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Analytic results for the hard-core plus square-well spherical potential
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An analytic expression is presented for the off-shell T-matrix elements for scattering from the
spherical hard-core plus square-well potential. Various analytical properties of the off-shell T ma-

trix, such as symmetry and unitarity, are examined. The typical behavior of the off-shell T matrix is
shown numerically. It is found that the behavior strongly depends on the three independent quanti-
ties, i.e., the energy and the initial and final momenta, which can be off the energy shell. These re-
sults, combined with multiple-scattering theory, can be used to study high-energy many-body col-
lision processes, such as collision-induced dissociation.

I. INTRODUCTION

Rigorous quantum-mechanical treatments of molecular
collisions rely on expanding the scattering wave function
in a set of basis functions, usually chosen to be the eigen-
states of the noninteracting collision partners. Unfor-
tunately, such expansions become computationally un-
feasible for polyatomic systems due to the large number
of eigenstates that must be included in calculations. This
is particularly the case for scattering from solids contain-
ing defects and/or adsorbates that break the periodicity
of the surface, and thus lead to continuous sets of basis
functions. The situation is more complicated (even in the
gas phase) when one attempts to describe atomic rear-
rangements, i.e., reactive collisions, since the basis sets
appropriate to initial- and final-arrangement channels are
usually incompatible with each other.

An alternative quantal approach, namely multiple-
scattering theory, ' first postulates that the overall poten-
tial can be expressed in terms of sums of interactions be-
tween pairs of atoms, and then decomposes the transition
operator into sums of sequences of successive collisions,
each of which involves only two atoms. Basis-set expan-
sions can thus be avoided to a large degree, so that multi-

ple scattering in principle seems to be a very promising
approach to describing energy transfer and rearrange-
ments in polyatomic systems. Accordingly, we have be-
gun a systematic application of multiple-scattering theory
to gas-solid collisions involving nonperiodic surfaces as
well as rearrangements, of which the present article de-
scribes one of its fundamental components. In particular,
multiple-scattering calculations require knowledge of ma-
trix elements of two-atom transition operators T with
respect to momentum eigenstates ~p) and ~p') that are
said to be off the energy shell, i.e., (p'lT(E+)lp)
p' /(2m)&p /(2m)WE. The need for such quantities
becomes evident when one considers that the two-atom
interactions are intermediate events that do not necessari-
ly correspond to the initial and final relative momenta of
the (composite} collision partners. More specifically,
whenever p and/or p' do not correspond to the total en-
ergy E, then the resulting (p'~ T(E )~p) may be inter-

preted as the contribution due to an "incomplete" two-
atorn collision, i.e., an intermediate event for which the
initial and/or final separation remains finite. This article
considers the evaluation of off-shell T-matrix elements for
model two-atom potentials to be used in subsequent stud-
ies of gas-surface collisions.

Fully off-shell T-matrix elements are available in ana-
lytic form only for simple potentials (i.e., hard core and
Coulomb ). Unfortunately, at present there is no eScient
and accurate method to calculate the full off-shell T ma-
trix for more sophisticated potentials, because one must
first solve the of-shell analog of the Lippmann-Schwinger
equation for each partial wave. Consequently, most nu-
merical treatments have been restricted to the case of
very low angular momenta; ' however, the contributions
from large angular momenta are more important to
atomic and molecular scattering at superthermal impact
energies. Attempts have been made with various approx-
imations to get some insight into the behavior of the
two-body off-shell T matrix. For example, Van Leeuwen
and Reiner proposed to model the potential in terms of a
sequence of step functions. Alternatively, Korsch' "
and Gerber have developed semiclassical approxima-
tions for specific ranges of the momenta. However,
several classes of many-body collisions require knowledge
of the fully off-shell T matrix over the entire momentum
space.

