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We present accurate calculations of the 1s22s and 1s22p energy levels of lithiumlike ions for
15<2Z <92. The multiconfiguration Dirac-Fock method has been used to calculate relativistic
effects. One-electron radiative corrections and estimated screening corrections have been calculat-
ed. These results are in good agreement with relativistic many-body calculations. General agree-
ment with experimental transition energies (available up to Z=92) is very good.

I. INTRODUCTION

With the increasing availability of very precise high-Z
data for transition energies in a few-electron ions, it has
become increasingly interesting to undertake fully relativ-
istic calculations. Testing quantum electrodynamics in
those systems is of particular interest since they are very
often more accessible to experiments than corresponding
one-electron ions. The study of bound many-electron sys-
tems in a relativistic model is still a challenge since such a
problem lacks a simple exact Hamiltonian form. One has
then to deal with many difficulties superimposed on the
usual problem of computing correlation effects, and to
take care of radiative corrections. In the past few years
several works have succeeded in improving the precision
of transition energies in two-electron!~® and three-
electron ions.>’ In previous work we have used the
multiconfiguration Dirac-Fock (MCDF) method for com-
puting transition energies in two-electron ions. We have
also proposed a semiclassical approximation for the two-
electron self-energy correction (screening of the self-
energy). These two method together have produced re-
sults in good agreement with all available experimental
values for 10=Z <92, for both 2p-1s and 2p-2s transi-
tions. In this paper we have extended those calculations
to the three lowest levels of lithiumlike ions with
15=Z =92. We devote the second section of this paper
to a description of the calculation. In the third section
we compare our results with the relativistic many-body
perturbation theory (RMBPT) of Refs. 6 and 7. In the
fourth, we compare them with experimental values. The
fifth section is our conclusion.

II. DESCRIPTION OF THE CALCULATION

A. Uncorrelated energy

The MCDF method®’ is the relativistic equivalent of
the multiconfiguration Hartree-Fock method (MCHF)—
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see, for example, Ref. 10—the wave function being ex-
panded as a sum of Slater determinants of four-
component Dirac spinors. Our effective Hamiltonian is
identical with the one discussed in Ref. 2. The nucleus is
represented by a Fermi distribution of the nuclear charge.
All calculations were done using experimental values for
the nuclear radius, when available, and a semiempirical
formula'! otherwise. The effective electron-electron in-
teraction operator is based on the one-photon exchange
approximation, deduced from the Feynman diagram in
Fig. 1(a). This operator is gauge dependent, and in a non-
local approximation like the MCDF method, the contri-
bution to the energy is also gauge dependent.'?> It has
been shown theoretically,’*~'° and confirmed by compar-
ison with experimental data in two-electron systems,16
that the Coulomb gauge must be used to avoid the ap-
pearance of a spurious contribution in the one-photon ex-
change approximation. Here we will distinguish the usu-
al three parts in the electron-electron interaction, i.e, the
Coulomb, magnetic, and retardation interactions. The
three corresponding diagrams are represented in Figs.
1(b), 1(c), and 1(d), respectively. The expression for the
operator representing the interaction between electrons i
and j in the Coulomb gauge is
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FIG. 1. Feynman diagrams for the electron-electron interac-
tion.
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the two electrons, r, rij is the interelectronic distance, and
a, are the Dirac matrices. The operators g;°", g}**%, and
g,‘}e’ are, respectively, the Coulomb, magnetic, and retar-
dation operators.

Our zeroth-order energy is computed using the
Coulomb operator and a single configuration in the ex-
pansion of the wave function, leading to the Coulomb
contribution. The resulting single-configuration wave
function is used to obtain the magnetic contribution and
the retarded contribution in first order.

For completeness, we have used the reduced Rydberg
constant for all states, and corrected the 2p states for
mass polarization, using the Hughes-Eckhart!” formula.
The values of the fundamental constants are those of the
1986 adjustment.!® To convert our values from eV to A
one should use C=12398.4244 eV A, and to cm™ !,
C’'=8065.5410 cm " !/eV. The fine-structure constant is
taken to be a=1/137.0359 895 and the conversion from
atomic unit to eV is done using 1 hartree=27.2113961
eV.

B. Electron correlation

To get accurate values of the energy, it is mandatory to
go beyond the one-particle approximation presented in
Sec. IT A. Following the method described in Ref. 2, we
have computed the energies of 1s%2s and 1s%2p levels in
lithiumlike ions, including all significant configurations
involving the n =3 shell for both core and outer elec-
trons. To get the best result we did all our calculation in
the optimized level (OL) scheme where the radial wave
functions are optimized separately for each level. The
three-electron problem in the relativistic case is much
more complicated than the two-electron one. The num-
ber of jj configurations to get reasonable precision is far
larger (53 for the 1s?2p; ,,, see Table I) than for helium-
like systems (9 for 1s?), and one has to be careful in the
evaluation of the 2p,,,-2p;,, fine-structure splitting. In
nonrelativistic calculations both levels will have the same
correlation energy. In relativistic MCDF calculations,
since the 2p,,, and 2p,,, radial wave functions are ad-
justed independently in the self-consistent process, and
because of the different possible couplings for certain
configurations such as 2p°, the correlation energies need
not be the same for /=1 and % in the nonrelativistic lim-
it.! This will remain true even for a calculation with an

z

FIG. 2. Comparison between nonrelativistic electrostatic
correlation energies, MCDF correlation, and RMBPT correla-
tion (Ref. 7) for the 2p, ,,-2s transition.

infinite basis set. This spurious contribution to the fine-
structure splitting is computed by taking the limit a=0
in the MCDF code. The nonzero value obtained in this
limit is then subtracted from the MCDF value.

