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%e have developed a simple model that yields an approximate analytical expression for the
Coulomb-barrier penetration factor in terms of the reduced mass M of the nucleon pair, the mass m

of the particle that binds together the nuclei, the inner turning point r, for the state under con-

sideration, and the variation in the electronic or muonic contribution E,(r) to the total energy be-

tween r=0 and r;. In the case of muon-catalyzed d + t ~a+ n fusion, our model yields fusion rates
within 25% of those obtained from much more elaborate calculations. The remarkable accuracy of
our simple model results from the fact that it is highly accurate for small r, the region that we

demonstrate makes the predominant contribution to Coulomb-barrier penetration factors. Further-

more, we use this observation to explain the old puzzle of why the adiabatic approximation yields

such accurate fusion rates.

The claims of having achieved "cold fusion" in the
electrolysis of D20 using palladium or titanium
cathodes' precipitated a large number of theoretical
studies of d dfusion ra-tes, both for gaseous Dz (Refs. 3

and 4) and for deuterium in metals. The overwhelming
consensus of these theoretical studies, as well as the vast
majority of experimental studies, is that "cold fusion" in
the electrolysis of D~O is unlikely to exist.

In our own work soon after the announcements, ' we
developed a simple analytical model to calculate fusion
rates for high-lying vibrational states of D2, which agree
remarkably we11 with much more elaborate theoretical
calculations. ' Although interest in electrolytic "cold
fusion" is on the wane, there is continuing interest in the
very real subject of muon-catalyzed fusion, in which
fusion proceeds through various states of the (ddt)+ and

(dt's)+

molecular ion. s. Hence we believe it is worthwhile
to present our model, which allows the "back-of-the-
envelope" calculation of muonic fusion rates within 25%%uo.

Such a simple yet reliable method is of considerable im-
portance in the ongoing studies of fusion from resonant
states of the (dt's)+ molecular ion. Achieving conver-
gence of the fusion rate in a three-body calculation on
such diffuse states requires the use of quite large bases in
the variational calculation of the resonant wave function,
and if the basis is insu%ciently flexible, the calculated
fusion rates can be wrong by many orders of magnitude.
In contrast, the analytical results from our simple model
are much more reliable, in the sense that they are likely
to be accurate within 25%. This is about as accurate a
calculation as one can hope to do because of uncertainties

with
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where rn is the mass of the negatively charged particle in
units of the electron mass m„ao is the Bohr radius, 3 is
the nuclear reaction constant, and u (r) is the radial wave
function (ttt= l is assumed here and elsewhere). Within
the WKB approximation, as modified by Langer to ac-
count for the "hard wall" at r =0,

in the details of the nucleon-nucleon interaction at dis-
tances of 1—10 fm, and the nonseparability of nuclear
force effects.

Our analysis is built upon the fundamental article of
Jackson on muon-catalyzed fusion. We have also
profited from the article by Zeldovich and Gershtein' on
this topic. The idea of studying a simple analytical model
was inspired by a relatively recent article by van Siclen
and Jones" on fusion rates for D2 and Dz+. In the
course of reading this article, we realized that the re-
placement of their rather crude approximation to the in-
ternuclear potential with a more realistic yet still tract-
able approximation would lead to vastly improved esti-
mates of fusion rates.

All our analysis is carried out within the adiabatic ap-
proximation, which even in the case of muon-catalyzed
fusion, where m /M = —,', yields very accurate fusion

rates. Following Jackson, the fusion rate can be written
as
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7
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where r,
' and r,' are the inner and outer zeros of

Q (r)= — +2M[E —V(r)],1

4r
(4)

I

which contains an X that cancels the E in Eq. (8).
Thus, if fusion occurs from a manifold of closely separat-
ed bound states, the fusion rate per unit energy d Af IdE
is given by

and the normalization constant X for a bound state is
given by

dAf m
exp( —

A, ) .
0 4~ 2m

(12)
—] /2I

2 f [g(r)] 'dr
I

This formula also applies to fusion from continuum
(scattering) states, as can be shown by first putting the
system in a box and then taking the walls to infinity. [In
this case, Q(r,')%0, but dr,'/dE=O; therefore, the sur-
face terms in Eq. (10) still vanish. ]