A computationally practical expression for the off-shell
T matrix of a reasonable atom-atom potential would be
very useful to systematically apply multiple-scattering
theory to many-atom collision processes, and particularly
to collision-induced dissociation. Accordingly, we have
derived the exact expression for the fully off-shell T ma-
trix of a model potential that includes the most important
features of typical atomic interactions: steeply repulsive
forces at small distances, which we presently model by a
hard core, plus an attractive well at intermediate dis-
tances, which we represent by a square well. In spite of
its obvious simplicity, the hard-core plus square-well
model is expected to give at least a qualitative representa-
tion of typica1 off-shell T matrices, provided that the en-

ergy is much larger than the well depth, since in those
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cases collisions are mostly governed by the repulsive
short-range forces. Furthermore, the addition of the
square well is intended to mimic the role of the binding
forces prior to dissociation. The present model is thus
consistent with its intended use in multiple-scattering
treatments that are appropriate to high impact energies.
In addition, one expects that the exact solution for the
present potential will provide some basic information
about the qualitative behavior of fully off-shell T matrices
with respect to changes in the momenta, scattering angle,
and energy, as well as serve as a reference when develop-
ing approximations to off-shell T matrices for more real-
istic potentials.

The present work is organized as follows. In Sec. II we
outline the algebraic procedure leading to the off-shell T
matrix for the model potential. Van Leeuwen and
Reiner briefly considered the present potential as a limit-
ing case of piecewise-constant potentials. They thus ar-
rived at an expression for the T matrix that is computa-
tionally impractical since it requires the evaluation of the
determinant of a large matrix for each partial wave.
Moreover, the evaluation of such determinants would be
numerically unstable since their elements have widely
differing magnitudes. Instead, we have taken an indepen-
dent approach that directly expresses the off-shell T ma-
trix in terms of Ricatti-Bessel functions (without need of
inverting matrices), and thus allows one to devise a stable
computational procedure. We also verify that these re-
sults satisfy unitarity and symmetry upon exchange of
momentum variables. Next, Sec. III outlines the compu-
tational procedure for the present potential, which
efficiently calculates the large numbers of partial waves
(e.g. , 1 —1000) usually required for superthermal col-
lisions. Section IV then presents calculations to illustrate
the behavior of the fully off-shell T matrix with respect to
changes in the momenta, scattering angle, energy, and
parameters of the potential. Finally, Sec. V summarizes
the conclusions derived from this work.

II. THE OFF-SHELL T MATRIX AND ITS PROPERTIES

In order to obtain the fully off-shell T matrix, one first
considers the following operator equation, which is
equivalent to the Lippmann-Schwinger equation, ' for
the Mdller wave operator 0,

(E —H)Q(E+ ) =E —Ho,

where Hp is the kinetic-energy operator, H =Hp+ V, and

V is the potential. Next, one takes matrix elements of
both sides of the equation with respect to (r~ and ~p),
where p can be off the energy shell. Noting that
0' (r;E )=(r~Q(E+)~p), one arrives at the differential

p +equation for the off-shell wave function 'Pz(r;E ),

2

(2~)—2/3 E P eiP r/A (2)
2p

The energy E here plays the role of a parameter that need
not be equal to the total energy of the system, since off-
shell T matrices are ultimately used in many-body for-
malisms of the Faddeev type. ' Since we are presently
considering spherically symmetric potentials, we expand
qi~(r;E+ } in the conventional partial wave form

qi (r;E+)= (Sm'A')
1

p pr

X g (21+1)i'Pi(p r)~i(r, p;E ),
1=0

where p indicates the initial momentum, while p and r
denote unit vectors in the directions of p and r, respec-
tively. Hence the radial off-shell wave function
co&(r,p;E ) satisfies the inhomogeneous equation

d 2p l(1+1)+ [E —V(r)]- co&(r,p; E+ )
dr 2 g2 r2

(4)

where j( is the Riccati-Bessel function.
In this article, we take the potential V to be the hard-

core plus square-well potential defined by

r~a
V(r)= —Vo, a (r (b

0, r~b.
Upon taking into account the boundary condition for the
radial equation' as well as the continuity of co&(r,p;E+)
and of its first derivative at r =a and b, after much alge-
bra one arrives at the following expression for
co, (r,p;E+):

0, r~a

co&(rp; E ) = aiJ
2 2

+P,h', " ~ +, , ~, ( b( J(, a r

with

q =(p~+2pVO)' ', pz=&2pE
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and