To compensate for the finite number of configurations
in our basis set we proceed as follows: As the correlation
energies can be expanded in a double series in 1/Z and
Za,”® and the nonrelativistic (NR) correlation energy can
be written as

AENR

corr

AE0+AEIZ+AE2 +AE;—+ -, ()

Z3
we have used the exact nonrelativistic calculation of
Horak et al?!' for the AE, term and fitted the much
smaller contribution of the higher-order terms to the
nonrelativistic limit of our MCDF calculation (i.e., the
one with the fine-structure constant set to 0). Our final
correlation correction to the level energy is then this non-
relativistic correlation energy and the relativistic one
defined by AEMCPF —AEMCHF where MCHF refers to
the nonrelativistic limit of MCDF. The resulting electro-
static correlation energies for the 2p, ,-2s, 2p;,,-2s, and

2p,y,5-2p ,» transitions are plotted in Figs. 2-4 and com-
2P3/2-284/2
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FIG. 3. Comparison between nonrelativistic electrostatic
correlation energies, MCDF correlation, and RMBPT correla-
tion (Ref. 7) for 2p; /,-2s transition.
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FIG. 4. Comparison between MCDF and RMBPT (Ref. 7)
correlation energies for 2p; ,-2p, ,, splitting.

pared with results from Ref. 7. As in the heliumlike case
for which the relativistic contribution to electrostatic
correlation energy was maximum for the 1s2p P, level,
the 1s22p, ,, level is most affected in lithiumlike ions be-
cause of the s character of the small component of the
D1, orbital.

An even more delicate task is to account for many-
body effects in the magnetic and retarded interaction. As
pointed out by several authors (see, for example, Refs. 2,
22, and 23), it is probably legitimate to include the mag-
netic operator in the self-consistent-field (SCF) process to
get a more accurate magnetic contribution. However,
this was shown only for single-configuration calculations.
In this work we did not perform such a calculation for all
Z, because of serious problems in reaching convergence
for this operator with large basis sets at high Z. It would
have also required an unacceptable amount of computer
time, because of the large number of magnetic integrals
involved in the calculation (about 10 times more than
Coulomb integrals).
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FIG. 5. Feynman diagrams for the ladder approximation.

Expanding the basis set with the Coulomb interaction
in the SCF process amounts to including more and more
of the Coulomb “ladder approximation” diagrams in the
calculation. The diagrams corresponding to the ladder
approximation draw their name from their characteristic
shape [Fig. 5(a)]. If we could do the same calculation
with the magnetic interaction in the SCF process, that
would include the ladder approximation with all com-
binations of several instantaneous Coulomb and trans-
verse photons [Figs. 5(b) and 5(c)]. A more limited ap-
proximation we have used consists in using the (pure
Coulomb) MCDF wave functions to compute the expec-
tation value of the magnetic operator [Eq. 1(c)]. Here we
are only including diagrams in which there is one instan-
taneous transverse photon and any number (within our
basis-set size) of Coulomb photons [Fig. 5(b)]. This is the
leading effect, and higher-order effects will show up only

TABLE 1. List of the configurations included in the calculation of the correlation energy.

Configurations for the Number Configurations for the Number Configurations for the Number
15225 level (LS) of jj 1s%2p, ,, level (LS) of jj 1522p3,, level (LS) of jj
configurations configurations configurations

1s22s 1 1s%2p 1 1s%2p 1
2s2p? 3 2p° 1 2p° 3
2s53s? 1 2p2s? 1 2p2s? 1
1s2p? 3 2p3s? 1 2p3s? 1
1s2s3s 2 2p3p? 6 2p3p? 8
2523s 1 2p?3p 6 2p*3p 8
1s2p3p 6 1s2p2s 3 1s2p2s 3
2s3p? 3 1s2s3p 3 1s2s3p 3
253d? 3 1s2p3d 4 1s2p3d 7
15352 1 2p3d? 7 2p3d? 11
1s3p? 3 1s3p3d 4 1s3p3d 7
1s3p? 3

Total number (jj) 30 37 53
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for the highest Z. Using a restricted number of
configurations with the magnetic interaction in the SCF
process we can estimate the order of magnitude of these
contributions to be of a few tenths of an eV for Z =92.

