
PHYSICAL REVIEW A VOLUME 42, NUMBER 9 1 NOVEMBER 1990

Zener tunneling in systems without level crossing

Shmuel Fishman
Department of Physics, Technion, Israel Institute of Technology, 32000 Haifa, Israel

Kieran Mullen*
Department ofPhysics, Unioersity of Michigan, Ann Arbor, Michigan 48109

and School of Physics and Astronomy, Raymond and Beuerly Sackler Faculty of Exact Sciences,
Tel-Aviu University, Tel-Aviv 69978, Israel

Eshel Ben-Jacob
Department of Physics, University ofMichigan, Ann Arbor, Michigan 48109;

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel;

and Scientiftc Laboratory, Ford Motor Company, Dearborn, Michigan 48121
(Received 5 September 1989)

We compare the standard Zener tunneling problem with one in which the unperturbed states do
not intersect. We find that even when their adiabatic energy spectra are identical, the two cases
have dramatically different asymptotic tunneling probabilities. The time of Zener tunneling, a mea-
sure of the duration of the transition, is also different for the two. The latter is determined by calcu-
lating the transition probability as a function of time, for both the sudden and adiabatic limits. We
also develop analytic asymptotic expansions for the tunneling probability for these limits. The re-

sults are discussed in terms suitable for comparison with experiment.

I. INTRODUCTION

The phenomenon of Zener-Landau tunneling, ' or
"nonadiabatic transitions, " is a canonical example of a
quantum-mechanical effect without a classical analog.
First addressed in the 1930's, it has been applied in such
diverse contexts as atom-surface scattering, molecular
physics, and molecular biology. ' More recently this
problem has been discussed in the growing field of submi-
crometer physics, in attempts to describe the dynamics of
electronic nanostructures such as small normal metal
rings driven by an Aharonov-Bohm Aux"' and ul-
trasmall capacitance tunnel junctions driven by an exter-
nal current source. " ' Although over 50 years old,
there are still interesting aspects to the problem that ap-
pear in these new fields. One example of this is the time
of Zener tunneling. ' Closely akin to the time of
quantum-mechanical tunneling in real space, ' the time
of Zener tunneling is a measure of the duration of the
quantum-mechanical transition itself, and can have
different answers depending upon whether the system
changes adiabatically or suddenly.

In this paper we discuss several other aspects of Zener
tunneling, often referred to as the "level-crossing prob-
lem. " We will show that in some cases this term can be
misleading. In particular, we will consider two separate
model systems, each with its own time-dependent Hamil-
tonian, each with different concrete physical realizations,
but with identical energy spectra (although the labeling of
energy states will differ). We will show that, despite the

overwhelming similarity of the problems, the two cases
have quite different asymptotic tunneling probabilities,
and Zener tunneling times. We will also show that Zener
tunneling is possible in systems where the uncoupled lev-
els do n,ot cross.

In Sec. II below we develop a description of the canoni-
cal case of Zener tunneling, in which the unperturbed en-
ergy levels intersect [see Fig. 1(a)], and restate results for
the asymptotic tunneling probability and Zener time. We
also introduce a second, similar Hamiltonian, with an
identical energy spectrum, but in which the unperturbed
states do not intersect [as in Fig. 1(b)]. In Sec. III we cal-
culate the asymptotic Zener tunneling probability for this
case, both numerically and analytically, in the adiabatic
limit using the standard adiabatic approximation. ' We
will show that the tunneling probability is quite different.
In the adiabatic limit the tunneling probability can be ex-
ponentially or algebraically small in a dimensionless "adi-
abaticity parameter" depending upon the parameters. In
Sec. IV we calculate the asymptotic value for the tunnel-
ing probability in the sudden limit, using a power-series
expansion to calculate the amplitudes. We then use this
expansion to calculate the width of the transition in the
sudden limit, and to obtain an expression for the time of
Zener tunneling in the sudden limit. In Sec. V we use a
WKB expansion to calculate the width of the transition
in the adiabatic limit. We summarize our results in Sec.
VI and consider their potential application to experi-
ments. Subsequent appendixes (A —C) deal with related
mathematical subtleties.
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II. STATEMENT OF THE PROBLEM

It is simplest, and indeed standard, to consider the
Zener tunneling problem in the context of a simple two-
level system whose energies cross as a function of some
external parameter, which is assumed to vary linearly in
time. We further assume a constant, off-diagonal matrix
element connects these two states, so that the Hamiltoni-
an for the system can be written

0 1

x ] 0

0 —i

i 0

1 0
0 —1

(2.2)

Vf»(t) =atcr, +ho, , (2.1)

where a and 5 are real, positive constants and the 0.
, are

the Pauli spin matrices, at
&»(t) = (2.3)

so that the Hamiltonian in Eq. (2.1) has the simple matrix
representation

1.0

0.5

a) 0.0

—0.5

As a pedagogical example used throughout this paper, we
will consider the system of an isolated spin- —,

' particle, say
an electron, in the presence of a large uniform magnetic
field, S=Botk initially pointing in the —k direction, at
time t = —Dc, and set a=pBo, where p is the magnetic
moment of the electron. We assume the existence of a
small transverse magnetic field S'=B'i that allows mix-
ing between the states of "spin up" (denoted by u t ) and
"spin down" (denoted by v

&
) and set 5 =pB'.

