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The rapid relativistic distorted-wave method of Zhang, Sampson, and Mohanty [Phys. Rev. A 40,
616 (1989)] for excitation, which uses the atomic-structure data of Sampson et al. [Phys. Rev. A 40,
604 (1989)], has been extended to ionization. In this approach the same Dirac-Fock-Slater potential
evaluated using a single mean configuration is used in calculating the orbitals of all electrons bound
and free. Values for the cross sections Q for ionization of various ions have been calculated, and
generally good agreement is obtained with other recent relativistic calculations. When results are
expressed in terms of the reduced ionization cross section Qg, which is proportional to I?Q, they
are close to the nonrelativistic Coulomb-Born-exchange values of Moores, Golden, and Sampson [J.
Phys. B 13, 385 (1980)] for hydrogenic ions except for high Z and/or high energies. This suggests
that fits of the Qr to simple functions of the impact electron energy in threshold units with
coefficients that are quite slowly varying functions of an effective Z can probably be made. This
would be convenient for plasma-modeling applications.

I. INTRODUCTION

Highly charged ions with very large values for the nu-
clear charge number Z are becoming of increased interest
in the study of high-temperature plasmas, partly due to
the interest in developing ultrashort-wavelength lasers.
For highly charged ions with Z 225 or 30, the j depen-
dence of the radial functions for some orbitals becomes
significant so that a fully relativistic approach based on
the Dirac equation should be used in calculating the
properties of such ions. For the applications to high-
temperature plasma modeling, it is also desirable to have
a very rapid relativistic approach because an immense
amount of atomic data is required. In Refs. 1 and 2 such
an approach was developed, and in Refs. 3-6 it was ap-
plied to large-scale production of collision strengths, or
equivalently excitation cross sections, and oscillator
strengths. As discussed in these references, the approach
appears to be accurate for

ZZ2N or 25N, (D

were N is the number of bound electrons per ion.

The approach was also recently extended to give cross
sections for excitation of highly charged ions to specific
magnetic sublevels by a directive beam of electrons.’
This was motivated by the need for such cross sections in
the modeling and design of electron-beam ion trap
(EBIT) experiments at the Lawrence Livermore National
Laboratory.® !® For this purpose ionization cross sec-
tions are needed, as well. Of course, ionization cross sec-
tions are also needed for the modeling of high-
temperature plasmas, and recently electron-impact ion-
ization cross sections for U°'* and U%** have been mea-
sured.!! The purpose of the present work is to extend the
approach of Refs. 1-7 to give relativistic electron-impact
ionization cross sections. Since ionization is like excita-
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tion summed over many final levels, as seen by comparing
Egs. (2) and (13) below, one expects the range of accuracy
for ionization to be at least as great as for excitation
given by Eq. (1).

In Sec. II the theory used in the present work is de-
scribed. Then in Sec. III numerical results are given for
ionization from the 1s, 2s, 2p,,,, and 2p;,, subshells of
various types of ions with various values of Z, and com-
parison is made with other recent works.!2" 16

II. OUTLINE OF THEORY

The present relativistic distorted-wave ionization pro-
gram was obtained by modification of the relativistic
distorted-wave excitation program of Ref. 2. Hence we
first briefly review the approach used for excitation.
Then we indicate the modifications required for ioniza-
tion. By combining Egs. (1) and (3) of Ref. 2, one can
write the expression for the relativistic distorted-wave
cross section Q(i — f) for the excitation transition ;i — f
in an N-electron ion in the form

. 877'(1% N+1 1 2
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Here a is the Bohr radius, k is the relativistic wave num-
ber of the impact electron, g; is the statistical weight of
the initial level of the N-electron target ion, and k and «’
are the initial and final relativistic angular momentum
quantum numbers of the free electron. The ¥; and W/ in
Eq. (2) are the initial and final antisymmetric wave func-
tions for the total (N +1)-electron system consisting of
target ion plus free electron, and J is the total angular
momentum quantum number for this entire system. The
relation between k, the relativistic momentum p, and the
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kinetic energy € of the impact electron is

2
1+aTs

) (3)

where a is the fine-structure constant e?/#c and € is in
Rydbergs. The « in Eq. (2) is related to the orbital and
total angular momentum quantum numbers / and j for
the impact electron in the usual way:

k=lj=1—1 k=—(+1),

2

j=l+1. )

Of course, analogous relations apply between «', [’, and j’
pertaining to the scattered electron.

