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We present accurate calculations of the 1s 2s and 1s 2p energy levels of lithiumlike ions for
15 2Z 92. The multiconfiguration Dirac-Fock method has been used to calculate relativistic
effects. One-electron radiative corrections and estimated screening corrections have been calculat-
ed. These results are in good agreement with relativistic many-body calculations. General agree-
ment with experimental transition energies (available up to Z=92) is very good.

I. INTRODUCTION

With the increasing availability of very precise high-Z
data for transition energies in a few-electron ions, it has
become increasingly interesting to undertake fully relativ-
istic calculations. Testing quantum electrodynamics in
those systems is of particular interest since they are very
often more accessible to experiments than corresponding
one-electron ions. The study of bound many-electron sys-
terns in a relativistic model is still a challenge since such a
problem lacks a simple exact Hamiltonian form. One has
then to deal with many difficulties superimposed on the
usual problem of computing correlation effects, and to
take care of radiative corrections. In the past few years
several works have succeeded in improving the precision
of transition energies in two-electron' and three-
electron ions. ' In previous work we have used the
multiconfiguration Dirac-Fock (MCDF) method for com-
puting transition energies in two-electron ions. We have
also proposed a semiclassical approximation for the two-
electron self-energy correction (screening of the self-
energy). These two method together have produced re-
sults in good agreement with all available experimental
values for 10~Z ~92, for both 2p-1s and 2p-2s transi-
tions. In this paper we have extended those calculations
to the three lowest levels of lithiumlike ions with
15 Z 92. We devote the second section of this paper
to a description of the calculation. In the third section
we compare our results with the relativistic many-body
perturbation theory (RMBPT) of Refs. 6 and 7. In the
fourth, we compare them with experimental values. The
fifth section is our conclusion.

see, for example, Ref. 10—the wave function being ex-
panded as a sum of Slater determinants of four-
component Dirac spinors. Our effective Hamiltonian is
identical with the one discussed in Ref. 2. The nucleus is
represented by a Fermi distribution of the nuclear charge.
All calculations were done using experimental values for
the nuclear radius, when available, and a semiempirical
formula" otherwise. The effective electron-electron in-
teraction operator is based on the one-photon exchange
approximation, deduced from the Feynman diagram in
Fig. 1(a). This operator is gauge dependent, and in a non-
local approximation like the MCDF method, the contri-
bution to the energy is also gauge dependent. ' It has
been shown theoretically, ' ' and confirmed by compar-
ison with experimental data in two-electron systems, '

that the Coulomb gauge must be used to avoid the ap-
pearance of a spurious contribution in the one-photon ex-
change approximation. Here we will distinguish the usu-
al three parts in the electron-electron interaction, i.e, the
Coulomb, magnetic, and retardation interactions. The
three corresponding diagrams are represented in Figs.
1(b), 1(c), and 1(d), respectively. The expression for the
operator representing the interaction between electrons i
and j in the Coulomb gauge is

II. DESCRIPTION OF THE CALCULATION

A. Uncorrelated energy
(a) (b) (c) (d)

The MCDF method ' is the relativistic equivalent of
the multiconfiguration Hartree-Fock method (MCHF)—

FIG. 1. Feynman diagrams for the electron-electron interac-
tion.
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where co; is the energy of the photon exchanged between
the two electrons, r,. is the interelectronic distance, and

a, are the Dirac matrices. The operators g; '"', g;. 'I, and

g, ." are, respectively, the Coulomb, magnetic, and retar-
dation operators.

Our zeroth-order energy is computed using the
Coulomb operator and a single configuration in the ex-
pansion of the wave function, leading to the Coulomb
contribution. The resulting single-configuration wave
function is used to obtain the magnetic contribution and
the retarded contribution in first order.

For completeness, we have used the reduced Rydberg
constant for all states, and corrected the 2p states for
mass polarization, using the Hughes-Eckhart' formula.
The values of the fundamental constants are those of the
1986 adjustment. ' To convert our values from eV to A
one should use C = 12 398.4244 eV A, and to cm
C'=8065. 5410 cm '/eV. The fine-structure constant is
taken to be a= 1/137.0359895 and the conversion from
atomic unit to eV is done using 1 hartree=27. 2113961
eV.

