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Experimental and theoretical electric dipole polarizabilities of Al and A12
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The static electric dipole polarizabilities of the aluminum atom and dimer have been measured by
deflecting a molecular beam in an inhomogeneous electric field. Collimated aluminum-cluster

beams are produced by a pulsed laser vaporization source. Deflections are determined by means of
a novel position-sensitive time-of-flight mass spectrometer. The measured polarizabilities are

o 3
6.8+0.3 and 19+2 A for the atom and dimer, respectively, in good agreement with the ah initio cal-
culations presented here. The experimental techniques described here allow precise determination
of the mean deflections and velocities of the particles in the beam and are generally applicable for
beams produced by laser vaporization sources.

I. INTRODUCTION

Molecular-beam measurements of static dipole polari-
zabilities date back more than 50 years and up to now the
polarizabilities have been measured for only a dozen or so
elements. ' The static dipole polarizability of an atom
can be measured by deflecting a highly collimated beam
of particles in an inhomogeneous electric field. In the
standard method the deflections are measured by scan-
ning a slit across the molecular beam and recording the
transmitted intensity as a function of the slit position, so
that a profile of the deflected beam is obtained. This
profile is compared with that obtained for the undeflected
beam and the polarizability is found using the relation-
ship

a =Kv md / F.
dE
dz

where d is the deflection, a the polarizability, U the beam
velocity, dE/dz the component of the field gradient per-
pendicular to the beam, and K a geometrical constant.
Due to the small deflections attainable, it is necessary to
have long beams (on the order of 2 m) for the particles to
be deflected several tenths of a millimeter at the detector.
The beam must be highly collimated and a narrow detec-
tor slit must be used in order to have adequate resolution.
It is clear that intense and stable molecular beams are re-
quired and this is the reason why polarizabilities of so few
elements have been measured.

In this paper we introduce a new method of measuring
deflections based on a position-sensitive time-of-flight
mass spectrometer (PSTOF), to accurately measure
deflections without scanning a slit. The source used is a
modified laser vaporization source (LVS), which pro-
duces intense and stable beams of refractory materials.
Since the I.VS has a lower duty cycle compared to con-
tinuous hot sources, the use of PSTOF makes it possible
to measure the polarizabilities of the aluminum atom, di-
mer, and clusters for the first time. Here we will focus on
the atom and dimer; the cluster results have been dis-

cussed in a previous publication. The paper is organized
as follows: in the next section we will describe the experi-
mental method, followed by the experimental results for
the atom and dimer. In Sec. IV we will present the re-
sults of local-density approximation calculations per-
formed by one of us (I.M. ), followed by a concluding sec-
tion.

II. APPARATUS AND EXPERIMENTAL METHODS
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FIG. 1. Schematic diagram of the apparatus (not to scale).
The distance from the source to the deflecting field is 1.4 m and
from the source to the mass spectrometer is 2.4 m.

A schematic overview of the apparatus is shown in Fig.
1. The cluster beam is produced by an improved pulsed-
laser vaporization source that we briefly describe here.
An aluminum rod is irradiated with the focused light
from the second harmonic of a neodymium-doped yttri-
um aluminum garnet (Nd: YAG) laser (60 mJ/pulse, 10
Hz). A plasma of the metal is formed and then cooled in
a flow of He gas from a pulsed nozzle, which is timed to
coincide with the laser pulse. The inert-gas metal-vapor
mixture is expanded out of a nozzle into a vacuum there-
by producing a supersonic beam of atoms and clusters.

A thin-walled aluminum tube filled with lithium was
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2
m) Up

1 m2 U1
(2)

At = I* t' t' —I t' t'dt, (3)

where t is the time which corresponds with the channel
number in the digital oscilloscope, and I* and I are nor-
malized intensities of the deflected and undeflected peaks.

0.3

0.2

0.1

0.0

where d is the deflection and v is the velocity. We used
the fact that the electric field and the electric-field gra-
dient in (1) are proportional to the potential V, therefore
the deflections are proportional to the square of V. Mea-
surements have been performed for electric-field gra-
dients ranging from 120 to 300 kV/cm . The deflections
are found to be proportional to the square of the applied
voltages, as expected (Fig. 3). Deflections of the beam are
reflected by the variation of the TOF in the position-
sensitive detection mode. The average shift in the TOF
of a mass peak is determined by numerical integration:

As shown in Fig. 3, we find linear dependence between At
and V . The ratio of the slope of the linear fits for lithi-
um and aluminum gives the ratio of the deflections and
hence the ratio of the polarizabilities. The final results of
these measurements, using as calibration the lithium
atom polarizability, are as follows:

a(A1) =6.8+0.3 A',

a(Alq)=19+2 A

(4)

IV. COMPUTATIONAL METHOD
AND THEORETICAL RESULTS

The total energy of the molecules is calculated using
density-functional theory with a local approximation for
the exchange-correlation energy, and takes into account
the spin polarization (LSDA). The molecular orbitals are
expanded on a localized Gaussian basis set including
some d-polarization functions (4s4p2d). We checked
carefully that the calculated molecular properties are well
converged with respect to the basis-set size. To treat the
electron-ion interaction, a norm-conserving ab initio
pseudopotential has been used. Performing all-electron
calculations for the atom, we find that the ionization po-
tential is reproduced within a precision of 0.3%%uo as we use
this pseudopotential.

