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Coupled modes and the nonlinear Schrodinger equation
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We study the interaction of co- and contrapropagating modes in the presence of an intensity-
dependent refractive index, and find that, under suitable conditions, these processes can be de-
scribed by the nonlinear Schrodinger equation.

I. INTRODUCTION

The interaction between different waveguide modes is
often described by a set of coupled-mode equations. '

Essential in this description is that two branches of the
dispersion relation of the modes, which would cross in
the absence of an interaction, experience an anticrossing
under the influence of a finite interaction. The nature of
the interaction and the guiding medium is irrelevant in
this description —the coupled-mode equations therefore
apply to a variety of guided wave phenomena, which in-
clude elasto-optic and electro-optic interactions, as well
as interactions mediated by surface corrugations, and
through the proximity effect as in directional couplers, in
both waveguide and fiber geometries. As first pointed out
by Yariv, two cases with quite different properties are
distinguished in coupled-mode theory. In the first of
these, the contrapropagating case, the two modes travel in
opposite directions, for example, when a waveguide mode
is reflected off a (nearly) Bragg-matched grating struc-
ture. ' In the second case, the modes travel in the same
direction as, for example, in directional couplers. In this,
the copropagating case, the two modes can exchange ener-

gy periodically. '

The difference in properties between co- and con-
trapropagation is related to the way in which the interac-
tion lifts the degeneracy between the modes: For con-
trapropagating modes the anticrossing leads to a forbid-
den energy gap, while it leads to a forbidden waUe-Uector

gap when the modes copropagate. In the present paper
we study how these mode interactions are modified in the
presence of an intensity-dependent refractive index. The
coupled-mode equations for this nonlinear case have re-
cently been shown to have solitary-wave solutions. In
the present paper, however, we study the applicability of
the nonlinear Schrodinger equation to describe these non-
linear phenomena. Using an envelope function approach
we show that this equation holds in the limiting case that
the Bloch function at one side of the stop gap (of either
kind) dominates the rapid spatial (for contrapropagating
modes), or temporal (for copropagating modes) depen-
dence of the electric field. This requirement can be
satisfied for contrapropagating modes by just suitably
limiting the bandwidth of the radiation source. One can
thus use the nonlinear Schrodinger equation to describe

Bragg reflection of a nearly monochromatic wave off a
periodic structure. For copropagating modes, one would
have to limit the spatial bandwidth suitably, which is far
less practical.

The comparisons of the soliton solution to the non-
linear Schrodinger equation and the rather complicated
exact solitary wave solutions to the general nonlinear
coupling problem demonstrate that, in the proper limit,
these two solutions are identical. However, since the
nonlinear Schrodinger equation is integrable, it is the pre-
ferred description in the domain where it is valid.

We have previously used an envelope function ap-
proach to describe Bragg reflection in the presence of a
nonlinearity. Starting with a wave equation for the
electromagnetic field, that treatment did not presuppose a
weak linear coupling between the modes due to the
periodicity in the dielectric constant. ' However, in the
case of linear coupling being sufficiently weak that cou-
pled mode theory can be used, the present treatment is in
fact more general since the nature of the linear interac-
tion between the modes does not enter into the discus-
sion. Indeed, one can begin with the coupled-mode equa-
tions with the coupling parameters set phenomenological-
ly, or found from experiment, and does not have to go
back to an underlying wave equation. Whereas our pre-
vious work made explicit use of the Bloch functions of
the periodic grating, the present treatment is based only
on the coupled-mode equations and their associated
eigenvectors. A one-to-one correspondence exists be-
tween these eigenvectors of the (linearized) equations and
the Bloch functions bordering the stop gap under con-
sideration, so that in a suitable limit the two treatments
are equivalent.

The organization of this paper is as follows. In Sec. II
we first briefly give the solitary-wave solutions to the cou-
pled contrapropagating mode equations. We then
demonstrate the applicability of the nonlinear
Schrodinger equation to the same problem, and compare
the solutions to this equation to the solitary-wave solu-
tions. In Sec. III we demonstrate that this equation can
easily be adjusted to apply to copropagating modes as
well. In Sec. IV we argue that in practice the validity of
the nonlinear Schrodinger equation to copropagating
modes is quite limited. We then briefly summarize our
conclusions.
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II. CONTRAPROPAGATING MODES