Let u+ ( t ) be the eigenstates of A» when time is treated
as a parameter. By this we mean that we replace time in
the Hamiltonian by a dummy variable s, and then solve
the "time-independent Schrodinger equation"

R»(s)v+(s) =E+(s)v+(s), (2.4)

-1.0 —0.5 0
TlIX18

0.5
where s is a time-independent constant, yielding a family
of equations and solutions as a function of s. The energy
spectrum is

1.0 E (t) +( 2r 2+ g2)1/2 (2.5)

0.5

where v+(t) and u (r) are combinations of u& and u&.

at+(a2r 2+a2)'/2

u+(t) =N
(2.6)

0.0 u (t)=N
1

at (a t +b, )'——

—0.5
where the normalization constant is given by

X= [(ar + a2r 2+ g2) I/2]1/2
+2( 2r2+g2)1/4 (2.7)

—1.0 —0.5 0
Time

0.5

FIG. 1. (a) Adiabatic energy levels of the W~ Harniltonian,
as given in Eq. (2.5), for a=1. The dashed lines are the uncou-
pled (5=0) states, that are degenerate at t =0. The solid lines
are the adiabatic energy levels for 6=0.2. (b) Adiabatic energy
levels of the Ay Hamiltonian, as given in Eq. (2.14), for o.=1.
The dashed lines are the uncoupled (6=0) states with 6=0.1.
Note that they are not degenerate at t =0. The solid lines are
the adiabatic energy levels for b =0.2.

At time t =0 these are just the symmetric and antisym-
metric combinations of u& and u&. The states v+(t) and
v (t) are sometimes referred to as "adiabatic eigen-
states. " The energy spectrum is plotted in Fig. 1(a).

We initially prepare the system in the upper of these
two adiabatic eigenstates (spin down) and then allow the
Hamiltonian to vary with time. At any particular time t,
the eigenstates of the system, v+(t, ) and u (r, ), are or-
thogonal. However, the state u (r, ) at t, does have an
overlap with the state u+(t2) at a later time t2. This is
the underlying mechanism for Zener tunneling. If we



ZENER TUNNELING IN SYSTEMS %'ITHOUT LEVEL CROSSING 5183

Pz =exp =exp
Aa y

(2.8)

prepare the system in state "down" at t = —~ then there
is a finite probability Pz that we will find it in the state
"down" at t = ~, given by

E ( t ) =+( t 2+52+ 62)1/2 (2.14)

[plotted in Fig. 1(b)] with eigenstates u+, where the states
u+ are combinations of u t and u &. Note that for 5=0
the eigenenergies are identical to those of Eq. (2.5). The
eigenvectors that correspond to the eigenvalues (2.14) are

where the parameter y =—Ae/6 . Details of the calcula-
tion can be found in Refs. 1 —5.

The time of Zener tunneling' is a measure of the dura-
tion of the actual transition itself. This information is
particularly useful in the event that there are other time-
dependent interactions (i.e., dephasing events) or multiple
level crossings. There are two suggested approaches to
defining the Zener time. The first is to measure the width
of the transition itself by examining the probability of
staying in the initial state, as a function of time. The
second is to examine the sensitivity of the asymptotic
transition probability to an oscillatory perturbation. If
there is a characteristic frequency at which the system is
insensitive to the perturbation then this frequency can be
taken as the reciprocal of the characteristic time. In both
cases the Zener tunneling time r, for the &» Hamiltoni-
an, for y && 1, is

(2.9)

1
u+(t) =+

( 1+r2)1/2 P'

u (t)—: 1

( 1 +7 2)1/2

where

r — [(~2t 2+ 52+ /2)1/2 (~2t 2+ 52)l/2]1

(2.15)

(2.16)

As above, it is possible for the driven system, prepared in-
itially in the state "spin down, "

u &(
—~ ) = u (

—ao ), to
Zener tunnel. However, in this case the uncoupled
(b =0) states do not intersect and this is not, strictly
speaking, a level-crossing problem. In Figs. 2(b) —2(d) we
plot the transition probability as a function of time for
the &r Hamiltonian. In this case the transition probabil-
ity is not a monotonic function of the rate of change of
the energy.

Physically, this is the time that it takes the external driv-
ing force to transfer an energy b, (half the gap) to the sys-
tem. In the sudden limit (y ))1) we find

1/2

(2.10)

This quantity is approximately the time it takes for the
phase of the wave function to change by order unity near
t =0. In Fig. 2(a) we plot the transition probability as a
function of time for the &» Hamiltonian.