The initial antisymmetrized function ¥; in Eq. (2) can
be written'’

_ 1 NI N+1—k
'—(N+l)”2k§1( b
X > C(J,jM,m;JM)
M,,m
XWg s (X Nt gy (X1) 5 (5)

where x, designates the space and spin coordinates of

electron k, and x, ! means the space and spin coordinates

for all N electrons other than electron k. The W; ; (x, h
1t

is the initial antisymmetrized target-ion wave function
constructed of Dirac spinors or orbitals as in Eq. (4) of
Ref. 1. Here J, is the quantum number corresponding to
the total initial angular momentum of the target ion and
B, represents all other quantum numbers required to
specify the initial state of the target ion. The u.;,, in Eq.
(5) is a Dirac spinor for the initial free electron (impact
electron) in a central potential V' (r) due to the target ion.
Specifically,
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where the Y,, are the usual spin angular momentum
functions, and the large and small components of the ra-
dial functions P, and Q,, satisfy the coupled Dirac equa-
tions

S ) (6)

K _a | _ 4
dr+ . P (r)= 5 |€ " Q..(r), 7
and
d_x __a
&y Q.lr) S (€= VP (r) . (8)

Similar to Eq. (5), the final function v, in Eq. (2) for the
excitation cross sections is given by

vy, =— —
TERTIRN

)N+ 1—k
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where primed quantities pertain to the final state in the
exactly analogous way that corresponding unprimed
quantities in Eq. (5) pertain to the initial state.

In order to extend Eq. (2) to ionization, all that is re-
quired is the following: (1) The Yy xg ") in Eq. (9)

must be replaced by an antisymmetrized wave function
for an N-electron system corresponding to the final
(N —1)-electron ion plus an ejected electron:

N+1
N* "o " TR ’ —1
\PB;J/(XI‘ NI/Z 2 r 2 C(JI J MI m ’JtMt )wﬁ;'.],”(xp )us"["j"rn”(xp) ’ (10)
p7 k }W,”,m"
where \l/ﬁ,,J,, is the antisymmetrized wave function corresponding to the final (N —1)-electron ion with total angular

momentum J,", and u .,

Eqgs. (6)-(8) for the 1mpact electron. A consequence of this is that then P
radial-scattering matrix elements given by Egs. (9) and (10) of Ref. 2 are replaced with P ;v and Q pvprr o

m~(x,) is a Dirac spinor for the ejected electron analogous to the Dirac spinor u,, given by

,» and Q ., ., in the direct and exchange

n'l
aaja a a’ a

(2) Equation

(2) must be summed over the total final angular momentum J, for the system consisting of the (N — 1)-electron final ion

with total angular momentum J,’ plus the ejected electron with total angular momentum j"'.
be summed over k'’ or, equivalently, j and /"’ for the ejected electron.
range 0 to (e —1)/2 for the energy €'’ of the ejected electron, where I is the ionization energy.

(3) Equation (2) must also
(4) Equation (2) must be integrated over the
(5) Finally, one must

divide by a factor of 7 to account for the fact that a final bound electron function with normalization

JUR 0+ QL L (n)dr=1 (1)
has been replaced with a free ejected electron function with normalization
i) Ow[PE,.K,,(r e (P)+ Qe (P)Q o (F) Jdr = m8(e” —€"") . (12)
In summary, the relativistic distorted-wave ionization cross section is given by
2
ny N+1
e=nr2, <q/l > - wf> , (13)

J KKk K" q9.p
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with Eq. (10) applied to Eq. (9) for ¥ .