where c is the speed of light, c/2) is the group velocity of
the two modes, ~ is a coupling coefficient which gives the
strength of the linear interaction, v is a detuning parame-
ter, and I, x are nonlinear coupling coefficients which
are proportional to various overlap integrals of the
modes. The coefficients I, describe the self-phase modu-
lation of the modes, whereas I x describes cross-phase
modulation. Further, 8+ denote slowly varying electric
field amplitudes (in space and time) of the forward (+)
and backward ( —) traveling modes. Note that Eqs. (2.1)

imply that, except for traveling in opposite directions,
these modes are identical. The analysis is far more com-
plicated if this condition is not satisfied, and we do not
discuss this case here. For a specific example, in the case
of a planar optical waveguide, the 6+ bear the following
relation to the actual electric field E(x,R; t):"

E(x,R;t) =[6'+(R;t) f+(x;coo)e

+6' (R;t)f (x; a)2e0' ]e '+c.c. ,

(2.2)

where f+ are properly normalized waveguide modes trav-
eling in opposite directions, which for a planar waveguide
depend on single coordinate x only; coo and ko are the
temporal and spatial center frequencies of the field; and
R =yy +zz denotes the coordinates in the waveguide
plane [note that if the 4+ satisfy Eqs. (2.1), the field does
not depend on y]. It should be mentioned that relations
similar to Eq. (2.2) can be written down for fibers, or for
any other system which an be described by coupled-mode
equations as Eqs. (2.1).

We now remove the exponential factors in Eq. (2.1) by
introducing the functions V~ through the relations'

v iv[+z+Iclg)t]
+ (2.3)

and find

ap+ 77 av+
+i +i +av-

iz c Bt

+I, /v /'v +2r„(v ('v =0,
(2.4)ay- 9 ay-

+i +KV+
Bz c Bt

+r, /v f'v +2r„fv, /'v =0.

For two contrapropagating modes one obtains the set
of equations' ' ' '"

ac, a@, —2l VZ

Bz c Bt

+r, /e, ['C, +2r„/@ ['a =0,
(2.1)

a~ a~
i — +i+ +t~6+e+ '"'

Bz c Bt

+r, [C /'@ +21.„/C, /'e =0,
+i a

az

=l v,
c Bt

(2.5)

where V is the column vector with elements V+ and V
We can find the dispersion relation associated with these
equations by making the substitution V ~e' "' ", so
that we obtain

+k
V= V—k c

(2.6)

which can readily be solved to give

gQ —+(k 2+ 2)1/2
c

(2.7)

k+(k'-+~ )'

We see from these expressions that no solutions for the
angular frequency can be found in the range—tr(2)Q/c (+~, so that no traveling-wave solutions in
this range are allowed. In the case when the coupled-
mode equations [Eqs. (2.1)] result from a periodic varia-
tion in the (effective) dielectric constant, this is the well-
known (energy) stop gap associated with Bragg refiection
off a periodic structure (cf. Fig. 1). It can be shown that,
within the approximations that lead to the derivation of
Eqs. (2.1) from the full Maxwell equations, the two eigen-
vectors v+ in Eq. (2.7) correspond to the two Bloch func-
tions bordering the stop gap under consideration. Note,
however, that in this treatment all other Bloch functions
of the periodic structure are disregarded, in contrast to
our earlier treatment of this problem, ' thus significantly
reducing the level of complexity.

We now return to the fully nonlinear set of equations
[Eqs. (2.4)]. It has been pointed out recently that in the
limit in which the self-phase modulation terms vanish
(I,=0), Eqs. (2.4) are identical to those of the massive
ThirrEng model used in quantum field theory. ' ' This
set of equations is integrable, and its soliton solutions are
well known. ' Equations (2.4), on the other hand, appear
to be nonintegrable and therefore do not have soliton
solutions. However, solitary-wave solutions to Eqs. (2.4)
(with I,WO) have been found by suitably transforming
the soliton solutions to the massive Thirring model.
Below, we demonstrate that, within certain limits to be
discussed, solutions to Eqs. (2.4) can also be found using

Before studying the properties of the full set of nonlinear
equations we first consider the limiting case in which the
amplitude of the forward and backward traveling waves
is small enough to neglect the nonlinear terms. The
properties of the thus obtained linearized set are quite im-
portant as they can aid in the understanding of the full
set of equations. Specifically, an eigenvector analysis of
the linear system proves to be a very convenient starting
point for describing the properties of the nonlinear sys-
tem. Thus neglecting now the nonlinear terms we rewrite
Eqs. (2.4) as

a
I

az
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where

(1+u )'-' 4r. 1-.- (2.13)