The case of the retarded interaction is even more intri-
cate. Equation (1d) is a compact reduction of a complex
operator!* involving exponential functions of the one-
electron Hamiltonian. This compact reduction can be
performed only if single-electron energies can be defined
as for the independent-particle approximation or for
Hartree-Fock wave functions with the help of the
Koopman’s theorem. To compute many-body effects the
full operator should be used, a difficult task that has not
yet been done. Thus to obtain an order of magnitude of
the uncertainty arising from the neglect of many-body
effects we have nevertheless used Eq. (1d) with the o;;
defined with the help of diagonal Lagrange multipliers
(i.e., the Lagrange parameters introduced to ensure nor-
malization of the one-electron orbitals).

C. QED corrections

Once the correlation is taken into account, one has to
include radiative corrections. Vacuum polarization po-
tentials of order a(Za) (Uehling contribution), a*(Za)
(Killén and Sabry contribution), and a(Za)? are used to
provide screened vacuum polarization corrections. The
Feynman diagrams corresponding to these three poten-
tials are represented in Fig. 6. The Uehling potential
arises from the diagram with one interaction with the nu-
clear potential, the a(Za)® potential has three interac-
tions with the nuclear potential. They represent the two
lowest orders of the expansion in power of Za of the
first-order vacuum polarization (Fig. 6, top). The Kallén
and Sabry potential (Fig. 6, bottom) is the leading term of
the diagrams of order a®. These corrections are evalu-
ated using first-order perturbation theory with Dirac-
Fock wave functions. The use of Dirac-Fock wave func-
tions rather than hydrogenic ones should account for
most of the screening of the vacuum polarization, and it
also takes care of the finite-nuclear-size correction by us-
ing the correct expressions for the Uehling and Kaillén
and Sabry potential.>* For very high Z the modification
of the Uehling potential due to the presence of other elec-
trons could play a significant role and should be investi-
gated further.

Unfortunately there is no potential for the self-energy
correction and one has to find other ways to estimate the
self-energy screening. In this calculation we have includ-
ed the hydrogenic self-energy*>~?’ corrected for finite nu-
clear size.!! The approximation for self-energy screening
described in Ref. 3 has been extended to the three-
electron case. This method used an effective potential to
correct the lowest-order part in Za of the one-electron
self-energy for two-electron effects, by correcting for the
changes in the electronic density at the nucleus. This po-
tential can be derived for example, by using Welton’s
semiclassical arguments. It has been shown by Dupont-
Roc, Fabre, and Cohen-Tannoud;ji?® that for self-energy,
the effective Hamiltonian provided by Welton semiclassi-
cal arguments gives the proper nonrelativistic limit. Very
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recently Feldman and Fulton® have derived this effective
potential by considering low-order diagrams derived from
QED. While such a justification increases the interest of
this method, it remains that only the lowest-order term in
Za is taken into account and that higher-order terms
may have a sizable contribution for high-Z-like uranium.

For s electrons this method leads to a screening correc-
tion

SEm — (ns|AUy|ns ) pg
SE (HSIAUN[YIS >hyd

where the subscripts DF and hyd stand for Dirac-Fock
or hydrogenlike wave functions, respectively, Uy is the
nuclear potential, and E gé‘f,,s the one-particle self-energy
from Refs. 25-27 corrected for finite-nuclear size
effects.!! For p,d, ..., electrons, the above correction,
which is proportional to the square of the wave function
at the origin cancels, and the g —2 (also called vertex
correction) diagram provides the leading screening
correction

EQ 3)

spuzi_ \nl231BaElnl23)p
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where E is the nuclear electric field.

One also can get a mean-field estimate for the self-
energy correction to the electron-electron interaction by
replacing Uy by the Dirac-Fock potential in Eq. (3).
Yet one has to be careful that only pairs of electrons in
singlet states contribute to the self-energy correction to
the electron-electron interaction. Therefore we have ex-
panded the three-electron Slater determinant as the sum
of three two-electron determinants multiplied by a one-
electron wave function and have kept only singlet terms

in the sum.

FIG. 6. Feynman diagrams for the vacuum polarization. X
represents interaction with the nucleus. Top: first-order vacu-
um polarization and its expansion in powers of Za, i.e., in num-
ber of interactions with the nucleus. Bottom: first order in Za
of the second-order vacuum polarization (Kallén and Sabry con-
tribution).