B. Electron correlation

To get accurate values of the energy, it is mandatory to
go beyond the one-particle approximation presented in
Sec. II A. Following the method described in Ref. 2, we
have computed the energies of 1s 2s and 1s 2p levels in
lithiumlike ions, including all significant configurations
involving the n =3 shell for both core and outer elec-
trons. To get the best result we did all our calculation in
the optimized level (OL) scheme where the radial wave
functions are optimized separately for each level. The
three-electron problem in the relativistic case is much
more complicated than the two-electron one. The num-
ber of jj configurations to get reasonable precision is far
larger (53 for the ls 2p3&2, see Table I) than for helium-

like systems (9 for ls ), and one has to be careful in the
evaluation of the 2p»2-2p3/2 fine-structure splitting. In
nonrelativistie calculations both levels will have the same
correlation energy. In relativistic MCDF calculations,
since the 2pl/2 and 2p3/2 radial wave functions are ad-

justed independently in the self-consistent process, and
because of the di8'erent possible couplings for certain
configurations such as 2p, the correlation energies need
not be the same for J=

—,
' and —,

' in the nonrelativistic lim-

it. ' This will remain true even for a calculation with an
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FIG. 2. Comparison between nonrelativistic electrostatic
correlation energies, MCDF correlation, and RMBPT correla-
tion (Ref. 7) for the 2p, /2-2s transition.

infinite basis set. This spurious contribution to the fine-

structure splitting is computed by taking the limit a=0
in the MCDF code. The nonzero value obtained in this
limit is then subtracted from the MCDF value.

To compensate for the finite number of configurations
in our basis set we proceed as follows: As the correlation
energies can be expanded in a double series in 1/Z and

Za, 2o and the nonrelativistic (NR) correlation energy can
be written as
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FIG. 3. Comparison between nonrelativistic electrostatic
correlation energies, MCDF correlation, and RMBPT correla-
tion (Ref. 7) for 2p3/2 2s transition.

AE„„„=AEO+bE,—+EE2 +bE3 +, (2)'z' 'z'
we have used the exact nonrelativistic calculation of
Horak et al. ' for the LEO term and fitted the much

smaller contribution of the higher-order terms to the
nonrelativistic limit of our MCDF calculation (i.e., the
one with the fine-structure constant set to 0). Our final

correlation correction to the level energy is then this non-
relativistic correlation energy and the relativistic one
defined by EEc, "—AEcor, where MCHF refers to
the nonrelativistic limit of MCDF. The resulting electro-
static correlation energies for the 2p, &2-2s, 2p3&2-2s, and

2p3/2 2p, &2 transitions are plotted in Figs. 2-4 and corn-

2P3/2 2s1/2
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FIG. 4. Comparison between MCDF and RMBPT (Ref. 7)
correlation energies for 2p3/p 2p &/& splitting.

(c) + i ~ ~

pared with results from Ref. 7. As in the heliumlike case
for which the relativistic contribution to electrostatic
correlation energy was maximum for the 1s2p Po level,
the 1s 2p»z level is most affected in lithiumlike ions be-
cause of the s character of the small component of the

p )/q orbital.
An even more delicate task is to account for many-

body effects in the magnetic and retarded interaction. As
pointed out by several authors (see, for example, Refs. 2,
22, and 23), it is probably legitimate to include the mag-
netic operator in the self-consistent-field (SCF) process to
get a more accurate magnetic contribution. However,
this was shown only for single-configuration calculations.
In this work we did not perform such a calculation for all

Z, because of serious problems in reaching convergence
for this operator with large basis sets at high Z. It would
have also required an unacceptable amount of computer
time, because of the large number of magnetic integrals
involved in the calculation (about 10 times more than
Coulomb integrals).

FIG. S. Feynman diagrams for the ladder approximation.