(
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(1) PE ~(1) q
PEh I —

1 hl

g()) PEb
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I
PEb qb
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&
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T

pb . qb p(1) qa p(1) qb . qa
Y( '(q PF. ) ' qJ(

&
J( i

&
— "(

&
"i i —

&
Ji

pb ~ qa p(1) qb
+PJI —1 ~ Jl g(() qa

I g Jl —(q (p~ —p') J( D(, (Sc)

where

—(q2 P2) qf(1) pEb h(i) qb
I —1 g Jl

qa
Jl —1 g I

pEb
+PE~ I —1

qa . qb . qa ~()) qb
I g JI g Jl g I

The wave function a)((r,p;E ) contains only part of the information about the fully-of-shell T matrix, because it de-

pends on only one momentum variable (i.e., the initial momentum). We will show later how the half-off-shell T matrix
is evaluated from the above expression for ai((r,p;E+ ). For this purpose one first requires the momentum representa-
tion of the o8'-shell wave function. Utilizing the partial-wave expansion of the plane wave and the orthogonality condi-
tion of the Legendre polynomials, the wave function in momentum space can be expressed as

@ (p';E+)=&p'Ifl(E+)Ip&

= f &p'Ir) &rlfl(E')Ip)«
oc I

(21+1)P&(p' p) f j& ai((r,p;E+)dr
271' 15PP I —0 0

with the normalization

&p'Ip) =&(p' —p) .

(10)

(12b)

The integral appearing in Eq. (10) is then evaluated over each of the three subranges specified by Eq. (6). There is no
contribution from the range 0& r &a where ai((r,p;E+) is identically zero. It is also straightforward to perform the
second integration in the region a & r (b, because the integral of two Bessel functions in a finite region has a closed
form. The evaluation of the third integral (i.e., over the range b & r & ()0 ) requires the following identities:

p'r . ~r rrfi, fi . pb . p'b, . p'b . pbj( j dr = 5(p' p)+, PJ—
'

+i
&

J(
&

P'J +i
&

j(— (12a)
2 p'2 —p2

f h(" ~ d = ir~5( ' —)+ A, . p'b g(() pb h(() pb . p'b
b

Jl g l g 2 P P g2 2 P Jl+1 g l g P l+1 g Jl
p p

The steps leading to Eq. (12b) are given in the Appendix.
Only a small amount of algebra is then required to obtain
the complete form of the wave function in momentum
space by substituting Eqs. (12a) and (12b) into Eq. (10).

Having obtained the off-shell wave function, one can

I

arrive at the form of the fully-off-shell T-matrix elements
by first rewriting Eq. (1) as

HQ(E+ )=E [Q(E+ ) I]+H—
It follows from the definition of the transition operator
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and from the above equation that

T(E+ ) = VA(E+ ) =(H —Ho)A(E+ )

=(E H—o)[Q(E+ )
—I] .

One thus obtains for the off-shell T-matrix elements:

(14}

momentum space. The off-shell T-matrix elements can
also be written in partial wave form:

(p'IT(E+)Ip) = g (21+i)P,(p'. p)t, (p', p; E+),
4~

1

& p'IT(E+ }Ip &
= (p' —p'}[ & p'I&(E+) Ip &

2p
—&(p' —p)], (15)

which indicates that the momentum representation of the
Me(lier operator is in fact the off-shell wave function in

I

(16)

where tI(p', p;E+) are partial-wave off-shell T ma-trix
elements. By inserting the above equation, as well as the
expression for the wave function in momentum space,
into Eq. (15), and comparing both sides, one obtains the
final result for the fully-off-shell T-matrix elements:

tI(p', p;E+ ) = 1

Kppp

qQ w p Q
Jl ~ Jl -1 qb . p'b

Jl —1

qb ~ p'b+q Jl —1 ~ Jl
qQ w p Q

Jl -1 ~ Jl

l3t pF. p+ p'-q
qb . p'b

J

qQ . P'Q
+p n 1 I Jl-1

g(&) qa p a
1 —

1 g Jl

qb -. p'b
I g Jl —1

(PE P )(PE P } . p'b
2 2 t2 2(q' —p')(p' —p')