Egé(,inl 23 4)
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TABLE II. Contributions to the 1522s energy for Z =15,54,92 in units of eV. Each individual con-
tribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical accu-

racy only.
z 15 54 92

Coulomb —6499.455 —91536.069 —295163.435
Magnetic 1.256 65.254 368.581
Retardation (order w? —0.012 —0.756 —4.915
Higher-order retardation (> «?) 0.000 0.048 0.645
Mass polarization 0.000 0.000 0.000
Electrostatic correlation (NR) —1.429 —1.451 —1.454
Electrostatic correlation (Rel) —0.001 —0.026 —0.239
Magnetic correlation —0.087 —1.245 —3.601
Hydrogenlike self-energy 1.382 109.683 771.570
Self-energy screening —0.077 —1.971 —10.757
Self-energy screening (e~ —e ™) —0.003 —0.034 —0.063
Vacuum polarization [Uehling, a(Za)] —0.084 —15.423 —202.073
Vacuum polarization a(Za)? 0.000 0.346 9.815
Vacuum polarization [Killén and Sabry, a*(Za)] —0.001 —0.122 —1.547
Total energy —6498.510 —91381.765 —294237.473
Retardation correlation 0.021 0.317 1.115

D. Results

The results obtained in the three preceding subsections
are shown in Tables II-VII. In Tables II-V we present
individual values of terms described previously for
Z =15, 54, and 92 to show their relative variations. The
successive entries are, respectively, the following.

(i) Coulomb: the single configuration eigenvalue of the
Dirac-Fock equation with the Coulomb operator, Eq.
(1b) for the electron-electron interaction as described in
Sec. II B.

(i) Magnetic: the contribution of the magnetic opera-
tor, Eq. (1c) in the first order of perturbation, as de-
scribed in Sec. IT A.

(iii) Retardation (order w?): the retardation contribu-
tion in first order, limited to the w? term in the expansion
of the cosine in Eq. (1d).

(iv) Higher-order retardation (>®?): the remaining
terms in the expansion of the cosine in Eq. (1d).

(v) Mass polarization: the mass polarization as de-
scribed in Sec. IT A.

TABLE III. Contributions to the 1s°2p J =1 energy for Z=15,54,92 in units of eV. Each individu-
al contribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical

accuracy only.

VA 15 54 92
Coulomb —6473.524 —91415.397 —294 876.002
Magnetic 1.358 72.295 410.555
Retardation (order ?) —0.034 —2.010 —10.096
Higher-order retardation (> w?) 0.000 —0.031 0.288
Mass polarization —0.006 —0.024 —0.039
Electrostatic correlation (NR) —1.558 —1.595 —1.601
Electrostatic correlation (Rel) —0.005 —0.101 —0.552
Magnetic correlation —0.086 —1.179 —3.289
Hydrogenlike self-energy 1.293 102.049 715.856
Self-energy screening —0.060 —1.551 —9.007
Self-energy screening (e~ —e ™) —0.002 —0.032 —0.059
Vacuum polarization [Uehling, a(Za)] —0.079 —14.497 —188.764
Vacuum polarization a(Za)? 0.000 0.327 9.252
Vacuum polarization [Killén and Sabry, a?(Za)] —0.001 —0.115 —1.447
Total energy —6472.704 —91261.863 —293954.905
Retardation correlation 0.022 0.324 1.038
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TABLE IV. Contributions to the 1s?2p J= 3 energy for Z=15,54,92 in units of eV. Each individu-
al contribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical

accuracy only.

z 15 54 92
Coulomb —6472.045 —91036.827 —290647.640
Magnetic 1.262 65.726 364.664
Retardation (order w? —0.034 —2.017 —10.258
Higher-order retardation (> w?) —0.001 —0.432 —6.344
Mass polarization —0.006 —0.024 —0.039
Electrostatic correlation (NR) —1.558 —1.595 —1.601
Electrostatic correlation (Rel) 0.001 0.007 —0.117
Magnetic correlation —0.086 —1.237 —3.596
Hydrogenlike self-energy 1.298 102.702 715.293
Self-energy screening —0.062 —1.577 —8.306
Self-energy screening (e —e ™) —0.002 —0.032 —0.056
Vacuum polarization [Uehling, a(Za)] —0.079 —14.462 —186.342
Vacuum polarization a(Za)? 0.000 0.326 9.105
Vacuum polarization [Killén and Sabry, a*(Za)] —0.001 —0.115 —1.428
Total energy —6471.313 —90 889.557 —298776.663
Retardation correlation 0.020 0.323 1.113

TABLE V: Total energy for the 15225 level with main contributions (eV): Coulomb includes mass polarization, Breit is the sum of
the magnetic and retarded contributions, Corr is the sum of electrostatic and magnetic correlation energies, and QED is the sum of
one-particle self-energy, self-energy screening, and the three contributions to vacuum polarization. Number of decimal figures corre-
sponds to numerical accuracy only.