FIG. 1. Illustration of the origin of gap solitons for a positive
nonlinearity. At low-field strengths the center frequency falls
inside the stop gap {left). At high-field strengths, such as
around the maximum of the soliton, the refractive indices in-

crease due to the nonlinearity, so that the dispersion relation
shifts down in energy, the center frequency locally tunes out of
the gap, and traveling-wave solutions are allowed (right). If the
parameter 5 ((1,as in the figure, the required field strength for
this to happen is minimal. A similar argument holds when the
nonlinearity is negative.

where the P+ are the soliton solutions to the massive
Thirring model, which, in our notation, read

' 1/2 —sin5 e —' sech( 8+ i5/2 ),p+ ——+ ++ — -2r„
K

2I „

' 1/2 (2.9}

hsin5e+—' sech(8+i5/2) .

The choice of the signs in these equations is determined
by that of the relative signs of the linear and nonlinear
coupling coefficients. Further, '

CO=~sin5 z ——vt
'9

Co. =K cos5 vz ——t
rl

( 1 2)1/2

( 1 2)1/2

(2.10)

where the dimensionless quantity v is given by'

u =(1—b, )/(1+5 ) . (2.11)

Finally, we have defined

u=(1+R++R )

(R+ —R )/(1+R+ +R )
(2.12}

20+ +t 5

20+e +i5

the nonlinear Schrodinger equation. Within these limits
the use of the nonlinear Schrodinger equation is obvious-
ly the method of choice since it is an integrable equation.
We finish this section by comparing the exact solitary-
wave solutions to the soliton solutions of the nonlinear
Schrodinger equation in the regime where it is valid.

Following Aceves and Wabnitz we write the solitary-
wave solutions to Eqs. (2.4) as

(2.8)

In these equations b, and 5 (0&5&m) are free parame-
ters. According to Eqs. (2.10) and (2.11) the parameter u

(and thus b, ) determines the soliton velocity, while 5
determines the position in the stop gap. The value
5=m/2 denotes a solution with center frequency in the
middle of the gap, whereas 5~0(m) denotes solutions
near the top (bottom), depending on whether the cou-
pling coefficients are positive or negative. This can be
verified by using Eqs. (2.9) in Eq. (2.3) and identifying the
full frequency dependence. To understand why the max-
imum field strength increases with 5, it is important to
realize that the solitons exists because, through the non-
linearity, the electric field shifts the photonic band struc-
ture such that the center frequency locally no longer falls
within the stop gap, but corresponds to an allowed
band. ' Since a positive (negative) nonlinearity shifts the
photonic band structure down (up) in energy, the lowest
field strength is required if the field is tuned close to the
upper (lower) edge of the stop gap. ' This is illustrated
in Fig. 1. Numerical work by Aceves and Wabmtz has
shown that the solutions Eqs. (2.8)—(2.13) do not have all
the properties commonly associated with solitons: col-
lisions between two such solutions seem to give rise to
more than just phase shifts. These solutions should
therefore be denoted as "solitary waves. "

We next solve Eq. (2.4) using an approximate method
which makes use of an envelope function approach. Be-
fore doing so, it is important to realize that the V+ are
slowly varying by virtue of a synchronous approximation
which has been applied before Eqs. (2.1) can be written
down. In this approximation only terms which are (al-
most) phase matched are retained. ' Whereas the actual
fields vary at a rate coo [Eq. (2.2)] of about 10' s ', the
time dependence of the 9'+ extends over the range of
inhuence of the mode interaction, which roughly corre-
sponds to the size of the stop gap and is thus several or-
ders of magnitude below optical frequencies. In our sub-
sequent analysis we introduce an even slower varying set
of variables which typically vary on the scale of a fraction
of a stop gap. Since we have three different levels of vari-
ables, it is important to distinguish the various
parameters —the group velocity e/ri in Eqs. (2.1) and
(2.4) equals the slope of the dispersion curves of the two
modes in the absence of the linear interaction, and differ
from the slope and curvature of the dispersion curves in
the presence of that interaction, to be introduced below.