All the orbitals bound and free entering Eq. (13) are
Dirac spinors of the form given by Eq. (6) with the radial
functions satisfying equations of the form of Egs. (7) and
(8). In fact, in the present approach the same central po-
tential V' (r) is used for all electrons bound and free, and
so the orbitals are all automatically orthogonal. This po-
tential is the relativistic Hartree-Fock-Slater potential or
so-called Dirac-Fock-Slater potential given in rydbergs
by

1/3
vin=—224v.n—|#,| | 14
r T
where
Velr :, "Kfomrz [Plo(ry)+ Q2. (ry)))dr, ,  (15)
and
plr=— S Wel P (1) + Qe ()] (16)

477r? s
Here w,., is the occupation number of subshell

=n'l'j’, the summation is over all occupied sub-
shells, r ., is the greater of  and r,, and P, and Q,,.,- are
the so-called large and small components of the radial
function of an electron in the n’k’ subshell. The subscript
a used in Eq. (11) to distinguish bound orbitals from free
ones has been dropped here for convenience.

In the application to excitation in Refs. 3-6, the poten-
tial given by Egs. (14)-(16) was evaluated using a single
mean configuration with fractional occupation numbers
in which the occupation for the active electron was ap-
proximately split between initial and final shells. In ob-
taining the ionization results given in Sec. III, we mostly
used the initial configuration of the target ion in deter-
mining the potential with Egs. (14)-(16). For example, in
considering either inner-shell ionization or ionization of
the valence electron of Li-like ions in the ground level,
the configuration 1s?2s was used, while for ionization of a
2p, ; electron in a Li-like ion the configuration 1s%2p,
was used. This is a simple, straightforward procedure.
However, one that would more nearly correspond to the
procedure used successfully for excitation in Refs. 3-7
would be to reduce the occupation number of the initial
subshell of the active electron by 0.5 and put an occupa-
tion number of 0.5 in a very high subshell to mock up the
effect of the ejected electron. Thus a few test cases, for
which results in Sec. III are indicated by asterisks as su-
perscripts, were done this way. Specifically, test cases
were done using the mean configurations

152516‘15/2 ) (17)
1s?25%%6d 3, | (18)
1S22P1/26d5/2 ’ (19)

and
15225221’1/22173/26‘15/2 . (20)
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in determining the potential with Eqgs. (14)-(16) for
inner-shell ionization of Li-like ions in the ground
configuration, ionization of the valence electron in Li-like
ions initially in the 1s2s and 1522p, ,, configurations, and
ionization of a 2p,,, electron in neonlike ions in the
ground configuration, respectively. These altered poten-
tials affect results appreciably only for relatively low Z,
where the electron-electron contribution to the potential
is most significant.

Although we expect eventually to write a more general
program, at present the computer program only calcu-
lates ionization cross sections with the form of hydrogen-
ic cross sections except that the orbitals are calculated us-
ing the potential of Egs. (14)—(16). Thus, in this case,
J/'=0and J/=j", and so the summation over J; is omit-
ted. The present program can obviously be applied to
ionization of the valence electron in Li-like, Na-like, and
Cu-like ions. However, as shown in the Appendix of Ref.
18, a program such as the present one has much wider
applications. In particular, it applies whenever both the
initial and final states are pure states, such as is the case
for ionization of He-like, Ne-like, and Ni-like ions in
their ground levels, and it also applies if only either the
initial or final level is a pure state. Hence it is applicable
for ionization of F-like and Co-like ions as well as inner-
shell ionization of Li-like, Na-like, and Cu-like ions. In
order to make application to these more complex cases,
one must multiply by the initial occupation number w,,
of the active subshell nk, and if more than one state for
the final ion is possible, one must multiply by a branching
ratio factor R considered, for example, in Ref. 19. Also,
if mixing occurs in the initial or final level, one must mul-
tiply by the square of the mixing coefficient and sum over
the mixed states. It is also convenient to express results
in terms of a reduced cross section Qp by factoring out a
ma} /I* factor, where I is the ionization energy in ryd-
bergs. Then, if both initial and final states are pure ones,
the cross section for ionization from subshell nk is given
by

al

Q‘ w, RO , 21)

while, if either the initial or final state is a mixed one, Eq.
(21) should be multiplied by the square of the mixing
coefficient and summed over the mixed states, as men-
tioned previously.