V4 Coulomb Breit Corr. QED Total

15 —6499.455 1.244 —1.517 1.218 —6498.510
16 —7426.492 1.518 —1.532 1.526 —7424.980
17 —8416.016 1.830 —1.547 1.884 —8313.849
18 —9468.193 2.183 —1.563 2.297 —9465.277
19 —10583.176 2.578 —1.580 2.768 —10579.410
20 —11761.182 3.018 —1.597 3.303 —11756.458
22 —14307.084 4.045 —1.634 4.579 — 14 300.095
24 —17107.621 5.284 —1.675 6.159 —17097.852
26 —20164.750 6.755 —1.718 8.080 —20151.633
28 —23480.627 8.481 —1.765 10.377 —23463.535
29 —25236.332 9.446 —1.790 11.678 —25216.999
30 —27057.616 10.482 —1.816 13.087 —27035.862
32 —30898.300 12.781 —1.871 16.249 —30871.141
34 —35005.465 15.399 —1.929 19.900 —34972.094
36 —39382.151 18.361 —1.991 24.079 —39341.702
40 —48957.532 25.407 —2.126 34.184 —48900.066
42 —54163.534 29.541 —2.199 40.194 —54095.998
45 —62506.979 36.576 —2.316 50.526 —62422.193
47 —68432.134 41.861 —2.400 58.361 —68334.312
50 —77876.352 50.749 —2.532 71.645 —77756.489
54 —91536.069 64.547 —2.722 92.479 —91381.765
60 —114415.077 89.923 —3.037 131.300 —114196.891
65 —135796.011 115.946 —3.325 171.610 —135511.779
70 —159427.722 147.047 —3.635 220.281 —159064.028
74 —180063.053 176.041 —3.897 266.019 — 179 624.889
75 —185475.485 183.915 —3.965 278.498 —185017.037
80 —214138.007 227.345 —4.316 347.562 —213567.416
82 —226 388.507 246.761 —4.464 378.560 —225767.651
83 —232690.036 256.937 —4.540 394.822 —232042.817
85 —245658.477 278.274 —4.696 428.962 —244955.938
90 —280331.304 337.800 —S5.115 524.388 —279474.231
92 —295163.435 364.312 —5.295 566.945 —294237.473
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TABLE VI. Total energy for the 1s°2p J =1 level with main contributions (eV): Coulomb includes mass polarization, Breit is the

sum of the magnetic and retarded contributions, Corr. is the sum of electrostatic and magnetic correlation energies, and QED is the
sum of one-particle self-energy, self-energy screening, and the three contributions to vacuum polarization. Number of decimal figures

corresponds to numerical accuracy only.

z Coulomb Breit Corr. QED Total

15 —6473.530 1.324 —1.649 1.151 —6472.704
16 —7398.560 1.619 —1.665 1.440 —7397.166
17 —8386.066 1.955 —1.682 1.777 —8384.016
18 —9436.214 2.334 —1.700 2.165 —9433.414
19 —10549.157 2.760 —1.718 2.608 —10545.507
20 —11725.109 3.236 —1.737 3.109 —11720.501
22 —14266.862 4.345 —1.776 4.306 —14259.987
24 —17063.187 5.685 —1.819 5.787 —17053.533
26 —20116.036 7.279 —1.865 7.585 —20103.036
28 —23427.555 9.150 —1.914 9.734 —23410.585
29 —25181.049 10.196 —1.940 10.951 —25161.842
30 —27000.100 11.321 —1.967 12.252 —26978.495
32 —30836.249 13.817 —2.023 15.222 —30809.233
34 —34938.777 16.662 —2.083 18.631 —34905.566
36 —39310.718 19.882 —2.146 22.531 —39270.451
40 —48876.242 27.550 —2.283 31.953 —48819.022
42 —54077.117 32.052 —2.357 37.553 — 54 009.869
45 —62412.591 39.719 —2.474 47.173 —62328.174
47 —68332.229 45.482 —2.557 54.464 —68234.840
50 —77767.844 55.182 —2.688 66.819 —77648.531
54 —91415.421 70.253 —2.875 86.180 —91261.863
60 —114274.535 98.010 —3.183 122.223 —114057.485
65 —135637.185 126.522 —3.462 159.615 —135354.511
70 —159248.823 160.654 —3.765 204.734 —158 887.200
74 — 179 866.741 192.529 —4.024 247.115 —179431.121
75 —185274.570 201.193 —4.091 258.675 —184818.794
80 —213913.150 249.053 —4.445 322.645 —213345.896
82 —226153.519 270.486 —4.595 351.351 —225536.277
83 —232449.920 281.729 —4.672 366.411 —231806.452
85 —245407.958 305.322 —4.831 398.025 —244709.442
90 —280054.352 371.294 —5.257 486.405 —279201.911
92 —294876.041 400.747 —5.442 525.831 —293954.905

(vi) Electrostatic correlation (NR): the corrected
MCHF electrostatic correlation energy from Eq. (2).

(vii) Electrostatic correlation (Rel): the difference
AEMCPF _ AEMCHF 55 described in Sec. II B.

(viii) Magnetic correlation: the difference of the mean
value of the magnetic operator, Eq. (1¢) with correlated
or uncorrelated Coulomb wave functions.

(ix) Hydrogenlike self-energy: the one-electron self-
energy from Refs. 25-27 corrected for finite nuclear size.

(x) Self-energy screening: the sum of the screening con-
tributions from Egs. (3) and (4).

(xi) Self-energy screening (e~ —e ™ ): the self-energy
correction to the electron-electron interaction as de-
scribed in Sec. II C.