The method used to calculate the polarizability of the
aluminum atom and dimer has already been applied to
sodium clusters and has been described in detail else-
where. ' The symmetric polarizability tensor is obtained
from the derivative of the induced dipole moment with
respect to the static electric field E

P,„d=aE+O(E ) .
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800 1000 The derivative is calculated numerically from the solu-

tions of the Kohn-Sham equations including the static
electric potential E r. Since the experimental values of
the applied electric field mentioned above are too small to
align the molecule along a preferred direction, the rota-
tionally averaged polarizability has to be compared with
experiment. In the case of the dimer, it is obtained from
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FIG. 3. Electric deflection for atomic Al and Li atom beams
and for Al dimer as a function of the square of the applied
deflection voltage. (a) Al and Li atoms normalized deflections.
(b) Al atom and dimer normalized deflections.

The values used for the electric field are in the range of
5X10 and 5X10 Vm '. They are suSciently small so
that all linear effects are dominant, and large enough to
avoid the numerical noise.

These are essentially three candidates for the ground
state of Al, distinguished by the symmetry of the highest
occupied molecular orbitals: one singlet state 'g+ and
two triplet states H„and g . Experimentally, the
ground state of the dimer has not yet been established
unambiguously. Ginter et al. " find the g state as the
electronic ground state, Douglas et al. ' predicted from
the absorption spectra of Alz that 'g+ is the ground
state. While several theoretical configuration interaction
calculations predict that the singlet state is higher in en-

ergy, ' ' the energy difference between the two triplet
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TABLE I. Experimental and theoretical results for the dimer
0

polarizability. The values of the polarizabilities are given in A .

Theor.
Expt.

a&

~II
CX

o;/2a
&

19.1
23.1

20.4
1.54

16.6
26.3
19.8
1.49

19.0+2.0
1.40+0.21

0.05 0

states is small compared to the numerical precision of ab
initio calculations. ' ' Therefore, we will present the po-
larizability results for the two triplet states of the dimer.

As found in previous calculations, ' we obtain that the
two triplet states of the dimer are almost degenerate, the

state being lower in energy by only 50 meV. We ob-
tain, respectively, 4.66 a.u. and 354 cm ' for the bond
length and vibrational frequency of the gs state, com-
pared to the experimental values of 4.66 a.u. and 350

17
cm ' The good agreement with experiment for the
equilibrium distance strongly indicates that this state is
the experimental ground state.

Our theoretical result for the atomic polarizability is
6.6 A compared to the measured value of 6.8+0.3 A .
The polarizability tensor elements of the two states of the
dimer are presented in Table I and the rotationally aver-
aged polarizability a is compared to the measured values.

V. DISCUSSION AND CONCLUSIONS

The measured and calculated polarizabilities for the
aluminum atom and dimer are in good agreement despite
the approximation made in the calculations. Perhaps the
most striking feature is that the polarizability per atom of
the aluminum dimer is larger than that for the atom.
This should be contrasted with the alkali-metal clusters,
which are well described in the jellium approximation as
alkali-metal clusters, ' where the reverse is the case. %'e

note that aluminum cluster polarizabilities are at odds
with jellium predictions also for clusters up to 40 atoms. '
Moreover, the ionization potential of aluminum clusters
Al„rises steeply for small n, we would then expect that a
rise of the ionization potential connected to a more tight-
ly bound molecule corresponds to a decrease of the polar-
izability per atom, as it does for the alkalies.

Investigating the charge displacement occurring in the
dimer as we apply the electric field, an interesting proper-
ty is observed. Figure 4 shows the polarization charge of
the theoretical ground state of Al2 defined by

FIG. 4, Difference charge density Ap as defined in the text
for the theoretical ground state ('g ) of Alz. The electric field

is applied along the molecular axis. Shaded areas correspond to
an electron depletion. Solid circles indicate the extension of the
atomic cores. The spacing between contour lines is 0.05e
(a.u. )

' per unit of electric field.

p(r) —
p '(r)

IEI

where p(r) is the total charge density of the molecule.
We note an inversion of the polarization between the
bonding region and the periphery of the molecule. This
inversion does not take place in systems with lower elec-
tronic valency, such as alkali-metal dimers. '

In conclusion, we have presented a method to accu-
rately measure polarizabilities of refractory metals using
a novel position-sensitive TOF spectrometer. The
method is generally applicable for beams produced by a
laser vaporization source. This will facilitate molecular
beam polarizability measurements over a wide range of
materials, notably those which previously were not exper-
imentally accessible. Experimental results and calcula-
tions emphasize that assumptions more realistic than a
spherical droplet have to be used to model the response
to a static electric field of the aluminum atom and dimer.
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