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We report the results of an ab initio treatment of electron-impact excitation cross sections for the
process e +N; (X 22 )—e” +N;(B?3}) from 5.0 to 40 eV. The dynamically important low-
order partial wave components of the scattering amplitude were obtained from multistate close-
coupling calculations with correlated target wave functions. The calculations were carried out us-
ing a modification of the complex Kohn variational method. The higher-order partial-wave com-
ponents, which are essential for computing converged cross sections for optically allowed transi-
tions such as this, were efficiently evaluated by an asymptotic Coulomb-Born approximation. Of the
widely differing sets of experimental cross sections reported for this process, our calculations are in
excellent agreement with the most recent measurements.

I. INTRODUCTION

Despite the important role that electron collisions with
molecular ions play in many low-temperature plasmas,
little progress has been made in the development of
theoretical methods for the calculation of accurate cross
sections, especially for electronic excitation. Reliable
theoretical methods are exceptionally important because
of the extreme difficulty of experiments in this area. A
good example is afforded by N,*. The v=0—v=0 tran-
sition of the first negative system (B*% X 22;) at
391.4 nm is an intense band in nitrogen-containing plas-
mas and figures prominently in most diagnostic measure-
ments. There have been several experimental determina-
tions of the electron impact cross section for the X —B
transition. However, they differ from one another by al-
most two orders of magnitude.!”* The problem, of
course, is that measurements made under plasma condi-
tions are done with less than well-characterized ion
sources and give only indirect information about cross
sections. In deducing excitation cross sections from opti-
cal emission measurements, certain assumptions must be
made about state mixtures, cascade processes, and
branching ratios that can potentially introduce large sys-
tematic uncertainties into the final results. Thus, the
need for accurate theoretical treatments is especially im-
portant.

There has been a concerted effort in recent years by
several groups to develop a theoretical method capable of
determining accurate cross sections for various electron-
molecule collision processes.’ 8 Substantial progress has
recently been made in the study of electronic excita-
tion,” "' as well as collisions with polyatomic targets.'?
The corresponding electron—molecular-ion collision
problem, by contrast, has received almost no theoretical
attention. There has, however, been a substantial amount
of work on molecular photoionization processes. Photo-
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ionization cross sections involve dipole matrix elements
between a final-state wave function made up of continu-
um orbitals and a bound initial state. The presence of a
bound wave function in the formulation is a considerable
simplification. On the one hand, it has allowed the use of
various L’ methods, such as the method of complex basis
functions!® and the method of moments,'* which avoid
the direct solution of the scattering problem and its atten-
dant specification of asymptotic boundary conditions.
Furthermore, not only do dipole selection rules limit the
number of symmetry components of the final state wave
function that have to be treated in photoionization, but
the bound initial-state wave function effectively puts a
box around the target and thus confines the number of
partial-wave components needed to obtain a meaningful
result. In contrast, the direct electron-ion scattering
problem may require many partial-wave components to
produce a meaningful result. This is especially true in the
case of dipole-allowed transitions, which are most impor-
tant in plasma diagnostics because of their optical signa-
ture and correspondingly large cross sections.

We have extended the complex Kohn variational
method to the study of ionic molecular targets. The com-
plex Kohn method has been used with considerable suc-
cess in the study of electron scattering from neutral mole-
cules.® It has been used to study scattering from polya-
tomic systems, such as methane!? and formaldehyde,15
producing accurate cross sections. More importantly, it
has been used to treat electronic excitation beyond the
static-exchange approximation.!' In Sec. II we will show
how the complex Kohn method can be easily extended to
the case of molecular-ion targets by modifying the
asymptotic form of the trial wave function to account for
the long-range Coulomb interaction between incident
electron and ionic target. We will also outline a method
for incorporating the contributions of the high-order
partial-wave components necessary to obtain converged
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excitation cross sections for optically allowed transitions.
In Sec. IIT we describe our calculations on the e ~ +N,™
system and we compare our results with available experi-
ments. In this section we also discuss the modifications
of the Kohn method which are required when open chan-
nels are not included in the close-coupling expansion.
Section IV contains some concluding remarks.