(xii) Vacuum polarization [Uehling, a(Za)]: the mean
value of the Uehling potential, corrected for finite nuclear
size, with Dirac-Fock wave function.

(xiii) Vacuum polarization a(Za)*: the mean value of
the Wichmann and Kroll potential,®® with Dirac-Fock
wave function.

(xiv) Vacuum polarization [Killén and Sabry, a*(Za)]:

the mean value of the Kalléen and Sabry potential with
Dirac-Fock wave function.

(xv) Total transition energy: the sum of all the previ-
ous contributions.

(xvi) Retardation correlation: the contribution to the
uncertainty in the calculation resulting from the neglect
of many-body effects on the retarded operator.

Our calculations of the three vacuum polarization con-
tributions (xii)—(xiv) have been checked by computing hy-
drogenlike values with finite nucleus for several values of
the atomic number Z and comparing them to values from
Refs. 11 and 31.

In Tables V-VII we present values of the total level
energy for 1s22s, 1s?2p,,,, and 1s*2p;,, for all Z for
which we have performed calculations. In these tables
the first column (Coulomb) is the sum of contributions (i)
and (v), the second (Breit) is the sum of contributions (ii),
(iii), and (iv), the third is the sum of all correlation contri-
butions (vi), (vii), and (viii), the fourth is the sum of all
QED contributions (ix)—-(xiv) and the last one (total) is
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TABLE VII. Total energy for the 1s22p J = 3 level with main contributions (eV): Coulomb includes mass polarization, Breit is the

2

sum of the magnetic and retarded contributions, Corr. is the sum of electrostatic and magnetic correlation energies, and QED is the
sum of one-particle self-energy, self-energy screening and, the three contributions to vacuum polarization. Number of decimal figures

corresponds to numerical accuracy only.

V4 Coulomb Breit Corr. QED Total

15 —6472.051 1.227 —1.643 1.154 —6471.313
16 —7396.585 1.498 —1.658 1.445 —7395.300
17 —8383.478 1.807 —1.674 1.783 —8381.563
18 —9432.881 2.155 —1.691 2.172 —9430.245
19 —10544.929 2.546 —1.708 2.617 —10541.474
20 —11719.815 2.981 —1.725 3.122 —11715.437
22 —14258.841 3.996 —1.763 4.325 —14252.283
24 —17051.494 5.220 —1.803 5.814 —17042.263
26 —20099.523 6.673 —1.846 7.623 —20087.073
28 —23404.851 8.377 —1.893 9.786 —23388.581
29 —25154.658 9.329 —1.917 11.010 —25136.236
30 —26969.585 10.351 —1.943 12.336 —26948.840
32 —30796.029 12.617 —1.996 15.310 —30770.098
34 —34 886.665 15.197 —2.053 18.743 —34854.777
36 —39244.198 18.112 —2.113 22.671 —39205.528
40 —48771.922 25.037 —2.245 32.165 —48716.965
42 —53948.604 29.093 —2.317 37.809 —53884.018
45 —62239.922 35.986 —2.431 47.508 —62 158.860
47 —68 124.152 41.156 —2.512 54.858 —68030.650
50 —77496.335 49.836 —2.641 67.317 —77381.823
54 —91036.851 63.276 —2.825 86.842 —90 889.557
60 —113675.647 87.894 —3.129 123.185 —113467.696
65 —134785.401 113.017 —3.406 160.875 —134514914
70 —158063.940 142.896 —3.706 206.324 —157718.427
74 — 178 344.363 170.620 —3.963 248.976 —177928.730
75 —183656.414 178.127 —4.029 260.603 —183221.713
80 —211736.830 219.392 —4.376 324.883 —211196.931
82 —223712.285 237.762 —4.521 353.690 —223125.354
83 —229866.201 247.371 —4.595 368.795 —229254.630
85 —242517.634 267.481 —4.747 400.482 —241854.418
90 —276255.049 323.316 —5.146 488.903 —275447.976
92 —290647.679 348.063 —5.314 528.267 —289776.663

the total level energy. All values in Tables II-VII are
computed using nuclear radii from Ref. 11.

E. Error estimates

We shall not discuss in this section the numerical accu-
racy of the MCDF method that is easy to keep under
control by varying self-consistency criteria, mesh size,
and so on. This numerical error amounts to less than
0.003 eV for all the results presented here. The main
source of uncertainty arises from the truncation in the
basis-set expansion and is much more difficult to assess.
In a recent paper Parpia and Grant®’ proposed a new
method to extrapolate the MCDF calculation for the 1s?
level of heliumlike ions to infinite basis sets. This method
also provides error estimates. Yet their method is
difficult to generalize to three-electron systems. In the
heliumlike ground-state case, each new orbital contrib-
utes only to one configuration, while in the lithiumlike
case each new orbital contributes to several kinds of
configurations, i.e., to different kinds of correlation. Be-

sides, one needs to have several orbitals of the same sym-
metry to extrapolate to higher principal quantum number
n. That means that one must have already all orbitals up
to n =6 converged, to extrapolate meaningfully d, f, and
g orbital contributions. Achieving convergence for the
two-electron system in the optimized level mode for the
n =4 shell, as in Ref. 32, is very difficult. In the three-
electron case we would not reach convergence with an or-
bital of n > 3.