Expanding the basis set with the Coulomb interaction
in the SCF process amounts to including more and more
of the Coulomb "ladder approximation" diagrams in the
calculation. The diagrams corresponding to the ladder
approximation draw their name from their characteristic
shape [Fig. 5(a)]. If we could do the same calculation
with the magnetic interaction in the SCF process, that
would include the ladder approximation with all com-
binations of several instantaneous Coulomb and trans-
verse photons [Figs. 5(b) and 5(c)]. A more limited ap-
proximation we have used consists in using the (pure
Coulomb) MCDF wave functions to compute the expec-
tation value of the magnetic operator [Eq. 1(c)]. Here we
are only including diagrams in which there is one instan-
taneous transverse photon and any number (within our
basis-set size) of Coulomb photons [Fig. 5(b)]. This is the
leading effect, and higher-order effects will show up only

TABLE I. List of the configurations included in the calculation of the correlation energy.

Configurations for the Number Configurations for the Number Configurations for the Number
1s'2s level (LS) of jj 1$'Zp&/& level (LS) of jj 1$'2p3/p level (LS) of jj

configurations configurations configurations

1s 2s
2$ 2p
2$ 3$

1s2p
1s2s 3s
2$ 3$

1s2p 3p
2$ 3p
2$ 3d
1$3$~

1s3p
1s3p

Total number (jj) 30

1s 2p
2p

2p 2$

2p 3$

2p 3p
2p 3p
1s2p2s
1s2s 3p
1s2p 3d
2p 3d
1s3p 3d

37

1s 2p
2p
2p 2$

2p 3$

2p 3p
2p 3p
1s2p 2s
1s2s 3p
1s2p 3d
2p 3d
1s3p3d

1

3
1

1

8
8
3
3
7
11
7

53
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for the highest Z. Using a restricted number of
configurations with the magnetic interaction in the SCF
process we can estimate the order of magnitude of these
contributions to be of a few tenths of an eV for Z =92.

The case of the retarded interaction is even more intri-
cate. Equation (ld) is a compact reduction of a complex
operator' involving exponential functions of the one-
electron Hamiltonian. This compact reduction can be
performed only if single-electron energies can be defined
as for the independent-particle approximation or for
Hartree-Fock wave functions with the help of the
Koopman's theorem. To compute many-body effects the
full operator should be used, a difficult task that has not
yet been done. Thus to obtain an order of magnitude of
the uncertainty arising from the neglect of many-body
effects we have nevertheless used Eq. (ld) with the co;J
defined with the help of diagonal Lagrange multipliers
(i.e., the Lagrange parameters introduced to ensure nor-
malization of the one-electron orbitals).

C. QED corrections

Once the correlation is taken into account, one has to
include radiative corrections. Vacuum polarization po-
tentials of order a(Za) (Uehling contribution), a (Za)
(Kallen and Sabry contribution), and a(Za) are used to
provide screened vacuum polarization corrections. The
Feynman diagrams corresponding to these three poten-
tials are represented in Fig. 6. The Uehling potential
arises from the diagram with one interaction with the nu-
clear potential, the u(Za) potential has three interac-
tions with the nuclear potential. They represent the two
lowest orders of the expansion in power of Za of the
first-order vacuum polarization (Fig. 6, top). The Kallen
and Sabry potential (Fig. 6, bottom) is the leading term of
the diagrams of order a . These corrections are evalu-
ated using first-order perturbation theory with Dirac-
Fock wave functions. The use of Dirac-Fock wave func-
tions rather than hydrogenic ones should account for
most of the screening of the vacuum polarization, and it
also takes care of the finite-nuclear-size correction by us-
ing the correct expressions for the Uehling and Kallen
and Sabry potential. For very high Z the modification
of the Uehling potential due to the presence of other elec-
trons could play a significant role and should be investi-
gated further.

Unfortunately there is no potential for the self-energy
correction and one has to find other ways to estimate the
self-energy screening. In this calculation we have includ-
ed the hydrogenic self-energy corrected for finite nu-
clear size. " The approximation for self-energy screening
described in Ref. 3 has been extended to the three-
electron case. This method used an effective potential to
correct the lowest-order part in Za of the one-electron
self-energy for two-electron effects, by correcting for the
changes in the electronic density at the nucleus. This po-
tential can be derived for example, by using %'elton's
semiclassical arguments. It has been shown by Dupont-
Roc, Fabre, and Cohen-Tannoudji that for self energy, -

the effective Hamiltonian provided by Welton semiclassi-
cal arguments gives the proper nonrelativistic limit. Very

recently Feldman and Fulton have derived this effective
potential by considering low-order diagrams derived from
QED. While such a justification increases the interest of
this method, it remains that only the lowest-order term in
Za is taken into account and that higher-order terms
may have a sizable contribution for high-Z-like uranium.