II. THEORETICAL DEVELOPMENT

The complex Kohn method is an algebraic variational
technique which, over the last few years, has been
developed into a powerful new approach for studying
both heavy-particle (reactive) collisions!® and electron-
scattering problems.®!!"1215 Although based on the orig-
inal Kohn variational principle, it is formulated with
complex, outgoing wave boundary conditions. This sim-
ple modification eliminates a long-standing problem with
the Kohn method—that of spurious resonances.!” Nu-
merical anomalies in the complex Kohn approach only
occur for unphysical choices of the variational basis-set
parameters'® and, in contrast to the original Kohn
method, disappear as the trial function is improved. We
first give a brief summary of the major aspects of the
complex Kohn method as applied to neutral targets.

A trial wave function of the following form is chosen:

\Ijr(rl, - ,I'N+1)=2.)4[Xr'(r1, cee Iy )Frr'(rN+1)]
I

+3dp0,(r, ..., ry) . (1)
I

The first sum runs over energetically open states of the
N-electron target which are described by wave functions
Xr- These may be single-configuration, Hartree-Fock
wave functions, or correlated, multiconfiguration wave
functions. The functions 6, in the second sum are a set
of square-integrable, (N + 1)-electron functions that are
used to incorporate closed-channel and correlation
effects. In practice, these terms are included indirectly by
construction of an optical potential.® The F. are chan-
nel continuum functions whose asymptotic behavior
defines the essential scattering parameters from which
cross sections are obtained.

In the complex Kohn method, the channel continuum
functions are further expanded as linear combinations of
both square-integrable (Gaussian) basis-set functions as
well as incoming and outgoing continuum functions
which behave asymptotically as Ricatti-Bessel functions,
that is, sin(kr — I /2) and exp[i (kr —Im/2)], respective-
ly.

The unknown parameters in the Kohn method are the
linear coefficients of the various bound and continuum
basis-set functions in the trial wave function.® These are
determined by inserting the trial wave function into a sta-
tionary principle, and solving the resulting set of algebra-
ic equations. The most time-consuming step in the Kohn
method, as in any algebraic variational method, is the
evaluation of the various matrix elements (bound-bound,
bound-free, free-free) of the Hamiltonian. To accomplish
this task efficiently, we make judicious use of separable
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expansions for both the exchange and optical potential
terms of the Hamiltonian to rigorously limit their appear-
ance solely to matrix elements over the square-integrable
part of the basis.!* The remaining direct terms involving
continuum functions are evaluated by an adaptive numer-
ical three-dimensional (3D) quadrature scheme. The de-
tails of this procedure are fully described elsewhere.!?

The use of Ricatti-Bessel functions in the trial wave
function is not appropriate for describing the interaction
between an electron and an ionic target. The functional
form of the channel continuum wave function must
reflect the long-range Coulomb interaction. Therefore,
the regular and outgoing Ricatti-Bessel functions used for
neutral targets must be replaced by functions which
behave as

fi~F/p,m),
h,~G(p,m)+iF(p,m),

()

where F; and G, are the regular and irregular Coulomb
functions whose asymptotic form is

F,~sin(p—nIn2p—In/2+0;),
(3)
G,~cos(p—nIn2p—Iw/2+0,),

with p=kr, n=Z /k, and o,=arg[['(1+/+in)]. Note
that the form chosen for A, causes it to behave asymptoti-
cally as a purely outgoing wave. Thus, this modification
will preserve the essential feature of the complex Kohn
method, that is, the elimination of spurious singularities.
The conventional choice for the outgoing wave contin-
uum function, A;, defined in Eq. (2) is to simply multiply
the irregular Coulomb (or Ricatti-Bessel) function by an
exponential cutoff. Although previous calculations on
neutral molecules with the complex Kohn method
showed little sensitivity to the form of the cutoff func-
tions, our initial calculations on Coulomb systems re-
vealed a much larger dependence on these functions.
This sensitivity is evident in cases where many partial
waves are required. We therefore sought a more physical
choice for the ‘“‘regular” outgoing continuum function.
To help motivate our final choice, we note that the exact
wave function (in a simple one-channel case) behaves as

