t)= —
—,'cos(P +,gt)+ (4p +5p) —P +,sin(P +,gt) exp[ —(2p+ 1 )at]8p+1 g

+ (4p +3p+1)—P sin(P gt )exp[ —(2p —1)xt], p ~ 1;
8p

n, (p, t) = ,'cos(P gt)exp( —t—rt), p =0;—
(32)

(33)

2 1/2

P, = 4p— (34)

and

n2(p; t ) = (2p ~(a ) a exp( —itL ) ~2p )

l ~+-,'
[2F(1—p, —

—,'; —,'; exp( 2at ) ) —F(1——p, —,'; =', ;exp( 2trt ) )]e—xp( 3~t )—

8(p+1) g
~'—'p cos(P +~gt)+ (p —1)(4p +5p)—P +,sin(P +,gt) exp[ —(2p+1)xt]

+ (p —1)(4p +3p+1)—P sin(P gt)exp[ —(2p —1)at], p ~1 .
Sp g p

(35)

By F(a,P;y;x), we denoted the hypergeometric func-
tion. ' Then, by using Eqs. (29), (31)—(35}, and
F(a,g;y;0)=1, it follows that

n, (t)= g exp( —~a~') n, (p, t),
p=0

7 (37)

g'2'(t ~ co }=—1 . (36) n~(t)= g exp( —
~a~ ) n~(p, t),

p=] pf
(38)

From this we can deduce immediately the results for the
initial coherent field: g(2)(t ) (39)
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VI. CONCLUSION

In this paper we have investigated the three-level atom-
ic model interacting with a resonant single-mode radia-
tion field inside a cavity with arbitrary damping. %e
have set up exact equations of motion for the EV's of in-
terest. These equations were solved numerically for
different detunings of atomic levels. First, we detuned
the intermediate level preserving the two-photon reso-
nance (b,l= —b, „, see Fig. 1). This has the consequence
that, from the cascade one-photon transitions in the
tuned case, the two-photon transitions emerge if the de-
tuning (b, i

= —b, „) is increased sufficiently. In this case,
as it was demonstrated in Figs. 2, 3, and 4, for case C, the
one-photon transition to the intermediate level can be
considered as virtual, so that the atom acts as an effective
two-level system emitting (absorbing) two photons simul-
taneously. The small inAuences of the intermediate level
are still visible. Just this latter fact stresses the difference
between our model and that of other authors who use
approximative effective Hamiltonians for two-photon
transitions. Of course, our results almost coincide with
those of these authors in the case of large detuning of the
intermediate level. Even in this case, our calculations are

more general since our exact Eqs. (12)—(18) are valid for
arbitrary damping; whereas those of Puri and Agarwal
(who use a dressed state approximation) are restricted to
small-cavity damping. A simulation of the two-level
atom can, of course, be achieved only in our model by de-
creasing the detunings of the upper levels (cf. Fig. 1 and
Sec. IV).

In Sec. V we studied the normalized second-order
correlation function of the radiation field. In the case of
the simulated one-photon transition (Fig. 7, case F), we
were able to point out the effect of total antibunching in
the time limit for t ~ oo.
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