Since in our work we shall be concerned with values of
M that are at least an order of magnitude larger than the
mass m of the negatively charged particles that bind to-
gether the nuclei, in the calculation of the barrier
penetration exponent A, it makes no significant difference
if we replace the inner turning point r,

' of Q (r) with the
classical inner turning point r, , for which V(r, )

—E=O.
Similarly, in the calculation of the normalization con-
stant N, it makes no significant difference if we replace
the turning points r and r,' of Q(r) with the classical
turning points r, and r, of k (r) =

I 2M [E —V(r)] j
'

provided that in the integral Q(r) is replaced with k(r).
Indeed, it has been argued that the most accurate results
can be obtained by the seemingly inconsistent procedure
of including the Langer correction in the calculation of
the barrier penetration factor, but dropping it in the eval-
uation of properties, such as the energy and the normali-
zation constant, which are determined by integration
over the classically allowed region. '

In the expression supra, the range of the nuclear force
has been taken to be infinitesimally small. In fact, the
effect of the small but nonzero range rz of the nuclear
force on the barrier penetration factor A, is quite small.
Since for very small r

[For a simple harmonic oscillator, X =(Mco/2m. )'~,
where for the electronic or muonic ground state of iso-
topically substituted H2 the dependence of co on the
nucleon-nucleon reduced mass is given by
co =0.603( m /M) ', and for Hz+ it is given by
co =0.302( m /M) ' . ] Furthermore, Jackson showed
that

"wKB(")
lim =N exp( —

A, /2),
7~0 l'

(6)

where

1 r,
'

A, =A(0) = f 2~Q (r)
~

——dr +ln
0 7" 2mao

Thus within the WKB-Langer approximation the fusion
rate for a bound state is given by

pf 2

exp( —A, ) .
4m

m
Af =A

ao

2~Q (r)
~

——= r4M [ V(r) E]=4M, —1

r
(13)

the effect of the nonzero range of the nuclear force on A, is

A.(r~) —
A, (0)= 4Mr~ . — (14)

so that

The use of this expression is appropriate in a case where
fusion proceeds primarily through a few well-separated
discrete states (e.g., conventional muon-catalyzed dt-
fusion occurs mainly from the J=O, v=O state and the
J=O, v= 1 state). If the fusion proceeds primarily from a
manifold of degenerate or nearly degenerate states, one
should multiply the right-hand side of Eq. (8) by the den-
sity of J=O states d JV/dE. In the WKB-Langer approxi-
mation, the quantization condition is

7

A'(E)+ ,' = —J 'Q(r)dr—, (9)
7

Q(r, ') dr

dE

I

dlV Mf" [ ] )d M 1

dJV 1 f" dQd Q "0 "0
(10)

dE a 7,
' dE 7T dE

Since Q(r,')=O=g(r, '), and dg/dE =M/Q, it follows
that

With rz-—5 fm=10 electronic a.u. and M on the order
of (1—2) X 10 (in units of m, ), the nonzero nuclear size
effect on A, typically does not exceed 1, which increases
the barrier penetration probability by less than a factor of
3. This effect can, of course, be included simply by the
addition of the correction (14) to our final results.