For s electrons this method leads to a screening correc-
tion

( sihU ins)
„

&EsE —
(„~~U~, )

Esk",- (3)

where the subscripts DF and hyd stand for Dirac-Fock
or hydrogenlike wave functions, respectively, Uz is the
nuclear potential, and Es~g„, the one-particle self-energy
from Refs. 25-27 corrected for finite-nuclear size
effects. " For p, d, . . . , electrons, the above correction,
which is proportional to the square of the wave function
at the origin cancels, and the g —2 (also called vertex
correction) diagram provides the leading screening
correction

(nl ~ 3~Pa E~nl ~ 3)DF
(nl ~3~Pa E~nl

where E is the nuclear electric field.
One also can get a mean-field estimate for the self-

energy correction to the electron-electron interaction by
replacing U~ by the Dirac-Fock potential in Eq. (3).
Yet one has to be careful that only pairs of electrons in
singlet states contribute to the self-energy correction to
the electron-electron interaction. Therefore we have ex-
panded the three-electron Slater determinant as the sum
of three two-electron determinants multiplied by a one-
electron wave function and have kept only singlet terms
in the sum.

FIG. 6. Feynman diagrams for the vacuum polarization. X
represents interaction with the nucleus. Top: first-order vacu-
um polarization and its expansion in powers of Za, i.e., in num-

ber of interactions with the nucleus. Bottom: first order in Za
of the second-order vacuum polarization (Kallen and Sabry con-
tribution).
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TABLE II. Contributions to the 1s 2s energy for 2 =15,54, 92 in units of eV. Each individual con-
tribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical accu-

racy only.

Coulomb
Magnetic
Retardation (order co')

Higher-order retardation ( ) co )

Mass polarization
Electrostatic correlation (NR)
Electrostatic correlation (Rel)
Magnetic correlation
Hydrogenlike self-energy
Self-energy screening
Self-energy screening (e —e )

Vacuum polarization [Uehling, a(Za)]
Vacuum polarization a(Za)
Vacuum polarization [Kallen and Sabry, a'(Za)]

15

—6499.455
1.256

—0.012
0.000
0.000

—1.429
—0.001
—0.087

1.382
—0.077
—0.003
—0.084

0.000
—0.001

—91 536.069
65.254

—0.756
0.048
0.000

—1.451
—0.026
—1.245
109.683
—1.971
—0.034

—15.423
0.346

—0.122

92

—295 163.435
368.581
—4.915

0.645
0.000

—1.454
—0.239
—3.601
771.570

—10.757
—0.063

—202.073
9.815

—1.547

Total energy

Retardation correlation 0.021 0.317

—6498.510 —91 381.765 —294 237.473

1.115

D. Results

The results obtained in the three preceding subsections
are shown in Tables II—VII. In Tables II—V we present
individual values of terms described previously for
Z =15, 54, and 92 to show their relative variations. The
successive entries are, respectively, the following.

(i) Coulomb: the single configuration eigenvalue of the
Dirac-Fock equation with the Coulomb operator, Eq.
(lb) for the electron-electron interaction as described in

Sec. II B.

(ii) Magnetic: the contribution of the magnetic opera-
tor, Eq. (lc) in the first order of perturbation, as de-
scribed in Sec. II A.

(iii) Retardation (order co ): the retardation contribu-
tion in first order, limited to the co term in the expansion
of the cosine in Eq. ( 1d).

(iv) Higher-order retardation ()co ): the remaining
terms in the expansion of the cosine in Eq. (ld).

(v) Mass polarization: the mass polarization as de-
scribed in Sec. II A.

TABLE III. Contributions to the 1s'2p J =
—,
' energy for Z =15,54, 92 in units of eV. Each individu-

al contribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical
accuracy only.