We compare these results to those we will derive for a
second, nonanalytic Hamiltonian,

III. ADIABATIC APPROXIMATION

&(s)u„(s)=E„(s)u„(s), (3.1)

where s is a time-independent constant, yielding a family
of equations and solutions as a function of s. The solu-
tion of the time- dependent Schrodinger equation

Consider P(t), a general time-dependent Hamiltonian,
with eigenstates u„(t) when time is treated as a parame-
ter. By this we mean that if we replace time in the Ham-
iltonian by a dummy variable s, then u„(t) is an eigen-
state of the time-independent Schrodinger equation

Ar(t) =(ct t +5 )' o, +ho,
which, in matrix form, can be written

2t2+ g2)1/2

(2.11)

can then be written in the form

(3.2)

In the limit 6~0 this reduces to

C2t 2+ fi2 )
1/2 (2.12)

g(t)= g a„(t)u„(t)exp . J E„(t')dt'
n

(3.3)

lim&~(t) =
0

(2.13)

The expansion coefficients a„(t) can be obtained by the
direct substitution of Eq. (3.3) into Eq. (3.2), which yields

( u, (t) ~%(t)
~ u„(t) )

As above, this Hamiltonian can be considered as describ-
ing a spin- —, particle, say an electron, in a magnetic field,

where the field is reduced to zero and then increased
again in the same direction. The parameter 5 can by in-

terpreted as allowing for an offset in the field strength at
the point where the rate of change of the field is reversed.

The eigenvalues of %r, with time treated as a parame-
ter, are

Xexp f [E„(t') Ek(t')]dt' . (3—.4)
iA

In the lowest-order adiabatic approximation' it is as-
sumed that in Eq. (3.4) the coefficients a„(t) on the right-
hand side (RHS) can be treated as constant in time. In
what follows it will be assumed that initially (t = —oo )

the system is in an eigenstate of &( —oo ), so that all of
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(3.5) so that Eq. (3.5) reduces to
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dY/
( 2+ 1 )( 2+D )1/2

Xexp 2iPf" (q' +1)'~ dg'+igo

f (g'+1)' dg

=
—,') g[(tt +1)]' +1n[g+(g + I)'~']] . (3.10)

where
6'+5'

I Ao.

Q2D= (5+6 )

1D—:—&I D—n—
2

(3.8)

(3.9) at = —Do f f(x)e dx,
x

with

(3.1 1)

y(x) == —,
' sinh2x +x,

This result suggests the further change of variable to
g=—sinhx. If we choose the arbitrary phase cpo such that
the argument of the exponential in Eq. (3.8) vanishes for
x =0, then we can cast it in the form

I+(2)

The behavior of this system depends upon the two dimen-
sionless parameters I, which determines the adiabaticity
of the transition; and D which determines the separation
of the uncoupled (b, =0) states. In the limit 5~0, we
have that I y, as defined in Sec. II; the approximation
(3.8) improves as I decreases.

The integral in the phase of the exponential is straight-
forward,

sinhx

coshx ( sinh'x +D )
' ~

(3.12)

In Appendix A we evaluate this integral numerically, and
develop analytic asymptotic expansions in a variety of
limits.

We find that in the regime I &(1 the transition ampli-
tude can be approximated by

4
I' forv'D « QD, (3.13a)

a&= . ' 1/4
aI

2 1 —D
D

1 —D

1/2

exp[ —[v D (1 D)+are is
—n& D]/I j

forv'D &&QD&, (3.13b)

where one can choose a value of D& that divides the two
regimes of validity satisfying

IV. ZENER TUNNELING PROBABILITY
AND ZENER TIME FOR %y IN THE SUDDEN LIMIT

r — r—&QD & —.
4 2

(3.14)

Note that this interval shrinks with decreasing I. A
reasonable approximation for both regimes is

In the sudden limit, I &&1, the above contour integral
approach is no longer valid, because the tunneling proba-
bility is large and therefore the amplitudes a&(t) in Eq.
(3.4) can no longer be considered as constants. In this
case we return to the original time-dependent
Schrodinger equations

—iI"
a&= /I

2&1—D
(3.15)

i Aa
&
(t) =(a-'t +6 )' a

&
(t)+ ha

&
(t),

ilia&(t)= —(a-t-+5 )' '-a&(t)+ha&(t) .
(4.1)

which is identical to Eq. (A18) derived in Appendix A.
In Fig. 3. these approximations are compared with the

exact (numerical) value of the integral [Eq. (3.11)] and
with the results obtained from numerical integration of
the time-dependent Schrodinger equations. The arrows
mark the bounds on the limiting value of D&. Note that
the approximants are extremely close to the exact result
nearly for all the range of D, for I =0.2. Their quality
improves when I is decreased, as expected.