Our next task is to find a reasonably accurate approxi-
mation to V(r) which permits the analytic evaluation of
the 2 integral in Eq. (7). For small r, V(r) of course
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behaves like 1/r, the Coulomb repulsion energy for the
pair of hydrogen isotopes, plus the electronic or muonic
energy, which is due to the motion of the electron or
muon in the field of two hydrogen nuclei and whatever
other atoms and molecules may be present. If for short
distances the variation in the electronic or muonic energy
can be assumed relatively small, then we can approximate
V( r) Eb—y

(15)

and in this approximation the A, integral in Eq. (7) can
now be evaluated in closed form. For Mr, &&1, we obtain

=m+, 2Mr; —2 —In(4M/m)+O(1/(Mr; ) }, (17)

so that in this simple approximation the barrier penetra-
tion factor is proportional to

which vanishes, of course, at the classical inner turning
point r,-. Then

1/2

(16)

V(r) E——1 1 +E,(r) E—, (r, )

r —r, +(r —r, )E,'(r, ),
r,

(23)

one can see that as long as r, is not too close to the equi-
librium separation r, [at which point the two terms in

(23) would become equal, and hence the perturbation
bE, (r) would become comparable to the unperturbed po-
tential VD(r) E]—, the first-order approximation (22) will

be reasonably accurate even close to r, , and its accuracy
improves for smaller r. Since in the electronic case fusion
from highly excited vibrational states is orders of magni-
tude more probable than from low-lying states, and in

the muonic case even the ground vibrational state of
(dt's}+ lie, s nearly halfway up the well, with r, =1.363
a.u. and r, =1.997 a.u. , for the relevant states the as-
sumption that r, is well away from r, is justified. If
b,E,(r) is represented by a polynomial in r, the integral of
the last term in Eq. (22) can again be done in closed form.
In the case of a linear approximation,

e =4 exp[ (m.+2—Mr, —2)] .
m

The zero-order approximation (17) is capable of im-

provement. Since

we obtain

A, =(n+2Mr, —2)(1+ ,'EE, r, )—

(24)

V(r) =—+E,(r),1

r
(19) —ln(4M /m )+O(1/(Mr, ) }, (25)

where E,(r) is the electronic or muonic energy in the
Born-Oppenheimer approximation,

V(r)= —+E,(r, )+E,(r) E, (r, ) . —1
(20)

Hence

(21)

where AE, (r) =E,(r) E, (r, ) can be—treated perturba-
tively in Eq. (7). Thus to first order,

1/2

~g(r)~= +2M[V(r) E]—1

4r
' 1/2

1 +2M [ V0(r) E]+2MEE,(r)—
4r

1/2

so that in this first-order approximation,

e =4 exp[ —(vr+2Mr, —2)](1+,'bE, r, )] . —M
(26)

bE, =E,(0)—E, (r, )

We therefore see that the effect of the linear approxima-
tion to the decrease in the electronic energy is to reduce
the constant in the exponential by a factor of —,'AE, r;.
Systematic higher-order approximations can, of course,
be carried out. But even the simple approximation (25) is
already very useful. If the linear approximation (24) to
E,(r) is rather accurate, as it is for the ground electronic
or muonic state of Hz for r, between 0.2 and 1.0 a.u. /m,
or for the ground electronic or muonic state of H2+ for r;
less than 1.5 a.u. /m, then Eq. (25) is capable of giving
quite good results. For example, in the electronic case,
for the J=O, v=20 excited vibrational state of D2, for
which M=1835, E = —1.0006 a.u. , and r, =0.77652a0,
we find that

1 +2M [ VD(r) —E]
4r

+MME, (r) +2M [VD(r) —E]1

4r

—1/2

= —2.9037—(E —1/r, )= —0.6153 .

From Eq. (25) we obtain the approximation

k= 146.9,

(27}

(28)

(22)
which agrees quite nicely with the more accurate value of

X= 145.06, (29)
By examining the first term in a Taylor-series expansion
of (21) about r =r, , obtained by integration using the full Born-Oppenheimer
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=(—0.978)2.0 muonic a. u. ,

= —1.956 muonic a. u. , (30)

for the v=O state we find that

bE, =E,(0)—E, (r, ),
= —1.956—(E —1/r; ),
= —0.680 muonic a. u. ,

and for the v= 1 state we find that

AE, = —0.598 muonic a. u.