Z

Coulomb
Magnetic
Retardation (order co )

Higher-order retardation ( )co')

Mass polarization
Electrostatic correlation (NR)
Electrostatic correlation (Rel)
Magnetic correlation
Hydrogenlike self-energy
Self-energy screening
Self-energy screening (e —e )

Vacuum polarization [Uehling, a(Za)]
Vacuum polarization u(Za)'
Vacuum polarization [Kallen and Sabry, n (Za)]

Total energy

Retardation correlation

15

—6473.524
1.358

—0.034
0.000

—0.006
—1 ~ 558
—0.005
—0.086

1.293
—0.060
—0.002
—0.079

0.000
—0.001

—6472.704

0.022

54

—91 415.397
72.295

—2.010
—0.031
—0.024
—1 ~ 595
—0.101
—1.179
102.049
—1.551
—0.032

—14.497
0.327

—0.115

—91 261.863

0.324

92

—294 876.002
410.555

—10.096
0.288

—0.039
—1.601
—0.552
—3.289
715.856
—9.007
—0.059

—188.764
9.252

—1.447

—293 954.905

1.038
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TABLE IV. Contributions to the ls 2p J= —' energy for Z = 15,54, 92 in units of eV. Each individu-

al contribution is corrected for finite nuclear size. Number of decimal figures corresponds to numerical

accuracy only.

Z

Coulomb
Magnetic
Retardation (order co')

Higher-order retardation ( & co')

Mass polarization
Electrostatic correlation (NR)
Electrostatic correlation (Rel)
Magnetic correlation
Hydrogenlike self-energy
Self-energy screening
Self-energy screening (e —e )

Vacuum polarization [Uehling, a(Za)]
Vacuum polarization a(Za)'
Vacuum polarization [Kallen and Sabry, a'(Za)]

15

—6472.045
1.262

—0.034
—0.001
—0.006
—1.558

0.001
—0.086

1.298
—0.062
—0.002
—0.079

0.000
—0.001

54

—91 036.827
65.726

—2.017
—0.432
—0.024
—1.595

0.007
—1.237
102.702
—1.577
—0.032

—14.462

0.326
—0.115

92

—290 647.640
364.664

—10.258
—6.344
—0.039
—1.601
—0.117
—3.596
715.293
—8.306
—0.056

—186.342

9.105
—1.428

Total energy

Retardation correlation 0.020 0.323 1.113

—6471.313 —90 889.557 —298 776.663

TABLE V: Total energy for the 1s 2s level with main contributions (eV): Coulomb includes mass polarization, Breit is the sum of
the magnetic and retarded contributions, Corr is the sum of electrostatic and magnetic correlation energies, and QED is the sum of
one-particle self-energy, self-energy screening, and the three contributions to vacuum polarization. Number of decimal figures corre-
sponds to numerical accuracy only.

Z

15
16
17
18
19
20
22
24
26
28
29
30
32
34
36
40
42
45
47
50
54
60
65

74
75
80
82
83
85
90
92

Coulomb

—6499.455
—7426.492
—8416.016
—9468.193

—10 583.176
—11 761.182
—14 307.084
—17 107.621
—20 164.750
—23 480.627
—25 236.332
—27 057.616
—30 898.300
—35 005.465
—39 382.151
—48 957.532
—54 163.534
—62 506.979
—68 432.134
—77 876.352
—91 536.069

—114415.077
—135 796.011
—159427.722
—180063.053
—185 475.485
—214 138.007
—226 388.507
—232 690.036
—245 658.477
—280 331.304
—295 163.435

Breit

1.244
1.518
1.830
2.183
2.578
3.018
4.045
5.284
6.755
8.481
9.446

10.482
12.781
15.399
18.361
25.407
29.541
36.576
41.861
50.749
64.547
89.923

115.946
147.047
176.041
183.915
227.345
246.761
256.937
278.274
337.800
364.312

Corr.