W =F+G VW, F+h [ VE+ -, )

where @' is the partial-wave Coulomb Green’s function.
This suggests that a more physical form for the outgoing
continuum function would be to simply use a function of
the form

h=8; w/[ WF,, (5)
where the test ‘“potential” function must diverge less
strongly than 1/r? at the origin and go to zero faster
than 1/r asymptotically, but is otherwise arbitrary. This
choice for the outgoing continuum function is similar in
spirit to that recently proposed by Sun et al.>° Numeri-
cal details of how we efficiently construct these functions
are presented elsewhere.”! We have found much less sen-
sitivity to the choice of the potential function W than to
the cutoff functions employed in the original Kohn
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method. In this work, we used W (r)=exp(—r).

The modified complex Kohn method has a completely
analogous form to that used for neutral-target scattering.
In particular, the correct outgoing wave behavior of the
wave function is incorporated within the trial function.
It is important to bear in mind that the implied expansion
over partial waves only refers to the asymptotic wave
function. Partial-wave expansions are not used to expand
the interaction potentials. This allows highly nonspheri-
cal targets to be considered, and the convergence will be
comparable to that seen in neutral systems.

A fundamentally important problem is the prediction
of cross sections for the excitation of electronic states
which are connected to the ground state by a dipole tran-
sition. Indeed, it is the radiation from these states which
is often used as a probe of plasma conditions. Therefore,
any formalism for studying electron-ion collisions must
be capable of addressing this problem to be of any practi-
cal use.

Electron-impact excitation of states which are dipole
connected to the ground state can require many partial-
wave components to produce converged cross sections,
even at low impact energies, because of the effective
long-range 1/r? behavior of the transition potential.
This long-range coupling of high-order partial waves is
not a dynamical coupling that involves other excited
states, so the high-angular-momentum components can
usually be treated in the lowest order of perturbation
theory, the first-order Born approximation. Thus, it is
sufficient to use a hybrid treatment where the lowest-
order partial waves are treated dynamically and the
high-order partial waves, needed for convergence, are
computed in the Born approximation.?? For neutral mol-

2 ‘T
TR pm=——— [ F(n Y& ELFu(nY,,,()dr dt
Im,1 Vkikn f I I PERE !
172
B SO Kl £ VETE S V) IR
\/krkr' 3

fo,(r)F,,(r)—r%dr,

where the T-matrix elements are defined such that the to-
tal cross section is given by

4
Ur_*r'z_z 2 ITIm['m'|2 . (8)
kr !'m',l,m

In this work, we used Eq. (7) for computing T-matrix ele-
ments for values of /,/’> 6. Note that the 3j symbols in
Eq. (7) restrict the nonzero Coulomb-Born 7T-matrix ele-
ments to those with I'=1=%1.

III. NUMERICAL DETAILS

A. Target wave functions

Examination of the N, electronic spectrum shows the
ground state (X 23;) and two low-lying states (A °II,

}l‘m *m'(.ﬁ')

ecules, this “dipole Born approximation” can be carried
out analytically and used to obtain converged cross sec-
tions for dipole-allowed transitions.”> Only the lowest
partial-wave components need be accurately treated.

For molecular ions, this ‘““dipole Born” correction is
much more difficult to carry out because the unperturbed
scattering states are Coulomb wave functions and no ana-
lytic treatment of the matrix elements is possible. Furth-
ermore, for molecular ions, the transition potential is a
complicated, nonspherically symmetric operator. The
numerical evaluation of matrix elements involving a com-
plicated nonspherical potential and hundreds of partial-
wave Coulomb functions would actually be more compu-
tationally intensive than any other aspect of the calcula-
tion. However, such a brute force approach is not neces-
sary.