Finally, we note that it is well known that the relative
phase of the two final free electrons is unknown when the
central field approximation has been made in determining
their orbitals. The choice of phase used in our approach
is what is sometimes called the “natural”-phase approxi-
mation [see Eq. (10) of Ref. 14]. This is the correct
choice in the special case of a nonrelativistic treatment as
Z — . Thus one might expect it to be a good approxi-
mation for highly charged ions.

III. NUMERICAL RESULTS AND DISCUSSION

Ionization cross sections by the present method are
compared with relativistic results available by other
methods in Table I. The entries labeled Ref. 16 are re-
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sults calculated with the relativistic distorted-wave pro-
gram used in the calculations of the direct ionization con-
tribution, as compared with the indirect excitation-
autoionization contribution, in Ref. 15 dealing with ion-
ization of Na-like Au (Z =79). That program also uses
the so-called natural-phase approximation [Eq. (10) of
Ref. 14]. Thus it differs from the present program in the
physics used only in that the bound, incident, scattered,
and ejected electron functions are calculated in the
Dirac-Fock potential®® rather than the more approximate
Dirac-Fock-Slater potential used here. This is seen to
have little effect in the cases considered in Table I, espe-
cially for the more highly charged ions, where the nu-
clear potential more completely dominates. The results
in Refs. 12 and 13 were obtained in a similar way to those
of Ref. 16 except that the “maximume-interference”-phase
approximation [see Eq. (11) of Ref. 14] was used. Of
course, this gives smaller cross sections than the natural-
phase approximation, but the difference is usually small.
One sees that the present results are also close to those of
Refs. 12 and 13, but are always larger, as expected. Fi-
nally, the results of Ref. 14 differ from the others in that
they include the full lowest-order QED interaction be-
tween the electrons rather than simply the Coulomb in-
teraction 1/7;; in calculating the scattering amplitudes.
In other words, they include the so-called generalized

Breit interaction. However, they omit the exchange and
interference terms, which they estimate to have no more
than a 15% effect. Thus, in comparing with those re-
sults, we also omit these terms. The agreement is seen to
be rather good in this case as well, which is consistent
with the conclusion reached in Ref. 14 and also demon-
strated for hydrogenic ions in Ref. 21 that inclusion of
the generalized Breit interaction has little effect on ion-
ization until high-impact electron energies < 250 keV are
reached. Our results, like the relativistic calculations of
these other workers, are about a factor of 4 smaller than
the recent measurements of Ref. 11.

In Table II we give the present results for many addi-
tional cases involving ionization from the ls, 2s, 2p, ,,
and 2p;,, subshells. In the interest of brevity, closed
inactive subshells are omitted in giving the transitions for
neonlike ions. The results are given for the reduced ion-
ization cross section Qg, which is related to the ioniza-
tion cross section according to Eq. (21). In these cases
the branching ratio R is unity except for inner-shell ion-
ization of Li-like ions, where it is + and } for ionization
to the (1s2s), and (1s2s), states of the He-like ions, re-
spectively. Results of Moores, Golden, and Sampson??
for the nonrelativistic Coulomb-Born-exchange reduced
ionization cross section Q} for hydrogenic ions in the

TABLE I. Comparison between present results and recent relativistic calculations by other workers of the cross sections (cm?) for
ionization from various sublevels of various types of ions with various values for the nuclear charge number Z. Here 2p* means

2p,,, and 2p means 2p;,,. The present results were obtained using the initial configuration of the target ion in calculating the Dirac-
Fock-Slater potential with Egs. (14)-(16). x[y]=x X 10’.