It is striking that such a small change in the Hamil-
tonian, a change that leaves the eigenenergy spectrum for
the problem unchanged, results in tunneling rates or or-
der I rather than of order exp( —1/I ) as found in the
case of true level crossing.

Motivated by the results of Ref. 17, we change variables
to a=t &A/o. . These equations can then be written as

I a( 7t)
—(1 +6 ) 'a( t) r6+ia(T)

ia)(~)=(r +6')" a)(r)+hat(r),
(4.2)

a, (~)=exp ~~ (~"-+6-')]/-'d~' a, (~),

b ( )t=rexp —i f (r' +5 )'~ dr' a)(~) .
X

(4.3)

where 6 =—:6/&Aa and 6—:6/&Aa. These equations can
be simplified by factoring off the overall oscillatory part
due to instantaneous energy. We define
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In terms ofbt and b& Eq. (4.2) becomes

ib1( r)=bb1( r)exp 2i I (r'+6 )' d~'

ib &(7)=bb &(r)exp —2i f ' (7'2+8 ~)'~~dr'
(4 4)

Typical numerical solutions of the above differential
equations in the sudden limit are shown in Fig. 2d. Un-
like the case of the Hamiltonian A'», the probability of
making a Zener transition from the lower to the upper
band decreases as the transition becomes more sudden.
This paradoxical result is easier to understand when one
considers that in the sudden limit the tendency for both
the &» and rVr Hamiltonians is to stay in the same, un-

perturbed (5=0), state. In the A» case this means pass-
ing to the upper band, in the &r case this corresponds to
remaining in the lower band.

It is possible to develop analytical approximations to
the Zener tunneling formula. For simplicity we first limit
ourselves to the case 6=6=0, which amounts to solving
the Hamiltonian of Eq. (2.13). Since the probability of
staying in the same state is almost unity, we can make the
assumption that 'a&(t) =1 for all times, but that its
phase varies as the exponential in Eq. (4.3). Thus in Eq.
(4.4) we can assume that b

&

= 1, so that

~~
~ &

10—2

10

All I i I 1 lliil I i i I lilll

04
D 10—4

10-5
:„,I

10

10

(t1)

l
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i «iiiil i i i iiiiil i i i ii«il i i i iiinl i i i iiiiil i i i iiinl 't
i

's
i iiiii1
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D

(b)

ib&(r)=b, exp 2i f (4.5)
10—6

which can be integrated easily to find the asymptotic
probability

b&(~ )= —ib, I dre '' +—f dwe' e'
s'»10-9
04

(4.6)

where we have introduced the arbitrary phase yo so that
at t =0 the overall phase of Eq. (4.6) is zero. (Note that
we have fixed only the modulus of the initial conditions,
so that up to this point the overall phase is arbitrary. )

These definite integrals can be evaluated to obtain
' 1/2

(4.7)

10 12

10-15
10—6

I

10-4
D

I

10—2 100

so that the Zener tunneling probability in the sudden lim-
it is given by

2

I'z = ~b, (~) =
2 2y

(4.8)

Unlike the case of the Hamiltonian iY», the probability
of making a Zener transition from the lower to the upper
band decreases as the transition becomes more sudden.
As discussed above, Zener tunneling corresponds to fol-
lowing the uncoupled (5=0) states, so that in the Vfr
case the faster the system is driven, the more it tends to
stay in the lower band. We note that the result of Eq.
(4.8) is half the probability of not Zener tunneling in the
iV+ case.

One reasonable definition of the time for Zener tunnel-
ing is the temporal width of the transition itself. ' The
transition width cannot be ascertained from the asymp-

FIG. 3. Comparison of various methods for calculating the
asymptotic Zener tunneling probability ~at ', for the yii Ham-

iltonian as a function of D for fixed I". The solid line is the re-

sult from integrating Eq. (3.11) along the contour given in

(A10). The dashed 1ine is an approximation valid for sma11 D
given by Eq. (3.13a) [or Eq. (A19)]. The dotted line is an analyt-

ic approximation for large D, given by Eq. {3.13b) [or (A17)].
The dot-dashed line is a reasonable approximation over the en-

tire range, as given by Eq. (3.15) [or (Alg)] again valid for small

D. The arrows mark the transition region from small to large

D, as given by Eq. (3.14). (a) The tunneling probability for
I =0.2. The stars are the results of direct numerical solutions

of the time-dependent Schrodinger equation for the &z Hamil-

tonian of Eq. (2.12). Note that these solutions deviate from the
correct results when D ~ 1, when the asymptotic probability be-

comes smaller than the numerical accuracy of the calculation.

(b) The tunneling probability for I =0.1. The tunneling proba-

bility is too small for numerical solutions of Eq. (4.1) to be accu-
rate. Note the improved overlap of the asymptotic solutions as

I decreases.