We then used a different approach. Since Lindgren®
(using the pair-equation technique) was able to compute
results equivalent to an infinite basis MCHF calculation
for Z =3, we compared our MCHF results from Eq. (2)
with Lindgren’s ones, to get an overestimate of the error
by assuming that it can be reduced to the inaccuracy in
the AE | coefficient only. We get an error estimate for the
nonrelativistic contribution to electrostatic correlation of
0.232/Z eV for the ground state and of 0.325/Z eV for
the two first excited states, resulting in an uncertainty of
0.093/Z eV for the transition energies.

For most heavy elements one of the main sources of
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uncertainly is due to uncertainty in the nuclear radius.
The uncertainties listed in Ref. 11 for the finite-nuclear-
size correction provide good estimates for this uncertain-
ty. We do not have at this time a procedure to estimate
uncertainty due to uncalculated terms or due to the use
of a finite basis set on relativistic and magnetic correla-
tions. From extrapolation of the results we have at low Z
(see Sec. II B) with self-consistent magnetic interaction,
we can conclude that for Z =92 we should have an un-
certainty of 0.5 eV on the 2p, ,,-2s transition. The uncal-
culated many-body effects on the retarded interaction
contribute by 0.1 eV to this uncertainty (see last line of
Tables IT-11I).

From a comparison between theory and experiment for
Z <54, in two- and three-electron systems we have found
our screening correction to the self-energy to be accurate
to within 10%. This should lead to a 20% accuracy (0.3
eV) around Z =92 where higher-order terms account for
up to 50% of the self-energy.

III. COMPARISON OF THEORETICAL RESULTS

Comparison of our results with those of Ref. 7 can be
made in detail. But we must rely on differences between
level energies, since the contributions listed in Ref. 7 are
relative to a common 1s? core, while our MCDF calcula-
tion gives the absolute level energy. The energy as de-
scribed in Ref. 7 is obtained by the relativistic many-body

perturbation theory (RMBPT). Using Ref. 7 no-
tation, the RMBPT total energy is a sum
E=(E,+E,+E,+E;+ - )+(B,+B,+ ---) where

Eis the Dirac-Fock Coulomb energy with a frozen core;
E,, the first-order correlation, is strictly 0; and B; is the
Breit contribution to the ith order. In this con-
text the electrostatic correlation will be
(Eq+E,+E,+E;—Epg) and the magnetic correlation
(including retardation) will be (B;+B,—Bpg), DF
denoting self-configuration Dirac-Fock energies. The
comparisons of our nonrelativistic electrostatic correla-
tion energies and the RMBPT results for the 2s-2p and
2p,,,-2p;, differences are presented in Figs. 2-4. The
deviation between the two calculations at low Z comes
from imprecision in the AE, >, coefficients [Eq. (2)] from
our MCHF method. This effect decreases like 1/Z and
becomes negligible for heavy ions. The relativistic contri-
butions to electrostatic correlation are in good agreement
between the two methods, except for the transition
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FIG. 7. Comparison between MCDF total energy (without
radiative corrections) and RMBPT total energies for 2p,,,-2s
transition, 2p; ,-2s transition, and 2p; ,,-2p, ,, splitting.

2p1,-2s,,, in uranium. The expected behavior for the
relativistic contribution to the electrostatic correlation
energy is Z2. Our MCDF results for the transition
2p,,,-28,,, behaves exactly as expected, while results
from Ref. 7 do not. This could be due to higher-order
effects not included in our calculation, or to numerical
inaccuracy in the RMBPT calculation at high Z.

Finally, we have plotted in Fig. 7 the differences be-
tween the total energies from the two calculations. These
differences are easily traced from differences in Breit
correlations: The MCDF calculation does not include
terms corresponding to the exchange of several, instan-
taneous transverse photons in the ladder approximation,
while the RMBPT calculation includes those terms to
third order (i.e., up to three exchanged photons). Both
calculations lacks ‘“box diagrams’ contributions, where
one photon line crosses the others (in the ladder approxi-
mation all photon lines are parallel). The second-order
box diagram is expected to be of the order of few 0.1 eV.
As experimental results with accuracies of 0.1 eV are now
available,** the calculation of those terms becomes a
great challenge. It also becomes important to go beyond
the ladder approximation to match such experimental ac-
curacies. At that level of accuracy, nuclear structure also
become an issue. For very heavy elements the nuclear-
size correction has to be included very carefully. We
have recomputed our uranium transition energies with a
more realistic nuclear model. Following Blundell, John-

TABLE VIII. Transition energies in lithiumlike uranium using deformed charge distribution (Ref.
36). Main contributions (eV) are the following: Coulomb, which includes mass polarization and
Coulomb correlation energy; Breit, which is the sum of the magnetic, retarded, and magnetic correla-
tion energies; and QED, which is the sum of one-particle self-energy, self-energy screening, and the
three contributions to vacuum polarization. The nuclear polarization for the 2s is estimated as % of the

1s value from Plunien et al. (Ref. 37).