Active  Ion u=¢g/l
subshell type Z Source I (keV) 1.25 1.351 1.448 1.50 1.552 1.737
3s Na 34 Present 1.036 9.72[—21] 1.09[—20] 1.18[—20] 1.29[—20]

Ref. 16 1.036 9.80[—21] 1.09[—20] 1.18[—20] 1.27[—20]
2p* Ne 34 Present 2.582 3.33[—21] 4.80[—21]

Ref. 16 2.583 3.43[—21] 4.88[—21]
2p Ne 34 Present 2.539 6.92[—21] 9.97[—21]

Ref. 16 2.539 7.14[—21] 9.98[—21]

u=¢/I
1.05 1.125 1.25 1.50 2.00 2.50 3.00

3s Na 79 Present 8.373 7.70[—23] 1.26[—22] 1.79[—22] 2.13[—22] 2.16[—22] 2.12[—22]

Ref. 16 8.370 7.72[—23] 1.24[—22] 1.77[—22] 2.11[—22] 2.17[—22] 2.12[—22]
3s Na 92 Present 12.204 1.68[—23] 3.67[—23]

Ref. 16 12.202 1.68[—23] 3.70[—23]

u=¢eg/l
1.10 1.50 2.00

2s Li 92 Present 32.96 4.20[—24] 1.24[—23] 1.55[—23]

Ref. 12 32.84 4.09[—24] 1.21[—23] 1.51[—23]
2s Ne 92 Present 25.31 1.34[—23]

Ref. 13 25.31 1.30[—23]
2p* Ne 92 Present  29.27 4.93[—23]

Ref. 13 29.27 4.77[—23]
2p Ne 92 Present 30.00 3.69[—23]

Ref. 13 29.95 3.57[—23]
1s He 92 Present® 130.4 0.54[—24] 1.95[— 24] 2.79[—24]

Ref. 14 130.2 0.51[—24] 1.76[— 24] 2.72[—24]

“Calculated with exchange and interference terms set to zero because that was done in the calculations of Ref. 14.
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TABLE II. Comparison of values for the reduced ionization cross section Qx. Here 2p* means 2p,,, and 2p means 2p;,,.
Unasterisked entires were obtained using the initial configuration of the target ion in determining the Dirac-Fock-Slater potential
with Egs. (14)-(16), while the asterisked entries were obtained using the configurations of Egs. (17)-(20) in determining the potential.
x[y]l=x X 10"

Active Type u=¢e/l

subshell ion Transition z I(R) 1.125 1.25 1.50 2.25 4.00 6.00

Is H? 0.283 0.479 0.724 0.978 0.954 0.819
Li 1s22s-(152s), 8 5.1316[1] 0.2667 0.4598 0.7151 1.0224 1.0542 0.9251
Li 1s22s-(152s), 8 5.1921[1] 0.2691 0.4643 0.7226 1.0344 1.0673 0.9366
Li 1s%2s-(152s), 8 5.1921[1] 0.2602* 0.6858* 0.8605*
He 1s-1s 8 5.4259[1] 0.2745 0.4716 0.7293 1.0303 1.0486 0.9139
Li 15%2s-(1s52s), 26 6.3881[2] 0.2848 0.4850 0.7396 1.0227 1.0403 0.9269
Li 15%2s-(1525)q 26 6.4108[2] 0.2857 0.4865 0.7421 1.0264 1.0444 0.9305
He Is1s 26 6.4949[2] 0.2866 0.4878 0.7429 1.0245 1.0393 0.9249
Li 1s%2s-(152s), 56 3.1798[3] 0.3086 0.5260 0.8041 1.1346 1.2429 1.2103
Li 1522s-(152s), 56 3.1855[3] 0.3091 0.5268 0.8055 1.1368 1.2456 1.2130
He Is1s 56 3.2049[3] 0.3097 0.5277 0.8064 1.1369 1.2447 1.2121
Li 15%2s-(1s2s), 92 9.5369[3] 0.3770 0.6427 0.9852 1.4205 1.6817 1.7634
Li 15%2s5-(152s), 92 9.5506(3] 0.3774 0.6435 0.9865 1.4226 1.6851 1.7684
He 1s%-1s 92 9.5865[3] 0.3781 0.6447 0.9881 1.4240 1.6855 1.7684