As we saw before, the solutions to the linearized set of
equations can be written as a suitable linear combination
of the eigenvectors (normal modes) v+ each multiplied by

i (kz —O~t)
the plane-wave factor e —,where 0 and k are re-
lated by Eqs. {2.7). Returning to the fully nonlinear sys-
tem of Eqs. (2.4}, it is clear that at any given point in
space and time we can write the solution to the general
system as a linear combination of the v+ with their asso-
ciated plane-wave factors as well, but the amplitudes will
not be constant now. If we assume, however, that these
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amplitudes vary on much slower scales than the factors
e' ' "", we can use a variety of mathematical tech-
niques to separate the slowly varying amplitudes from the
rapidly varying plane-wave factors, giving rise to equa-
tions for the slowly varying amplitudes only. However,
since the ensuing equations do not appear to be simpler
than the original coupled-mode equations, and since we
have solitary-wave solutions to the coupled-mode equa-
tions [Eqs. (2.8)—(2.13)], this general approach is not very
useful. The scheme of separating the slowly and rapidly
varying field components can, however, give useful re-
sults if we restrict ourselves as follows. We assume that
one of the eigenvectors and its associated plane-wave fac-
tor dominate the rapidly varying field components. Phys-
ically, this means that the frequency content of the elec-
tric field overlaps only one of the edges of the stop gap
significantly. ' The results of such an approach thus
only applies to pulses whose temporal width is much
larger than that associated with stop gap. For a planar
optical waveguide with a typical inverse coupling
coefficient of about a millimeter, this excludes pulses
shorter than a few tens of picoseconds, whereas for an op-
tical fiber with a typical inverse coupling coefficient of a
meter it excludes pulses shorter than a few tens of
nanoseconds. Note, however, that the resulting solitons
travel much slower than the speed of light, and the spa-
tial extent of pulses of duration ~ in the structure is thus
much less than cv/g.

In separating the rapidly varying from the more slowly
varying field components we use the method of multiple
scales. This technique has been described before (see,
e.g., Refs. 6 and 7), so we will not show a detailed calcula-
tion here. To use the method, a set of coordinates
describing variations on different time and length scales is
introduced through

Z =Zo+PZ& +P Z2 +

t =tO+Pt]+P t2+ ' ' '
(p «1), (2.14)

+p'b(z, ,z2, . . . ;t, , t2, . . . )I+ ) )e ' "- ", (2.15)

where a ket notation is used, I+ ) referring to v+ of Eq.
(2.7), and the

I

—) refer to v . The slowly varying en-
velope functions a and b are, at least for now, completely
arbitrary. Note that the upper (lower) sign in Eq. (2.15)
corresponds to a wave package centered near the top
(bottom) of the stop gap. Since p « 1, we assume in writ-
ing Eq. (2.15) that, consistent with the discussion above,
v+ (v ) dominates the rapid variations of the X Substi-
tuting Eqs. (2.14) and (2.15) into Eqs. (2.4) we find that
these equations are satisfied up to order p. Collecting
next all terms proportional to p it is found that

and the variation of a function on the different scales
z„,t„, is treated as if those quantities were independent
variables. Further, the solution is approximated by the
expression

V=(pa(z, ,z2, . . . ;t, , t~, . . . )I+)

—+n, + &+A(.I+ & b =i o, I+&+i+ I+&,
C

(2.16)

so that a =a(g, ;z2, . . . , t&, . . . ).
Mapping Eq. (2.16) onto the eigenvector v+, it is found

that the envelope function b does not depend on 7, either,
and that

. c 1 &+ la, l+& Ba
b(g, ;z~, . . . ;t2, . . . )=+i —

( I )

(2.19)

We have found expressions similar to Eqs. (2.17) and
(2.19) previously, but in this earlier work, our starting
point was the wave equation for the electric field with a
nonlinear periodic dielectric function. The present work
is based on the coupled-mode equations [Eqs. (2.1),
which, as discussed in the Introduction, are valid under
less restrictive conditions.

We now finally consider the terms proportional to p
and map the resulting expression onto v+. It is then
found that

Ba , Ba e I & + I& —
& I'

'
at, Bz q2 ( —

I

—&&+I+)(II —II )

a2 +:-(+I+)IaI a =0, (2.20)

where the nonlinear coefficient is given by

2'I ==
c

:-=(2r,+r, )
—(2r„—r, ) &n'

C
(2.21)

Equation (2.20), which is the nonlinear Schrodinger equa-
tion, has been widely studied and is known to be integr-
able. ' The factor within brackets in the second term in
this equation equals half the group velocity dispersion

where o 3 is the third of the Pauli matrices [diag(1, —1)]
and AI was defined in Eq. (2.6). We analyze Eq. (2.16) by
mapping it onto the two eigenvectors. Taking first the
inner product with v+ leads to