Consistent with the use of the Coulomb-Born approxi-
mation for the high-/ components of the scattering ampli-
tude is the asymptotic approximation of the transition
potential itself:

N
Veop(n=3 <Xr(r,,rN)

=1

er(rl,rN ))

Ir—r;|

=EF )

where p is the transition moment between the target elec-
tronic states ¥r and yp. This approximation follows
from retaining only the dipole term in a multipole expan-
sion of 1/ |r—r, |. (The monopole term vanishes because
of the orthogonality of y and x.) With this approxi-
mation, we can easily evaluate the Coulomb-Born T-
matrix elements as

I 1r
000

I 1 1"

-m m—m' m'

(7N

and B 2Z}) well isolated from the higher excited states.
The next manifold of excited states lies ~5 eV above the
B state. For the purpose of this study, we excluded these
higher states from consideration and coupled the three
lowest electronic states. These three states have similar
potential-energy curves and equilibrium internuclear sep-
arations.

Near their equilibrium separation, each of these states
is nominally described by a single-configuration wave
function, corresponding to the removal of an electron
from one of the valence orbitals of N,:

. 2 2 2 2 4 —1
X: logloy,20.20, 17,30, (30, )
A: lo}lo}2022021m 30} (17, ") 9

B: lollol20220, 174302 (20,1



Although these simple designations are qualitatively use-
ful, they are inadequate for accurate studies. First, there
is the well-known misordering of the Koopman’s ioniza-
tion potentials of the X and A states.”* Moreover, we
found that we could not obtain a reasonable value for the
X — B transition moment with single-configuration wave
functions, no matter how the occupied molecular orbitals
were chosen. For optically allowed transitions, it is
essential to use target wave functions that give the
correct transition moment.

The target wave functions we finally used were ob-
tained from configuration-interaction (CI) calculations
carried out in a standard Gaussian basis set consisting of
the Dunning [9s5p /5s3p] nitrogen basis set?® with one d
function (a,;=0.98). All calculations were carried out at
the experimental equilibrium internuclear separation of
N,*, 1.131 A2 we began by constructing a compact set
of molecular orbitals. We initially carried out a mul-
tireference CI calculation consisting of single excitations
relative to the reference configurations given in Eq. (9)
and then obtained the natural orbitals from the averaged
one-particle density matrices for the X and B states. This
orbital set was truncated on the basis of occupation num-
ber to a final set consisting of three g,, two o, one 7,
and one 7, molecular orbitals. The target wave functions
we used were obtained by freezing the lo,, 1o, and 20,
orbitals and carrying out, in this small molecular orbital
basis set, a CI calculation that included all single and
double excitations from the dominant configurations for
the X and B states. This gave a value of 4.13 eV for the
X — B vertical transition energy, while the experimental
value is 3.16 eV.?’ Our calculated electronic transition
moment was 0.836 a.u. The accurate value is 0.714 a.u.
(Ref. 28). We would not expect the error in the calculat-
ed transition energy to significantly effect the cross sec-
tion, except at impact energies very close to threshold.

B. Scattering basis and orthogonality constraints

The Kohn trial wave function is determined by specify-
ing the square-integrable and continuum basis functions
which are used to expand the scattering functions Fpp of
Eq. (1). The square-integrable basis-set functions were
chosen by augmenting the original target basis-set with
additional Gaussian functions to provide flexibility in
describing the scattering wave function. This additional
set consisted of three s-type and three p-type Gaussians
on each of the nitrogen centers [a,=3.0,1.5,0.5,
a,=3.0,1.5,0.25] and three s-type, two p-type, and two
d-type Gaussians at the center of charge [a,=2.0,0.5,
a,=0.15,0.075,0.03, a;=1.0,0.05]. Continuum basis
functions [Eq. (2)] up to /=6 were included in the
scattering function.