42 SySTEMS WITHOOUT LEVEL CROSSINGZENER TUNNELING IN 5187

minin the time-
'

it but only by examin gp o y

b h dh fhd fi cthe Zener tun g e nnelin time y ee n
ins ection o e

'
n profile. Cursory in p

5 when the time.h.-h. f-----
f th ofil n t,u the width o t epris

h h ' will 'fi ude of the c ange e
1" dfi h

a o

ut it is consistent with the resu s
tonian. Thus in the sud en im'

1/2

a (4.9)

t that the result of Eq.
b 1 tdfo 1

we expec

. Th t fid h
since the 5 can e neg

the entire realm o. i g
' . is is. inte ration.

5
&ah'

(4.11)

e realized if the driving force varies at
a rapi d enough rate (i.e., for arge e

n
' . t e

'
~b

~
as a function of time.

d i it of &I}1/
the function

&
as a

with time measure in
llh h id h.

1

olutions all ave
5%0 the integral of Eq. . muFor

2 I /2bt(~)= e5b exp(i5 [r(r +1)

+In[r+(r +1)' ]j )dr .

(4.10)

1 is satisfied, the Zener tunneling prob-
ated by Eqs. (4.8) and

(4.9), as shown in Fig. 4, and veri e

N FOR THEE JV HAMILTONIAN
AND THE TIME OF ZENER T

at
(52+ g2)1/2 (5.1)

5 +b, )' to obtainand divide through by (

1/2
( )il &a( ))7=(g + a&'+D)'"a (q)+(1 —D)

i
' — +D)' a (2))+(I D)'/ a&

—
21iI a (t))= —(7) + ai

(5.2)

re described in q.. (3.9).
se two first order equations to getWe can combine these two rs -or

a single, secon-d-order equation for a &.

)+ 1 —D]a
&
(ri) =0,la&g i

"
( )+i I G(ri)a&(ri)+[6

(5.3)

Sec. IV, the transition width cannot
ob bil', b o 1

time-dependent amplitudes near
d d'nt S'h"dsider the time- epen

of Eq. (4.1). In e
Ao Rf.

~/ 'nd'b
nian %, (see Appen ix

'me b a factor
fil I h fd parameter-indepen en r

1 hange variables tothis result, we c an

1.00

+D)' . We assume a solution of the
x iS 2))/I ]. Substituting in t e

r" n q
'

d'fferent orders of In and equating i erS hrodinger equation
rr'we obtain to order

0.95 S+ =+(2) +1}2 1/2 (5.4)

0.90

0.85

0.80

+ ) refer to the choice o 'gf si n for thehere the signs (

This can be integrate usingsquare root.

=+—' +1)' +ln[ri+(iI +1)' ]] . (5.5)S+(2)), [21 2)

i co
'

the hase of the1 it contributes only to p
d I od todtwave function, no it its magnitude. n o

to the next order inp p orofile we must go o
sion and calculate the pre ac o,

WKBing terms of orde rI inthe
, I. . . , I. . . , I, ,

—4 —2 0

t Qa/5

ener tunneling" probabi
'

yilit P (t) as aFIG. 4. Plot of the "Zener un
the 'H~ Hamilton&an In

e = 10, the dashe ineThe solid line is for I =
c = = Note that the oscillatIons ine en

u
' &A/a. The oscillations for t &ured in units oftime is measu

ration.are due to t e nih fi ite interval of Integra
'

2iE(ri g i)S( )+iK(ri)S(g)+iG(i7)K(q) =0 .

Solving for K(g) we obtam

K(q) 1 S(i))+G(i)}
E(2)) 2

+D)'/ (g +1)
1

2 1/2
q +1 (21

which can be integrated to yield

(5.6)

(5.7)



5188 SHMUEL FISHMAN, KIERAN MULLEN, AND ESHEL BEN-JACOB 42

1.0

0.8

O.e

0.4

1.00

0.95

I

-5

S' =+( '+g'+I)'",
K'(y) 1 y
&'(y) 2 y'+g'+1

+
(y

2 + g
2 + 1 )

1 / 2
(y

2 +g
2

)
1 / 2

(5.11)

0.90
0.85

1.0

0.8

Q.e =
0.4

1.00
0.95
0.90

I

-5

(b)-
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In the limit that 6/6~0 these equations are independent
of any parameters of the problem, so that a plot of the
transition probability as a function of time is invariant
when time is measured in units of 5/o. . In a similar
fashion it is possible to show that in the limit A))5, the
profile is invariant when measured in units of 5/u. Thus
the expression for the Zener time is correct in the two
limits. These results are born out in Fig. 5, which shows
different transition profiles for different parameters have
the same width when scaled by r, of Eq. (5.9).