—1.517
—1.532
—1.547
—1.563
—1.580
—1.597
—1.634
—1.675
—1.718
—1.765
—1.790
—1.816
—1.871
—1.929
—1.991
—2.126
—2.199
—2.316
—2.400
—2.532
—2.722
—3.037
—3.325
—3.635
—3.897
—3.965
—4.316
—4.464
—4.540
—4.696
—5.115
—5.295

QED

1.218
1.526
1.884
2.297
2.768
3.303
4.579
6.159
8.080

10.377
11.678
13.087
16.249
19.900
24.079
34.184
40.194
50.526
58.361
71.645
92.479

131.300
171.610
220.281
266.019
278.498
347.562
378.560
394.822
428.962
524.388
566.945

Total

—6498.510
—7424.980
—8313.849
—9465.277

—10 579.410
—11 756.458
—14 300.095
—17 097.852
—20 151.633
—23 463.535
—25 216.999
—27 035.862
—30 871.141
—34 972.094
—39 341.702
—48 900.066
—54 095.998
—62 422. 193
—68 334.312
—77 756.489
—91 381.765

—114 196.891
—135 511.779
—159064.028
—179624.889
—185 017.037
—213 567.416
—225 767.651
—232 042.817
—244 955.938
—279 474.231
—294 237.473
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TABLE VI. Total energy for the 1s'2p J= —,
' level with main contributions (eV): Coulomb includes mass polarization, Breit is the

sum of the magnetic and retarded contributions, Corr. is the sum of electrostatic and magnetic correlation energies, and QED is the
sum of one-particle self-energy, self-energy screening, and the three contributions to vacuum polarization. Number of decimal figures
corresponds to numerical accuracy only.

Z

15
16
17
18
19
20 '

22
24
26
28
29
30
32
34
36
40
42
45
47
50
54
60
65
70
74
75
80
82
83
85
90
92

Coulomb

—6473.530
—7398.560
—8386.066
—9436.214

—10 549.157
—11 725.109
—14 266.862
—17 063.187
—20 116.036
—23 427.555
—25 181.049
—27 000.100
—30 836.249
—34 938.777
—39 310.718
—48 876.242
—54 077.117
—62 412.591
—68 332.229
—77 767.844
—91 415.421

—114274.535
—135 637.185
—159 248.823
—179 866.741
—185 274.570
—213 913.150
—226 153.519
—232 449.920
—245 407.958
—280 054.352
—294 876.041

Breit

1.324
1.619
1.955
2.334
2.760
3.236
4.345
5.685
7.279
9.150

10.196
11.321
13.817
16.662
19.882
27.550
32.052
39.719
45.482
55.182
70.253
98.010

126.522
160.654
192.529
201.193
249.053
270.486
281.729
305.322
371.294
400.747

Corr.

—1.649
—1.665
—1.682
—1.700
—1.718
—1.737
—1.776
—1.819
—1.865
—1.914
—1.940
—1.967
—2.023
—2.083
—2.146
—2.283
—2.357
—2.474
—2.557
—2.688
—2.875
—3.183
—3.462
—3.765
—4.024
—4.091
—4.445
—4.595
—4.672
—4.831
—5.257
—5.442

QED

1.151
1.440
1.777
2.165
2.608
3.109
4.306
5.787
7.585
9.734

10.951
12.252
15.222
18.631
22.531
31.953
37.553
47.173
54.464
66.819
86.180

122.223
159.615
204.734
247. 115
258.675
322.645
351.351
366.411
398.025
486.405
525.831

Total

—6472.704
—7397.166
—8384.016
—9433.414

—10 545.507
—11 720.501
—14 259.987
—17 053.533
—20 103.036
—23 410.585
—25 161.842
—26 978.495
—30 809.233
—34 905.566
—39 270.451
—48 819.022
—54 009.869
—62 328.174
—68 234.840
—77 648.531
—91 261.863

—114057.485
—135 354.511
—158 887.200
—179431.121
—184 818.794
—213 345.896
—225 536.277
—231 806.452
—244 709.442
—279 201.911
—293 954.905

(vi) Electrostatic correlation (NR): the corrected
MCHF electrostatic correlation energy from Eq. (2).

(vii) Electrostatic correlation (Rel): the difference
AEc„,"—EEC„,"as described in Sec. II B.

(viii) Magnetic correlation: the difference of the mean
value of the magnetic operator, Eq. (lc) with correlated
or uncorrelated Coulomb wave functions.