, &+I~, +&

&+I+) Bz, Bt,
(2. 17)

It is straightforward to show from Eq. (2.7) that the ex-
pression within brackets in Eq. (2.17) equals the group ve-
locity II' = ( M+ /Bk ). The slowly varying function
a(z„zz, . . . , t, , t~,'. . . ) thus cannot depend on z& and t,
independently, but only on the linear combination
z, —0't, . This means that, to this order, the envelope
travels with the group velocity. We stress that this is the
group velocity in the presence of the interaction (thus not
c /g). We now introduce the new variables

g, =z, —0't, ,
(2.18)
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0"=d 0+/dk . Introducing the variables gz, rz in the
same way as g~, r, in Eq. (2.18), and assuming that the
eigenvectors are normalized to unity [cf. Eq. (2.7)], allows
us to rewrite Eq. (2.20) as

2'+ —n" '+:-[ [' =o.'ar, 2 ag',
(2.22)

a (g, ~) = i(C~(—C~v/2+C l
w/2)/0"

e

C)
X sech „(g—Czr) (2.23)

Having solved Eq. (2.22) for a, we can then find b from
Eq. (2.19) and 7 from Eq. (2.15). Equation (2.22) is simi-
lar to results of previous investigations in which we stud-
ied the Bragg reflection of a waveguide mode off a grating
structure. As discussed, however, the present work is
more general. In the remainder we drop the subscripts of
g, and rz and we suppress all coordinates g„,r„ for n )2,
so that a =a(g, r}.

The one-soliton solutions to the nonlinear Schrodinger
equation reads"

where the velocities C, and C2 can in principle be chosen
freely. But since a is an envelope function, we must have
C, , Cz «c/iI. Since g, r themselves are coordinates in a
moving frame [Eq. (2.18)], we see from Eq. (2.23) that the
soliton velocity is the sum of 0' and C2. Physically this
means that the total velocity is made up of that of the
eigenvectors (0') and that of the envelope (Cz). It is
straightforward to show that, to second order in the ve-
locities, the total electric field does not depend on the
way in which the total velocity is distributed.

We next compare in this low-velocity limit the approxi-
mate solutions following from our envelope approach to
the more complicated solitary-wave solutions of the full
problem [Eqs. (2.8)—(2.13)]. This matter has also been
discussed briefly by Aceves and Wabnitz. Since the way
the total velocity is distributed is irrelevant, we may take
k =0, so that 0'=0 [thus g=z and r=t, Eq. (2.18)],
Q+ +(c/'g)K, 0 +c/('gK), and v+ =( 1 /v 2)( 1, + I ).
If we then further make the substitutions C~ =cp/rt and

Cz =cq /z), so that the envelope function approach re-
quires that p, q «1, and use Eqs. (2.15) and (2.19), we
find that

2(z, t) = +K

2r, +r,
1/2

+i/i E 1

pe 'sech(pz) —
1

+ +i tanh(pz) +1+1 (2.24)

where

P, =quiz — Irt+ —(p q)t, —
2n

c
Pz =pa z — qt—

'9

(2.25)

i @+i 8+Ket i t i Ke

+r, / e, /'e, +r, /c, /'e, =0,
(3.1)

Within its range of validity (p, q «1), Eqs. (2.24) and
(2.25) are identical to the exact solitary-wave solutions
found above. To see this we associate 5, v, with p, q, re-
spectively, and expand Eqs. (2.8)—(2. 13) uniformly to
second order in these parameters. However, since z, t can
be arbitrarily large, the solutions in Eqs. (2.24) and (2.25)
fail at large spatial and temporal distances from the soli-
ton maximum. The requirement v &&1 means, of course,
that the soliton velocity be much less than the group ve-
locities of the interacting modes. Further, Eqs. (2.9)
show that 5(&1 is the low-field limit of the exact solu-
tions. According to the discussion in the paragraph
below Eq. (2.13), this corresponds to the situation in
which the system can tune itself most easily out of the
gap (see Fig. 1).