+P Jl —
1

pb
Jl —1

PQ ~ PQ
Jl

T

P Q

pb
Jl

PQ
Jl —1

p'b

2 &2

Pg P ~ pb ~ p'b
PJ1 —1

&
Jl

p p

p b p[1] pEb
+Tl PEJ1

p b e pb
P Jl-1 ~ Jl

p b (1) PEI b
PJI —

1 g I (17)

where we have made use of the partial-wave expansion for the three-dimensional 5 function.
We next verify that the above results satisfy the analytic properties known for the off-shell T matrix for any spherical

potential. ' Equation (16) indicates that one only needs to examine the partial-wave T-matrix elements tt(p', p;E+ ).
(1) Symmetry. One can readily show from Eq. (17) that

ti(p', p;E+ } tt(p, p', E+—) = h't"
I

qa . qa
1 —1 g Jl

qa g~&~ qa
Jl —1 g I fI(p»p'E» (18)

where f&(p,p';E) is a well-behaved function of p and p'.
However, each of the expressions between square brack-
ets is equal to i, and they therefore cancel each other. As
a result, the right-hand side of Eq. (18) is zero, and conse-
quently

tI(p', p;E+) =tt(p, p', E+),
as was expected. '

(2) Half o+shell limit When one se.ts p'~pz in Eq.
(17), the fully-off-shell T matrix then reduces to the half-

+ 'Tl
tI(p, pF. ,E+ ) =

'7TPP
(20)

where y& is given by Eq. (8c).
(3) On shell limit W-hen one s.ets p~pz in Eq. (20),

then one obtains the on-shell T matrix. If one further
takes VO~O, then tl reduces to the form

I

off-shell case. As we have pointed out, the half-off-shell T
matrix is related to the wave function through the equa-
tion
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i i(pEa /~)
tl(pF pE, E+)=-

~i pE &I"(p,a/&)
(21)

from which the well-known expression of the scattering
phase shift for the hard-core potential is readily obtained.

(4) Unitarity. Combining the above results, one can
easily verify that the present fully-of-shell T-matrix ele-
ments satisfy the unitarity condition

Imt&(p', p;E+ ) = happ—F tl*(p', pF,'E+ )ti(p, pE, E+ ),
(22)

I

which is the of-shell analog of the optical theorem.
(5) Bound states F. or the sake of completeness, we note

that the above expressions can also be used to determine
the bound states of the model potential. As is well
known, the bound states correspond to the poles of the T
matrix evaluated for imaginary values ofpz. Making the
appropriate substitutions (i.e., pz ~i ~, where
~=&2p, ~E~ ) in the denominator of the T matrix given by
Eqs. (9) and (17), one readily finds that the bound-state
energies, E„=—x„/2ltt (n =0, 1,2, . . . ), are determined
by the roots ~„ofthe following equation:

1Kb
qh

qb . qa . qb I„qa
I —

1 g Jl g Jl —
1 g I

~( )) 1Kb+ixh qQ ~ qb
I g Jl

T

qa ()) qb
JI =0, (23)

which can be solved numerically for the ~„,for example,
by Newton's method. j~(x)—

2(21 + 1)

1/2
ex

21+1

I + 1/2

(25)

III. COMPUTATIONAL PROCEDURE

l,„=x+2( —
=; ln10 &x /2) (24)

which follows from the asymptotic expansion' of j& for
large l:

The of-shell T matrix is a well-behaved function of p
and p' when the energy E is positive. From Eqs. (9) and
(17) it would appear that the T matrix has singularities
when the denominators go to zero. However, it is
straightforward to show that in those cases the corre-
sponding numerators also go to zero in a way such that
the T matrix remains finite. When attempting to calcu-
late t& from Eq. (17), certain care must be taken to avoid
possible overAows due to the fact that the Hankel func-
tions increase very rapidly for large values of l. However,
the denominator of tI increases much faster than its
numerator as l increases, so that one can take advantage
of this behavior to avoid overAows. In practice, it is also
convenient to fully expand Eq. (17) and then regroup the
terms in a way such that each hi is multiplied by the cor-
responding JI of the same argument. As a consequence,
the products jIhI will then remain within the dynamic
range of the computer. Inspecting Eqs. (8), (9), and (17),
one finds that the expansion will involve a large number
of terms. Therefore, it is most reliably carried out by
means of a symbolic manipulation program such as
MACSYMA.