VI. DISCUSSION AND CONCLUSION

0.85 (d) ==

]/4

C2[g +(D+1)g +D]' +2q

at/6

FIG. 5. Plot of the "Zener tunneling" probability as a func-

tion of time for the.P& Hamiltonian in the adiabatic limit. The
parameters are (a) I =0.2 and 5=0, (b) I =0.2 and 5=0.1, (c)
1 =0.4 and 6=0, and (d) I =0.4 and 6=0.1. Note that the
transition widths are all approximately the same, when the time

is measured in units of 6/a,

In this paper we have endeavored to show that Zener
tunneling can be more subtle than one might suspect.
First, it does not require that the uncoupled states have
degeneracy. Second, systems that appear very similar [as
in Figs. 1(a} and 1(b)] can in fact have quite dissimilar
asymptotic tunneling probabilities. These issues are quite
open to experimentation; any standard Zener tunneling
problem with a time-varying driving force can be altered
so that the derivative of the driving force changes when
the uncoupled states are nearly degenerate. We note
parenthetically, that we are dealing with time-varying
forces, and thus these issues must be treated differently in
the case of Zener tunneling in momentum space. '

We have plotted in Fig. 6 a comparison of the asymp-

+D+ I I+ "4 . (5.8)
I I I ltl I I I

These solutions must then be multiplied by an appropri-
ate constant so as to satisfy the boundary conditions,
~a

& ~

~1 at either + ~. In our case only the solution K
is consistent with these boundary conditions.

Inspection of Eq. (5.8) shows that simply scaling the
time does not yield a parameter-independent profile.
Again, in this sense there is no universal form for the
Zener time. However, for fixed D the profile is indepen-
dent of I, i.e., how fast we drive the system, so that the
characteristic time

0.25

0.20

0.15

0
C4

0.10

q nin

~cg:g

'b

(g2+g2)1/2
(5.9) 0.05

i@a&(y)=(y +g }'/ a&+at,
iya&(y)= —(y +g )'/ at+at,

(5.10)

where y =Ra/b, as in Sec. I and (=6/A. As above, us-

ing a WKB ansatz a
&

=K'e' ~ we find

can be viewed as the Zener tunneling time. Moreover, in
the limit that 5 ))6 or 6 «6 it is simple to show that ~,
gives the correct scaling. For example, for 6 ))6 we can
change variables to y =at /6 and obtain

0.00 , , I

&00
I j I I I I III

FIG. 6. The asymptotic Zener tunneling probability for
6=0. 1 as a function of I . The boxes represent numerical re-
sults obtained by directly solving Eq. (4.1). The solid and dot-
dashed lines are the analytic approximations of Eq. (3.13a) and
of Eq. (4.8) limits, respectively. Note that all are distinct from
the tunneling probability of the A& Hamiltonian, the dotted
line, given by Eq. (2.8}.
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totic Zener tunneling probability for the &r case as given

by direct numerical solution of the differential equations
[Eq. (4.1)], by our analytic approximations, and also the
exact analytic result [Eq. (2.8)] for the &» case.

In the ordinary Zener tunneling problem that is defined

by the Hamiltonian &» [Eq. (2.1)] the solution in the adi-
abatic limit y~0 well approximates that of the regime

y «1. For the Zener tunneling problem studied in the
present work, defined by the Hamiltonian &r [Eq. (2.11)]
the parameter I introduces an additional energy scale,
leading to additional scale of "slowness. " The adiabatic
limit I ~0 does not give a good approximation for the
tunneling probability throughout the entire regime
I « 1. It is a good approximation only in part of the re-
gime, namely, where Eq. (3.13b} holds and the tunneling
is exponentially small in 1/I . There is another regime,
where Eq. (3.13a) holds, and the tunneling probability is

proportional to I, in spite of the fact that I « 1. In the
limit 5~0, the Hamiltonian &r is nonanalytic. This be-
havior produces an unusual dependence of the tunneling
probability on the "adiabaticity" parameter I,
specifically, it is proportional to I, in this limit. In other
words, the order of the limits I"~0 and 6~0 is crucial.
This is somewhat reminiscent of the more subtle exam-
ples of the asymptotics of wave refiections.

The results discussed in this paper are not limited to
linear Hamiltonians. One of the most common cases, in
which the energy depends quadratically upon the con-
trolled coordinate (e.g. , charge and the electrostatic ener-

gy, or flux and the inductive energy) can be mapped
directly on to equations like that of Eq. (2.1). This is dis-
cussed in detail in Appendix C. This means that calcula-
tions involving Zener transitions in systems driven by an
oscillatory potential may involve transitions of both the
i"Vr and A» t.ype.
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APPENDIX A: EVALUATION OF THE CONTOUR
INTEGRAL

In this appendix we develop the integral of Eq. (3.11}
into a contour integral in the complex plane. We then
evaluate it numerically, and develop analytic, asymptotic

0
Re(z)

FIG. 7. The contour chosen for the method of stationary

phase, circumventing the branch cut (dotted line) that connects
the pole P (marked by the X) and the point y~ =arcsinD
(marked by the small cross). The vertical lines C+3 which con-

nect the contour to the real axis at + ~ are not shown.
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Z =l +Ee i0
2

(A3)

For small e we may approximate f (z) of Eqs. (3.11) and
(3.12) in this region as

(z) = i —sgn(x )

z v'I —D
(A4)

and set y(z) =q&(i vr/2). Using Eq. (A2) we can show that
Cz encompansses —m/2 0( —~/6, while C ~ covers
—m+(m/6) 8& 7r—/2 The contour integrals along
the curves Cz and C, are of opposite sign and thus can-
cel. As e shrinks to zero, the integral along C0 vanishes.
We are left with only the contributions from integrating
along the curves C+, and C+. On sections C+ and C+,
of the contour i@&(x) is real and therefore e'~"'"' does not
oscillate.