2s H? 0.321 0.532 0.771 0.953 0.847 0.695
Li 1s22s-1s2 8 1.0139[1] 0.3131 0.5240 0.7743 0.9970 0.9186 0.7646
Li 1s22s-1s2 8 1.0139[1] 0.2966* 0.7308* 0.7040*
Ne 25225 26 1.0257[2] 0.2949 0.4947 0.7336 0.9528 0.8908 0.7491
Li 1522s-1s2 26 1.5042[2] 0.3198 0.5312 0.7745 0.9720 0.8800 0.7327
Ne 25225 34 2.0232[2] 0.3028 0.5062 0.7462 0.9589 0.8900 0.7501
Ne 25225 56 6.6576[2] 0.3126 0.5214 0.7661 0.9808 0.9204 0.7924
Li 1522s-1s2 56 7.8134[2] 0.3242 0.5389 0.7875 0.9973 0.9292 0.8011
Ne 25225 79 1.5083([3] 0.3207 0.5353 0.7882 1.0196 0.9889 0.8890
Ne 25225 92 2.2051[3] 0.3278 0.5476 0.8078 1.0524 1.0449 0.9596
Li 1522s-1s2 92 2.4232[3] 0.3372 0.5624 0.8275 1.0745 1.0680 0.9862

2p* H* 0.409 0.668 0.949 1.135 0.977 0.786
Li Is2p*-1s? 8 9.2544[0] 0.4522 0.7492 1.0780 1.3268 1.1778 0.9614
Li 1s2p*-1s2 8 9.2544[0] 0.4140* 0.9826* 0.8566*
Ne 2p*22p* 26 9.3633[1] 0.4077 0.6752 0.9801 1.2230 1.1069 0.9189
Ne 2p*2.2p* 26 9.3633[1] 0.3955* 0.9514* 0.8832*
Li 1s22p*-1s? 26 1.4684[2] 0.4236 0.6939 0.9894 1.1945 1.0446 0.8531
Li 1s2p*-1s? 26 1.4684[2] 0.4132* 0.9659* 0.8298*
Ne 2p*22p* 34 1.8980[2] 0.4128 0.6810 0.9822 1.2123 1.0875 0.9021
Ne 2p*i2p* 56 6.4199[2] 0.4196 0.6912 0.9949 1.2255 1.1112 0.9410
Li 1s2p*-1s? 56 7.7192[2] 0.4269 0.7007 1.0030 1.2239 1.1023 0.9338
Ne 2p*22p* 79 1.4683[3] 0.4292 0.7089 1.0253 1.2812 1.2031 1.0603
Ne 2p*22p* 92 2.1512(3] 0.4357 0.7216 1.0489 1.3270 1.2801 1.1579
Li 1s32p*-1s2 92 2.3984[3] 0.4460 0.7372 1.0682 1.3461 1.2986 1.1813