(31)

(32)

The use of these values of AE, and the appropriate values
of r, and M/m in Eq. (26) yields the estimates

e =4(10.64)exp( —13.19)

=7.96X10 '

for the v=O state, and

(33)

e =4(10.64)exp( —12.41)

=1.74x10 4 (34)

for the v= 1 state. Use in Eq. (8) of these values of e
the normalization constants N from Table I, and
A =1.2X10 ' cm sec ' for the intrinsic d +t ~a+n
fusion rate constant' yields values of the fusion rate Af
shown in Table II, along with the more accurate fusion
rates obtained by (i) the evaluation of the A, integral in the
WKB-Langer approximation with the full Born-
Oppenheimer plus adiabatic correction potential, (ii) the
numerical solution of the Schrodinger equation using the
full Born-Oppenheimer plus adiabatic correction poten-

TABLE I ~ Molecular parameters for the J=O, v=0 state and
the J=O, v= 1 state of the (dt's)+ molecular ion. The energy E
was obtained by accurately solving the Schrodinger equation for
the Born-Oppenheimer plus adiabatic correction potential.

F. (muonic a.u. )

—0.542 630
—0.491 391

r, (muonic a.u. )

1.363
1.154

0.122 225
0.052 182 6

potential' in Eq. (7). This yields a fusion rate smaller by a
factor of about e' =6.7 than the adiabatic fusion rate of
about 3X 10 sec

For muonic molecular ions, the much smaller value of
Mr, =(M/m)mr, leads to even more accurate results.
For the muonic molecular ion (dt's)+, we have employed
the Born-Oppenheimer approximation with the diagonal
adiabatic correction term, which includes effects through
O(m/M). The muon mass is 206.77m„ the deuteron
mass is 3670.5m„and the triton mass is 5496.9m„which
yield a d-t reduced mass M=2200. 9m, and a d-t total
mass of 9167.4m, . Our colleague, K. Szalewicz, has ob-
tained for the J=O, v=O state and the J=O, v=1 state
the fusion parameters listed in Table I. With

md+m,
E,(0)= 2;0 muonic a.u. ,

m„+md+m,

0.55X 10"
0.52 X 10"

0.70X10"
0.65 X10"

0.66X10"
0.57 X 10"

0.63 X 10"
0.53 X 10"

tial, and (iii) the solution of the three-body Schrodinger
equation in a large basis-set calculation. One sees that
even for the least favorable case of the ground state, our
approximate result is within 25% of that obtained by
method (i), and fortuitously happens to agree even better
with the progressively more exact values obtained by
methods (ii) and (iii). For the v=1 excited state, the
agreement is somewhat better.

Such astoundingly accurate results from such a simple
"back-of-the-envelope" calculation might well seem to
call for an explanation. The key is that the dominant
contribution to the A, integral in Eq. (7) comes from
values of r between 0 and a few tenths of an a.u. , where
the actual V(r) E is ext—remely well represented by our
approximation

1 1 r———+ 1 ——AE, ,r ri r;
(35)

which also correctly tends to 0 as r~r, . This approxi-
mation is relatively less accurate for r between a few
tenths of an a.u. and r;, but over this region the integrand
is rather small. Thus the region where our approxima-
tion is relatively less accurate contributes relatively little
to the A. integral.

The above analysis should serve to correct the argu-
ment, which widely circulated in the aftermath of the
"cold fusion" announcements, ' that barrier penetration
integrals are primarily determined not by the small-r but
by the large-r behavior of the integrand. According to
this argument, in the WKB approximation (which really
should be modified by the Langer correction),

AwKa: 2&2M f [V(r) E]dr
0

(36)

so with V (r) E= 1/r, —

,=2&2M f0 y
(37)

and I dr r 'i is convergent as r ~0, but divergent for

large r. The last statement is true but not relevant, since
as r ~r; the integrand in (36) tends not to 1/r, ' but to 0,
which greatly reduces the contribution to the integral
from the region where r is a few tenths of an a.u. less than
r, . Using our zeroth-order approximation (15) in Eq.
(36), we obtain