Let I, and I, denote the contour integrals along
curves C

&
and C& respectively, and J& be their sum. It

is useful to note the symmetry property of f (z) in the re-
gion of integration, namely,

f( —x,y)= —f'(x,y) . (A5)

This property is a consequence of the fact that if ( i—z)—
is real in the interval 0&y &y„on the y axis (i.e., it is

real analytic with respect to they axis).
The contribution of the integration along C, and C,

reduces to

J = D—dz f(z)e'~~" + dz f(z)e'~"'c, C)

= —2ia& y Re z + x Im z e'~&"
1

and J, is imaginary as expected. Note that iy(z) is real
on C, and C „and we have used Eq. (A5) above.

Finally the contribution from the branch cut comes
from integrating along the contours C and C+. The
sum of these two integrals, which we denote by J, is

differential equations in Eq. (4.1). It is clear that the
agreement improves with increasing /3. Note that for
large values of p the asymptotic amplitude is very small
and consequently the direct numerical solutions of Eq.
(4.1) are unreliable, while numerical calculations of the
contour integral are still accurate.

We turn now to find two analytical approximations for
at for different regimes of D Th. e pole P at (O, m/2) is a
saddle point of iver(z) In. the vicinity of this point it takes
the form

3~-2
i y(z) = i —z —i—

2 3 2
(A 1 1)

and its magnitude decreases when one moves away from
the pole along the lines C, and C, . Since there are no
other saddle points on these lines, J, is dominated by
contributions near the pole. Along the branch cut the
function y, (y)= ig(z—) monotonically increases with y
so the integrand decreases exponentially with increasing y
save for the contribution from the pole which cancels.
For large p the integrand is largest in the vicinity of the
branch point y„and

~
J~ ))

~ J, ~. In order to find an ap-
proximation of J we expand the various functions in-
volved in the calculation of J around y „.One finds

y, (y) =(—,'sin2y„+y„)+(cos2y„+1)by
= [&D (1 D)+y„]—+2(1 D)by,— (A12)

where hy =y —y&.
From Eq. (A12) we find that near y„, the function

—
p~/t), (y)

e ' decays exponentially with a rate 2p(1 D), and-
consequently the integral J is determined by a region of
the size [2p(1 —D)] ' near y„. For small D this interval
is approximately 1/2p. Near y„, we expand the argu-
ment of the square root in Eq. (AS),

sin y D=(sin2y—„)by+cos2y„(by )

J—= 2iDO J —dy f, (y)e (A7) =2v'D(1 D)by+(1 2D—)(by ) . —(A13)

where

and

f, (y)=
cosy(sin'y D)' '— (AS)

If D is small, then the second term can be neglected for
by &2&D. Moreover, it can be ignored throughout the
whole domain of integration if the decay length 1/2p is
smaller than 2&D or,

p, (y) = iqr(iy) =—
—,'sin2y+y .

The total amplitude is then

(A9) «&D
4/3

(A14)

at =J+J) . (A 10)

The integrals J and J, are simple to calculate numerically
since the integrands do not oscillate. Some care is re-
quired since both J and J, diverge at the pole P. Howev-
er, these divergences cancel in the final result. Typical
numerical results for the absolute value of the transition
probability Pz —=

~
a

& ~

' calculated by this method are plot-
ted in Fig. 3, as a function of D for various values of P.
For relatively small values of /3 these are compared with
the values found by direct numerical solution of the

J=
V'2 &

—D

]/4 —2/3( 1
—D)b,y

0 v'by
d(by),

(A15)

with

y „=v'D (1 D) + rcasi Vn'D— (A16)

—Py, .
since e ' is exponentially small when the second term
begins to dominate. In the vicinity of y~ the integral
(A7) takes the form
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Because of the fast decay of the exponential for large P
the upper limit of the integral can be extended to infinity.
The integral is elementary leading to the result

' 1//2

+(y 2+ I )
1 t 2 (85)

Substituting Eq. (84) into Eq. (85) and equating terms of
like order in y, we obtain, to order y,

1J——t
2(1 D—) P

[(1 D—)D]' e
which has the solution

S~ =+—,
' [y[y-+ I ]'/'+In[y+(y'+ I )'/']

I . (86)
which leads to Eq. (3.13b).