The continuum functions f; and h; were orthogonal-
ized both to the square-integrable part of the scattering
basis as well as to the orbitals used to expand the target
wave functions. Whereas the first orthogonalization sim-
ply amounts to a unitary transformation among the basis
functions which leaves the T-matrix elements un-
changed,*”** orthogonalization of the continuum orbitals
to the target orbitals can represent an unphysical con-
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straint on the total wave function. In our formulation of
the Kohn method, these unphysical constraints are re-
laxed by including in the second sum of Eq. (1) appropri-
ate (N =+ 1)-electron configurations made up from the tar-
get orbitals. The set of all such “orthogonality relaxing”
terms can be obtained by constructing the (N +1)-
electron configurations, which are consistent with the
Pauli principle and the total space and/or spin symmetry,
that result from taking the direct product of a target
mole- cular orbital and all N-electron configurations used
in the target wave functions. For example, the domi-
nant configuration for the B state is
(10210220320 ,17330;)?2, . Thus, in overall 'II,
symmetry, we need the configuration
(10310%20§20u 17 302 lm,) 'T1,. However, we included
only those terms generated from the dominant
configuration for each of the three target state wave func-
tions from the list of all possible orthogonality relaxing
terms. We have shown elsewhere that inclusion of ortho-
gonality terms generated from target state configurations
with small coefficients in the CI expansion, can lead to
unphysical cross sections at intermediate energies. The
orthogonality relaxing terms we exclude from our calcu-
lation would introduce coupling to open channels which
are r;cl)t explicitly included in the close-coupling expan-
sion.

C. Results

The T matrix should converge, for increasing /, and /',
to the Coulomb-Born approximation, Eq. (7). Individual
T-matrix elements were examined to determine when
convergence to this limit was obtained. We found that
for /,1'>6 the T-matrix elements had converged to the
Coulomb-Born values to better than 19%. In the final cal-
culation of the cross section, all T-matrix elements with
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FIG. 1. Excitation cross section vs electron energy for the
process e +N," (X2, v=0)—e +N,"(B’E;, v=0.
Solid line, present results; dashed line, Coulomb-Born approxi-
mation; solid circles, results of Crandall et al. (Ref. 4).
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I,I'’<6 were obtained from three-state coupled-channel
calculations. These calculations included contributions
from the 1’32;, 1’32;, 1'3Hg, and 1‘3H,, total symmetry
components which were weighted by appropriate space
and spin degeneracy factors in computing the excitation
cross sections. All T-matrix elements with ,I'> 6 were
calculated using Eq. (7).

Our calculations were carried out within the frame-
work of the fixed-nuclei and Franck-Condon approxima-
tions. Cross sections calculated from our fixed-nuclei 7-
matrix elements therefore correspond to total cross sec-
tions summed over all vibrational and rotational levels of
the final state. In order to compare with experiments
that monitor 391.4-nm radiation from the v=0—»v=0
band of the B — X transition, we multiplied our results by
0.65, which is the measured value of the Franck-Condon
factor, g8, between the ground vibrational levels of the
X and B states.? In Fig. 1, we show our integral cross
sections as a function of electron energy. The pure
Coulomb-Born values are also shown for comparison.
Although the Coulomb-Born approximation provides ac-
curate values for the high-/ T-matrix elements which are
needed for convergence, it grossly overestimates the low-/
contributions. Thus the total cross section, particularly
at low energies, is much too large. For high energies the
error is reduced, but is still substantial.

Of the available experimental determinations of the
X — B excitation cross section, our results are in good
agreement with the results of Crandall et al.* Their
values are also plotted in Fig. 1. Earlier crossed-beam ex-
periments of Lee and Carleton' and Dashchenko,
Zapesochnyi, and Imre,’ though in qualitative agreement
with one another, are significantly larger than the results

of Crandall et al., and even lie above our Coulomb-Born
results for all energies considered here. The small
differences between our theoretical cross sections and the
measurements of Crandall et al. are most likely attribut-
able in the error in our computed value for the X —B
transition moment.

IV. CONCLUSIONS

We have outlined a modification of the complex Kohn
variational method which is suitable for studying the
scattering of electrons from molecular ions. We have
also implemented a prescription for computing converged
total cross sections for optically allowed transitions. We
have illustrated this approach with a study of the elec-
tron impact excitation of the B state of N, . These cal-
culations took explicit account of coupling between the
three lowest states of the ion. Our calculations have em-
ployed compact, correlated target wave function which
are required to properly describe the X — B transition
moment of N,*. When we combine the dynamically im-
portant, low-/ components of the T matrix with asymp-
totic Coulomb-Born values for the higher (/ > 6) partial
wave T-matrix elements, we obtain total cross sections
for the X — B transition which are in good agreement
with the most recent experimental measurements.
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