TABLE II. Fusion rates in sec ' for the J=O, v=O state and

the J=O, v=1 state of (dt's)+, as calculated using our Eqs.
(30)—(34) and compared with fusion rates obtained by (i) evalua-

tion of the WKB-Langer A, integral in Eq. (7) using the Born-
Oppenheimer plus adiabatic correction potential, (ii) accurate
numerical solution of the Schrodinger equation using the Born-
Oppenheimer plus adiabatic correction potential, and (iii) solu-

tion of the three-body Schrodinger equation in a large basis.

This work
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1 1
1/2

A. =2&2MWKB
0 r r t

dr =rr+2Mr; . (38)
TABLE III. The contributions to the A, integral in the %KB

approximation for 0 r & r, .

1/2 I /2

To illustrate how much the small-r region and how little
the large-r region contribute to this integral, we show in
Table III the values of the normalized integral

1 r 1 ]2/2M —,—— dr'
m +2Mr, 0 r rl

2 . r=—. arcsin
7T

' 1/2
r r+ —1 ——
r( r)

1/2

(39)

for some representative values of r/r;. One sees the re-
markable fact that the tiny region near the nuclear
coalescence where 0 r/r; 0.01 contributes more to the
integral than the wide region below the turning point
where 0.60~ r/r; ~ 1.00. The inclusion of the linear ap-
proximation (24) to the change in E,(r) would further
reduce the integrand and hence the relative contribution
from the region near the turning point r;. Since M/m is
of the order of 10 or larger, the inclusion of the Langer
correction would leave unchanged the qualitative features
of this analysis.

The predominant contribution of the small-r region to
the A, integral and hence to the fusion rate provides an
understanding of why even for a relatively large value of
m /M such as —„the adiabatic approximation yields such

accurate fusion rates. Nonadiabatic effects are relatively
largest when all three interparticle distances are compa-
rable, and relatively smallest when one interparticle dis-
tance is much less than the other two. Hence the fusion
rate, which is primarily determined by the behavior of
the wave function for very small internuclear distances, is
very well approximated by the adiabatic fusion rate, with
discrepancies of only a few percent for the (00) and (01)
states of (dt's)+ In contra. st, the sticking fractions for
these states are primarily determined by the behavior of
the (dt's)+ wave function where the two nuclei have
coalesced and the muon is also quite close to them, ' so
that the nonadiabatic effects alter these sticking fractions
by about 20%.

In summary, we have developed a simple approxima-
tion, capable of systematic improvement, to the internu-
clear potential, which permits the accurate evaluation of
Coulomb-barrier penetration probabilities and hence of
fusion rates in muon-catalyzed fusion. Even in the least
favorable case of the J=O, v=0 ground state of (dt's)+,
it yields a fusion rate within 25%%uo of more exact values,
and its accuracy improves for states of higher energy.
We expect that it will be useful in a wide variety of cir-
cumstances, including the calculation of fusion rates for
resonant states of (dt's)+. We have shown that the re-
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markable accuracy of our approximation is a conse-
quence of the under-appreciated fact that the predom-
inant contribution to a Coulomb-barrier penetration in-
tegral comes from the small-r region. Moreover, we have
used this fact to answer the long-standing question of
why the adiabatic approximation to fusion rates is so ac-
curate in muon-catalyzed fusion, where the Born-
Oppenheimer parameter a=(m/M)' = —,

' is certainly
not small.

Pote added in proof The fusion. rates for the 3/2+
state of dt's recently calculated by K. Szalewicz et al. ,
Phys. Rev. A 42, 3768 (1990), differ from those in our
Table II because of a factor of —', for spin symmetry and a
slightly different nuclear reaction constant A. Since
these factors are multiplicative, they of course do not
effect any of our relative comparisons.
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