(ix) Hydrogenlike self-energy: the one-electron self-
energy from Refs. 25 —27 corrected for finite nuclear size.

(x) Self-energy screening: the sum of the screening con-
tributions from Eqs. (3) and (4).

(xi) Self-energy screening (e —e ): the self-energy
correction to the electron-electron interaction as de-
scribed in Sec. II C.

(xii) Vacuum polarization [Uehling, a(Za)]: the mean
value of the Uehling potential, corrected for finite nuclear
size, with Dirac-Fock wave function.

(xiii) Vacuum polarization a(Za): the mean value of
the %i.chrnann and Kroll potential, with Dirac-Fock
wave function.

(xiv) Vacuum polarization [Kallen and Sabry, a (Za)]:

the mean value of the Kallen and Sabry potential with
Dirac-Fock wave function.

(xv) Total transition energy: the sum of all the previ-
ous contributions.

(xvi) Retardation correlation: the contribution to the
uncertainty in the calculation resulting from the neglect
of many-body e6'ects on the retarded operator.

Our calculations of the three vacuum polarization con-
tributions (xii)—(xiv) have been checked by computing hy-
drogenlike values with finite nucleus for several values of
the atomic number Z and comparing them to values from
Refs. 11 and 31.

In Tables V —VII we present values of the total level
energy for 1s 2s, 1s 2p&&2, and 1s 2p3/2 for all Z for
which we have performed calculations. In these tables
the first column (Coulomb) is the sum of contributions (i)
and (v), the second (Breit) is the sum of contributions (ii),
(iii), and (iv), the third is the sum of all correlation contri-
butions (vi), (vii), and (viii), the fourth is the sum of all
QED contributions (ix) —(xiv) and the last one (total) is
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TABLE VII. Total energy for the 1s'2p J= —level with main contributions (eV): Coulomb includes mass polarization, Breit is the

sum of the magnetic and retarded contributions, Corr. is the sum of electrostatic and magnetic correlation energies, and QED is the

sum of one-particle self-energy, self-energy screening and, the three contributions to vacuum polarization. Number of decimal figures

corresponds to numerical accuracy only.

15
16
17
18
19
20
22
24
26
28
29
30
32
34
36
40
42
45
47
50
54
60
65
70
74
75
80
82
83
85
90
92

Coulomb

—6472.051
—7396.585
—8383.478
—9432.881

—10 544.929
—11 719.815
—14 258.841
—17 051.494
—20 099.523
—23 404.851
—25 154.658
—26 969.585
—30 796.029
—34 886.665
—39 244. 198
—48 771.922
—53 948.604
—62 239.922
—68 124.152
—77 496.335
—91 036.851

—113675.647
—134 785.401
—158 063.940
—178 344.363
—183 656.414
—211 736.830
—223 712.285
—229 866.201
—242 517.634
—276 255.049
—290 647.679

Breit

1.227
1.498
1.807
2.155
2.546
2.981
3.996
5.220
6.673
8.377
9.329

10.351
12.617
15.197
18.112
25.037
29.093
35.986
41.156
49.836
63.276
87.894

113.017
142.896
170.620
178.127
219.392
237.762
247.371
267.481
323.316
348.063

Corr.

—1.643
—1.658
—1.674
—1.691
—1.708
—1.725
—1.763
—1.803
—1.846
—1.893
—1.917
—1.943
—1.996
—2.053
—2.113
—2.245
—2.317
—2.431
—2.512
—2.641
—2.825
—3.129
—3.406
—3.706
—3.963
—4.029
—4.376
—4.521
—4.595
—4.747
—5.146
—5.314

QED

1.154
1.445
1.783
2.172
2.617
3.122
4.325
5.814
7.623
9.786

11.010
12.336
15.310
18.743
22.671
32.165
37.809
47.508
54.858
67.317
86.842

123.185
160.875
206.324
248.976
260.603
324.883
353.690
368.795
400.482
488.903
528.267

Total

—6471.313
—7395.300
—8381.563
—9430.245

—10 541.474
—11 715.437
—14 252.283
—17 042.263
—20 087.073
—23 388.581
—25 136.236
—26 948.840
—30 770.098
—34 854.777
—39 205.528
—48 716.965
—53 884.018
—62 158.860
—68 030.650
—77 381.823
—90 889.557

—113467.696
—134 514.914
—157 718.427
—177 928.730
—183 221.713
—211 196.931
—223 125.354
—229 254.630
—241 854.418
—275 447.976
—289 776.663

the total level energy. All values in Tables II-VII are
computed using nuclear radii from Ref. 11.