The necessary Ricatti-Bessel functions jI and hI are ob-
tained by standard numerical procedures' ' as follows.
It is well known that the recursion relation for the jI is
unstable for increasing values of l. Therefore, given the
desired value x of the argument, we first calculate I,

„

such that [j&(x) ~
(e for I & i,„,where e is a small num-

ber, typically @=10 . More specifically, l,
„

is deter-
mined from the relation

2l + 3
nI +p(x) = nl + ~(x) O'I(x) (27)

It is worth noting that the above procedure is
sufficiently inexpensive to generate Bessel functions for
large values of l, typically l —1000. As a consequence, we
can easily examine the convergence of the T matrix with
respect to the number of partial waves included in the
calculation. Whenever p and p' are near the energy shell,
we have found that the T matrix converges when the
number of partial waves approaches the classical estimate
I. =pub, as was expected. However, when p and/or
p' &&pz, then the convergence is faster, because each par-
tial wave is dominated by j I(pb /A)j i(p'b/A) [cf. Eq. (17)]
and the Recatti-Bessel functions decrease more rapidly
for smaller argument. Conversely, for the same reason,
one requires more partial waves than L in order for the T
matrix to converge when p and/or p'))pz. However, in
the latter case the amplitude of the T matrix is
significantly smaller, because Eq. (17) indicates that
tl(p', p; E+ ) o- 1/pp' as p and/or p' becomes large.

The calculations for the oft-shell T matrix are per-
formed on Microvax 3100 works stations. Typically, for
E =1 eV, p =0.4pz, and p'=0. 6pz, it takes about 3 sec
of CPU time to calculate the T matrix as a function of
the angle between p and p' from 0 to 180' in steps of 1'
with approximately 110 partial waves included.

We next apply the recursion relation'

2l —1 n
i i &«) i t«-)—

X

downwards from l =l,
„

to I =0, and then normalize the
resulting ji(x). Instead, the recursion relation for the
Ricatti-Neumann functions nt(x) is known to be stable,
so we first write hI =jI+i&I, and then generate the 6'I by
forwards recursion as follows:
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FIG. 3. Same as Fig. 1 except E = 1.0 eV.

IV. EXAMPLES

To illustrate the behavior of the fully-off-shell T ma-
trix, we have carried out calculations for several values of
energy and momenta using potential parameters that
simulate typical interactions between noble-gas atoms:
Vo =3 meV, a =1.75 A, and b =3.0 A; the mass of heli-
um was used in the calculations. As was mentioned in
the first section, the behavior of the off-shell T matrix
strongly depends on the three independent quantities: p,
p', and E. Qualitatively speaking, Eqs. (8), (9), and (17)
lead one to expect that the T matrix will vary slowly for
small values of the independent variables, and that it will
become progressively more oscillatory as the independent
variables increase, since p, p', and pE appear as multipli-
cative parameters in the arguments of the Bessel func-
tions. This behavior is illustrated by Figs. 1 —3, where we
display the fully-off-shell T matrix versus the angle be-

tween p and p' for three different values of energy E such
that p& &p,p'. As in the well-known on-shell case, one
sees that the amplitude of the T matrix varies more rap-
idly in the small-angle region, and that it becomes pro-
gressively more oscillatory as E increases from 0.03 to 0.3
to 1.0 eV, respectively, in Figs. 1 —3. One also notes that
the magnitude of the T matrix on average does not
change much even when E is varied over almost 2 orders
of magnitude while keeping constant the magnitudes of
the momenta. Next, Fig. 4 illustrates the effect of reduc-
ing the magnitudes of the rnomenta at the larger energy
(E =1.0 eV); one sees that the T matrix becomes less os-
cillatory as was expected. Conversely, Fig. 5 shows a
case of relatively low-energy E =30 meV but large off-
shell momenta p =3.5pz and p'=4pz, ' here the T matrix
oscillates rapidly, and its magnitude decreases very
quickly as the angle increases. In fact, the magnitude of
the T matrix becomes progressively smaller as one in-
creases p andi'or p', and it eventually vanishes. These ex-
amples illustrate the strong influence of the rnomenta on
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the behavior of the off-shell T matrix.
Finally, we examine how the T matrix varies as one