However, the above asymptotic expansion is not valid
for v'D « I /4p, and in particular, the important case of
6=D =0. In order to examine this limit we note that for
v D ((I/2p, from the definition of y~ we have that
y„«1/2P. We can assume therefore that y„=0 for
these values of D and extend the branch cut down to the
origin. With this approximation the integral (A7)
reduces to the form

To order y we have

2K"5"+K"5"+K"=0,
yielding

K"
Kll 2(1+y )' 2(1+y )

Integrating these equations produces

(87)

(88)

J= 2iD e — "f e ~' ' ~d(by)
0

i —Pgq

2pv'1 D— (A18)

which is similar to Eq. (3.15). Since in this limit D &(1,
we can further simplify the above to obtain

lJ=
2

which leads to Eq. (3.13a).

(A19)

APPENDIX B: THE WKB SOLUTION
OF %g NEAR t =0

The Hamiltonian A'z has been solved elsewhere for the
asymptotic probability' and the Zener time. ' Here
we brieAy develop the %KB solution in order to demon-
strate the meaning of the Zener time. The Schrodinger
equation for this case is

(y ) C [y + (y
2 + 1 )

1 /2
]

+ 1 /2

( 2+ 1 )1/4
(89)

where C, are integration constants. The asymptotic
values of K are

0 for y~~
K+ (y) =

&2C~ for y ~ —~,
v'2C'. for y ~ ~

K (y)= '

0 fory~ —~ .

(810)

The WKB solution must satisfy the boundary conditions,
namely,

~
c

&
(
—~ )

~

= 1, so that C+ = I /v 2. Note that
the WKB solution cannot produce the correct solution
for y ~ ~ which is exponentially small in 1/y, since it is
only valid with a regime ~y~ &1/y. As is discussed in
Ref. 17, since the solution has a universal profile when
time is measured in units of 6/e, this identifies 6/a as
the Zener time in the adiabatic limit.

i' c&(t)=at ci(t)+bci(t),
i' ci(t) = at c&(t)+bc—&(t),

(81) APPENDIX C: ZENER TUNNELING
WITH INTERSECTING PARABOLAS

iy ct(y)=y c&(y)+c&(y),

iyct(y)= —y c&(y)+ct(y),
(82)

where y =—Aa/6 as in Sec. I. These equations can be re-
duced to a single second-order differential equation

y'c
1 (y)+ 1 yc1(y)+(1+y')c1(y) =0, (B3)

which depends only upon the parameter y.
In the adiabatic limit (y &(1) we assume a WKB (Ref.

23) form for c1(y)
tS"( I;)

c&(y) =E"(y)e (84)

where c
&

and c
&

are the time-dependent amplitudes to be
in the spin-up and spin-down states. Note that because
the field has a different time dependence in the Ax and

gear cases, the amplitudes will be different functions, al-

though they correspond to the same physical states, i.e.,
spin up or spin down. If we change to the variable

y =at /6 then Eq. (—81) becomes

The energy of a variety of mesoscopic systems depends
quadratically upon an external parameter (e.g. , meso-

scopic small normal metal rings in a magnetic field, "'
periodic superlattices in an electric field, and ultrasrnall
capacitance Josephson junctions' driven by a current
source). One can attempt a description of such systems

by a phenomenological Hamiltonian of the form

H = /I (n +Bt ) + C cosO,

where n and 0 are conjugate operators. This Hamiltoni-
an is analogous to that of the nearly free electron mod-
el. ' For C =0 the energy spectrum consists of a series of
intersecting parabolas; for C/3 ((1 the points of degen-
eracy are resolved, and the parabolas are broken into a
series of bands.

If we are interested in the time development of such a
system, then we have the possibility of multiple Zener
tunneling events. In this appendix, we confine ourselves
to a much simpler issue: proving that the Hamiltonian of
Eq. (2.1) can be used to analyze Zener tunneling at a
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given intersection of two parabolas.
Consider the case of a two-state system, with the ener-

gy spectrum consisting of parabolas, offset from the ori-
gin, described by the Hamiltonian

If we make the substitutions

O. tp
tli, =exp t'+ t y, ,

6iktp 2iA
(C4)

{t+t,)-
2tp

(t —to)
2to

(C2)

O.tp
P, =exp t+-t

6r At(, 2ih

in Eq. (C3), differentiate, and cancel like terms, we obtain

where t 0 is half the separation between the minima of the
parabolas. It is then simple to show that this case is iden-
tical to that of Eq. (2.1). We write the time-dependent
Schrodinger equation:

ikey') =sty, +Ay, ,

ikey'2= —sty, + Ay, ,
(C5)

(t to—)'42+ ~%i
2tp

(C3)

which is identical to Eqs. (2.3) and (Bl). The key issue
here is the rate of change of the difference of the eigenen-
ergies of the two states. In both the case of the A» Ham-
iltonian and Eq. (C2) this rate of change is linear.
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