Coulomb with Nuclear Total Total
Transition correlations Breit QED polarization  (this work) (Ref. 35)
2py,—2s 286.038 36.756  —41.100 —0.126 281.6+0.9 281.0231+0.6
2p3,,—2s 4514.730 —16.192  —38.662 —0.126 4459.8 4459.38
2p3,,—2p1 2 4228.692 —52.948 2.438 0.000 4178.2 4178.36
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son, and Sapirstein,35 we have used a deformed Fermi

change distribution for the 2**U nucleus. The parameters
of this distribution have been measured very accurately
by studying muonic x-rays for uranium.’® Since the
ground state of 2**U has J =0, we take the spherical aver-
age of the charge distribution. We also include approxi-
mate nuclear polarization correction to the self-energy.’’
Those results are presented in Table VIII. Error esti-
mates in Table VIII take into account neither the missing
box diagram contributions nor the uncertainties in the
nuclear polarization.

IV. COMPARISONS WITH EXPERIMENT

It is impossible to compare directly the RMBPT re-
sults of Ref. 7 with experiment since they do not include
radiative corrections. We have then arbitrarily decided
to add to them hydrogenic radiative corrections and
screening corrections estimated in Sec. IIC. Another
possible choice would have been to not include the
screening corrections. Still this would have prevented a
meaningful comparison, giving a difference between
theory and experiment about 10 times larger than when
the screening correction is included. This is a good hint
that our method of approximation provides a good esti-
mate of this screening correction in the low- to medium-
Z range. For this comparison we have used recent data
from Tokamak experiments*®*0 for 22<Z <42. The
2p,,,-2s and 2p,,,-2s transition energies in xenon have
been obtained in a beam-foil spectroscopy experiment at
GANIL (France).*! We have also included the recently
published preliminary value for the 2p,,,-2s transition
energy in uranium.’® Comparison between theory and
experiment for the 2p, ,-2s transition is shown in Fig. 8.
Both calculations agree very well with experiment, with
possible discrepancies less than 2X107% Z* eV up to
Z =54 for the MCDF calculation. The 2p;,-2s transi-
tion energy (Fig. 9) and the 2p;,,-2p,,, energy separa-
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FIG. 8. Comparison between theory and experiment for
2py,,-2s transition. For Z =92 error bars represent quadratic
combination of experimental and theoretical error bars. The
RMBPT value is from Ref. 35. For all other elements error
bars represent experimental contributions only.
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FIG. 9. Comparison between theory and experiment for
2p;,,-2s transition. Error bars represent experimental contribu-
tions only.

tions (Fig. 10) are also very well represented by both
theoretical predictions. The 2p;,,-2p,,, separation for
Z =54 has also been measured at GANIL by comparing
several n =3 to n =2 transitions observed with an x-ray
spectrometer.42

From all three figures it is obvious that the RMBPT
provide a better description of the low-Z behavior, be-
cause of the higher precision in the calculation of the
nonrelativistic part of the electrostatic correlation. The
difference is consistent with the error estimate presented
in Sec. I E. The three figures also show that our method
for evaluating radiative corrections is efficient and does
not lead to errors much larger than the present experi-
mental uncertainties. The fluctuations of the data around
the theoretical values correspond to experimental irregu-
larities larger than the published uncertainties.
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T T T T
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FIG. 10. Comparison between theory and experiment for
2p;3,2-2py,, splitting. Error bars represent experimental contri-
butions only.
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V. CONCLUSION

In this paper we have presented in detail theoretical
transition energies in three-electron ions computed using
the MCDF method. We have shown that, although
many-electron QED corrections are still far from being
computed from first principles, both MCDF and RMBPT
methods (if corrected the self-energy screening with the
approximation we have used), which are completely ab
initio, can reproduce well all experimental data. In this
respect both methods are very successful. The slightly
better agreement of the RMBPT value (with semiempiri-
cal screening correction) with the recent 2p, ,-2s experi-
mental transition energy in uranium>* is due to the better
treatment of the magnetic correlation by that method
compared to the present MCDF result.

The MCDF method usually provides easily 85% of the
correlation energy. Beyond that, although one can reach
in principle any precision by extending the basis set
enough, it may be so cumbersome to do in practice (con-
vergence problems, excessive computer time, etc.) that
one has to stop below the precision one is hoping to get.
This method also lacks a true many-body expression for
the retarded part of the electron-electron interaction. To
have more precise values for heavy elements it would be
interesting to redo the MCDF calculations, including the

5149

magnetic interaction in the self-consistent-field process.
Numerical problems have prevented us from doing so for
large enough basis sets.
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