changes the potential parameters (presently, the radii a
and b and the well depth Vo). Qualitatively, one would
expect the T matrix to varies slowly with angle when a
and b are small, and to become more oscillatory as the ra-
dii increase, since these two parameters also appear as
multiplicative constants within the arguments of the
Bessel functions. These expectations are confirmed by
comparing Fig. 1 with Fig. 6, where the T matrix has
been calculated with a larger value of the hard-core ra-
dius. Considering next the well depth, it is known that
the ratio E/Vo plays an important role in determining
the behavior of two-body cross sections. Hence Figs. 7
and 8 compare results obtained from the model potential
with those of a Lennard-Jones (12,6) potential, both cal-
culated on shell with E/Vo=10. It is seen that the T
matrices closely resemble each other, while the significant
differences occur mainly at small angles due to the longer

range of the Lennard-Jones potential. The close resem-
blance over a wide range of scattering angles leads one to
expect that the model potential will yield meaningful re-
sults when its T matrix is incorporated into the integrals
arising in multiple-collision expansions, provided that the
impact energy is considerably higher than the typical well
depths.

V. SUMMARY

We have obtained an analytic and explicit expression
for the fully-off-shell T-matrix elements for the spherical
hard-core plus square-well potential. Similar approaches
can be applied to piecewise-constant potentia1s, although
the resulting expressions become much more complicat-
ed. The results shown in Figs. 7 and 8 suggest that the
present potential can be used to model more realistic (i.e.,
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continuous) interatomic forces at sufficiently high col-
lision energies. Hence the present T matrix is expected to
provide a computationally efficient approximation for use
in multiple-scattering theory within the high-collisional-
energy regime. In particular, these analytic results make
possible the calculation of multiple-collision terms
describing certain classes of reactive collisions, such as
collision-induced dissociation and desorption. In a series
of separate papers, we combine these results together
with multiple-scattering theory to investigate such reac-
tive processes both in the gas phase and at the gas-solid
interface.
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APPENDIX

W„(x) = cr [J,(x)cosa+ Y„(x)sina], (A 1)

where v is a non-negative number and o and a are real
constants. We have that

W sx 8', txx x
b

0. b
5(s —t)

2
— [sW,+, (sb)W, , (tb)

s $ —T

tW,—+, (tb)W (sb)) . (A2)

This equation can be easily proven by taking into account
Weber's integral theorem, ' as well as the equation for
the same integrand in a finite range:

Equation (12a) can be found in any standard text
book. ' We only give a brief proof of Eq. (12b) in this
section. In order to do this, two integrals are needed.

Integral l. Define a cylinder function by

W„(sx)W (tx)x dx=
I A[sW„+i(sA)W„(tA) tW„+i(—tA, )W„(sA,)]f 1

b s —t

b[sW„—+, (sb)W, (tb) tW„+—, (tb) W, (sb)]) . (A3)

Equation (12a) is, in fact, a specific case of the more gen-
eral expression (A2).

Integral 2. Letting

bining the two integrals, one can show that

f ao~ p 'r ~r
l yl d»

b

U, (x)= Y,(bs)J, (x) J„(bs)Y(x—),
U, (x)= Y„(bt)J,(x) J„(bt)Y„(x—),

then

(A4)
P

p'b pb

P P
P jl+&

U, (sx) U„(tx)xdx = [J'„(bs)+Y',—(bs)]5(t —s) . p'$ pg
P Jl ~ 1l+& (A6)

(A5)

This can be readily proven with the Weber form. ' Corn-
Equation (12b) can then be derived easily from Eqs. (12a)
and (A6).
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