2p H* 0.409 0.668 0.949 1.135 0.977 0.786
Li 1s22p-1s? 8 9.2490[0] 0.4554 0.7494 1.0783 1.3270 1.1779 0.9614
Ne 2p*2p3 26 9.2677[1] 0.4097 0.6782 0.9839 1.2263 1.1081 0.9192
Li 1s22p-1s2 26 1.4563[2] 0.4248 0.6956 0.9914 1.1959 1.0446 0.8526
Ne 2p*-2p? 34 1.8660[2] 0.4157 0.6853 0.9874 1.2162 1.0886 0.9016
Ne 2pt-2p? 56 6.1268[2] 0.4265 0.7012 1.0063 1.2332 1.1107 0.9360
Li 1522p-1s2 56 7.3934[2] 0.4324 0.7086 1.0118 1.2289 1.1002 0.9273
Ne 2p*-2p* 79 1.3284[3] 0.4435 0.7295 1.0486 1.2950 1.1961 1.0413
Ne 2p*-2p? 92 1.8603[3] 0.4566 0.7519 1.0828 1.3457 1.2656 1.1317
Li 1522p-1s? 92 2.0876[3] 0.4641 0.7630 1.0962 1.3579 1.2800 1.1483

*Nonrelativistic Coulomb-Born-Exchange values for hydrogenic ions from Moores, Golden and Sampson, Ref. 22. These values are
independent of Z.
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limit Z — o are included for comparison. These are in-
dependent of Z.

It is interesting to note that comparisons with other
more elaborate calculations and experiments made, for
example, in Refs. 22 and 23 indicate the QF lead to cross
sections that are quite accurate for Z satisfying Eq. (1)
with Z <26. This tends to confirm our expectation that
the present relativistic distorted-wave results are accurate
for Z satisfying Eq. (1) because one sees from Table II
that the present results agree rather well with the corre-
sponding Q}! values for low and intermediate Z. Unfor-
tunately, there are no results by the more elaborate rela-
tivistic programs of Refs. 12-16, with which we can
compare for large Z, barely satisfying Eq. (1). However,
the comparisons for Na-like and Ne-like selenium
(Z =34) ions made in Table I with the results of Ref. 16
do show good agreement for Z ~3N and 3.4N, which are
quite close to Z =2N or 2.5N.

Initially, all our calculations were done using the initial
configuration of the target ion in determining the Dirac-
Fock-Slater potential with Eqgs. (14)-(16). However,
some of the results for Qp for low Z, especially for ion-
ization from the 2p, , and 2p;,, subshells, looked slightly
anomalous to us. Hence we decided to do some addition-
al test cases using the configurations given by Egs.
(17)-(20) in determining the potential with Egs.
(14)-(16). This latter procedure is more nearly like that
used for excitation in Refs. 3—7. These results are indi-
cated by asterisks as superscripts in Table II. One sees
that the effect is quite large for Z =8, especially for ion-
ization of the 2p, ,, electron in Li-like ions in the 1s%2p,
configuration,’® where the asterisked entries are about
10% lower than corresponding unasterisked entries.
However, the effect rapidly decreases as Z increases and
is seen to be almost negligible (~2.5%) for the same
transition when Z =26.

It appears that use of results determined using Egs.
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(17)-(20) would reduce the “bumpiness” in the data for
low Z and would give values for Qp for any given sub-
shell that vary quite smoothly with ionization energy and
for which quite simple fits could be made. In this connec-
tion we note that accurate fits of the Q} to simple func-
tions of the impact electron energy in threshold units u
that are readily integrated over a Maxwellian electron
distribution function to obtain ionization rates have been
made in Ref. 22. Since, as noted previously, the present
relativistic results for Qp are generally quite close to
those of Ref. 22 for Qf, except for high-Z and/or high-
impact electron energies, one would expect that fairly ac-
curate fits of the relativistic results for the reduced cross
section could be made, as well, probably using the same
functional form given by Eq. (6) of Ref. 22, but allowing
the coefficients to be slowly varying functions of an
effective Z or of Z and N. This would be very convenient
for applications to plasma modeling.

In future work we will attempt to do this. Also, we
will consider ionization from additional higher subshells
in various types of ions. In addition, we expect to extend
the approach to autoionization so that we can treat the
excitation-autoionization contribution, which sometimes
considerably exceeds the direct contribution to ionization
even for high Z, as shown in Ref. 15.
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