III. COPROPAGATING CASK

The interaction between two copropagating modes in
the presence of nonlinearity can be described by a set of
equations which differ from Eqs. (2.1) only by the relative
signs of the spatial derivatives and the different group ve-
locities of the modes involved, "

6'+' u +2 I, 2 ve

+r, [~,['c,+r, [e, /'@, =o,
in notation similar to that in Eq. (2.1). For the specific
case of a planar optical waveguide the relation between
the actual electric field and 8, 2 is again given by Eq.
(2.2). By introducing the new coordinates z =Z,
t =T —gZ/c, and a new set of envelope functions by
@]2=2] 2e+' "+""', where q]=g+g, /2=A —q, we
find from Eq. (3.1) the set of coupled equations

i 9,+i+ 7,'+~7, —+r, ~v, ~'v, +r, ~p, ~'v, =o,
az ' c at

(3.2)

i Vz i+ 2z+~V, +—r, ~V—z~z9z+r, ~9', ~zpz=O.z 2 c i)t

As pointed out by others before, this set is identical to
Eqs. (2.4) for contrapropagating modes, but with the
roles of z and ct/g reversed. Equations (2.8}—(2.13) thus

apply to the present case as well. They yield solitary-
wave solutions to Eqs. (3.2) which have been called reso-
nance solitons. Our present interest, however, is again
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the possible applicability of the nonlinear Schrodinger
equation. Starting with the linearized version of Eqs.
(3.2), one can find a set of eigenvectors and eigenvalues,
just as in Sec. II. Since the roles of z and t (and thus
those of II and k) are reversed, however, one now finds
that certain values for k are forbidden, indicating a k
gap. In the same way as in Sec. II one can find that the
coefficient of the eigen vectors satisfies the nonlinear
Schrodinger equation. The condition for its validity is
again that one of the Bloch functions bordering the (k)
gap dominates the rapid variations of the electric field.
We thus conclude that, in the limit described above, reso-
nance solitons can be described by the nonlinear
Schrodinger equation. The reader is referred to Ref. 5
for a description of some of the properties of these elec-
tric field solutions.

We now finally investigate if the nonlinear Schrodinger
equation applies to the well-known situation in which
two copropagating modes periodically exchange energy. '

To do this we consider Eqs. (3.2) with 9, z~e'"' [cf. Eq.
(2.6)], which leads to the (unnormalized) eigenvectors
v, z=(1,+1). These correspond to states in which each
of the copropagating modes carry equal amounts of
energy —the situation in which one of the modes carries
most of the energy must thus correspond to the superpo-
sitions v, +v2. In the periodic exchange of energy be-
tween two copropagating modes, the total state of the
linear system must thus beat periodically between these
two superpositions. We thus conclude that in the process
of periodic energy exchange between copropagating
modes, in which both eigenvectors are equally important,
the nonlinear Schrodinger equation is not valid.

IV. DISCUSSION AND CONCLUSIONS

The different properties of linearly interacting co- and
contrapropagating modes was traced back by Yariv to a
different form of the conservation law of energy flux for
these two cases. In turn, this distinction causes quite
different behavior in the presence of a nonlinearity. The
crucial assumption, which leads in Secs. II and III to the

nonlinear Schrodinger equation for the envelope func-
tion, is that a single eigenvector and its associated plane-
wave factor dominate the more rapidly varying behavior
of the linearized system. This condition can be satisfied
for two interacting contrapropagating modes by
confining the frequency content of the radiation to the
suitable part of the stop gap. In principle, this can be ac-
complished straightforwardly since the (temporal) fre-
quency content of the field is determined directly by the
source. For two copropagating modes, on the other
hand, one should suitably limit the wave-vector content
of the field. This is far more difficult to accomplish as the
spatial frequency content of the field follows from the fre-
quency content and the material response.

We do not discuss the applications of our findings here.
We have done so before, for the specific case of Bragg
reflection of a periodic grating, ' where the nonlinear
Schrodinger equation was used to describe "gap soli-
tions" (Refs. 6, 8, and 14) and "self-localized light" (Refs.
3 and 9). We plan to return to additional applications of
this theory in a future publication.

In conclusion, we have shown that if the temporal fre-
quency content of the signal significantly overlaps only
one of the edges of the stop gap, the interaction of two
similar counterpropagating modes in the presence of a
intensity-dependent refractive index can be described by
the nonlinear Schrodinger. A similar conclusion can be
drawn for copropagating modes, but the required narrow
spatial frequency content is hard to achieve. The field
profile in this limit is identical to that of the solitary-wave
solutions to the coupled-mode equations, which can be
found from the solutions to the massive Thirring model.
Because of the wide applicability of the coupled-mode
equations, these conclusions hold for a wide variety of
geometries and interaction mechanisms.
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