E. Error estimates

We shall not discuss in this section the numerical accu-
racy of the MCDF method that is easy to keep under
control by varying self-consistency criteria, mesh size,
and so on. This numerical error amounts to less than
0.003 eV for all the results presented here. The main
source of uncertainty arises from the truncation in the
basis-set expansion and is much more difficult to assess.
In a recent paper Parpia and Grant proposed a new
method to extrapolate the MCDF calculation for the 1s
level of heliumlike ions to infinite basis sets. This method
also provides error estimates. Yet their method is
difficult to generalize to three-electron systems. In the
heliumlike ground-state case, each new orbital contrib-
utes only to one configuration, while in the lithiumlike
case each new orbital contributes to several kinds of
configurations, i.e., to different kinds of correlation. Be-

sides, one needs to have several orbitals of the same syrn-
metry to extrapolate to higher principal quantum number
n. That means that one must have already all orbitals up
to n =6 converged, to extrapolate meaningfully d, f, and

g orbital contributions. Achieving convergence for the
two-electron system in the optimized level mode for the
n =4 shell, as in Ref. 32, is very difficult. In the three-
electron case we would not reach convergence with an or-
bital of n )3.

We then used a different approach. Since Lindgren
(using the pair-equation technique) was able to compute
results equivalent to an infinite basis MCHF calculation
for Z =3, we compared our MCHF results from Eq. (2)
with Lindgren's ones, to get an overestimate of the error
by assuming that it can be reduced to the inaccuracy in
the b E& coefficient only. We get an error estimate for the
nonrelativistic contribution to electrostatic correlation of
0.232/Z eV for the ground state and of 0.325/Z eV for
the two first excited states, resulting in an uncertainty of
0.093/Z eV for the transition energies.

For most heavy elements one of the main sources of
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uncertainly is due to uncertainty in the nuclear radius.
The uncertainties listed in Ref. 11 for the finite-nuclear-

size correction provide good estimates for this uncertain-

ty. We do not have at this time a procedure to estimate
uncertainty due to uncalculated terms or due to the use
of a finite basis set on relativistic and magnetic correla-
tions. From extrapolation of the results we have at low Z
(see Sec. IIB) with self-consistent magnetic interaction,
we can conclude that for Z =92 we should have an un-

certainty of 0.5 eV on the 2p&/p 2$ transition. The uncal-

culated many-body effects on the retarded interaction
contribute by 0.1 eV to this uncertainty (see last line of
Tables II—III).

From a comparison between theory and experiment for
Z ~ 54, in two- and three-electron systems we have found
our screening correction to the self-energy to be accurate
to within 10%. This should lead to a 20% accuracy (0.3
eV) around Z =92 where higher-order terms account for
up to 50%%uo of the self-energy.

III. COMPARISON OF THEORETICAL RESULTS

Comparison of our results with those of Ref. 7 can be
made in detail. But we must rely on differences between
level energies, since the contributions listed in Ref. 7 are
relative to a common 1s core, while our MCDF calcula-
tion gives the absolute level energy. The energy as de-
scribed in Ref. 7 is obtained by the relativistic many-body
perturbation theory (RMBPT). Using Ref. 7 no-
tation, the RMBPT total energy is a sum

E =(Eo+E, +E2+E3+ )+(8,+B2+ ) where

Eois the Dirac-Fock Coulomb energy with a frozen core;
E, , the first-order correlation, is strictly 0; and 8; is the
Breit contribution to the ith order. In this con-
text the electrostatic correlation will be
(Eo+E, +Ez+E3 ED„)and t—he magnetic correlation
(including retardation) will be (8, +B2 BD„), DF—
denoting self-configuration Dirac-Fock energies. The
comparisons of our nonrelativistic electrostatic correla-
tion energies and the RMBPT results for the 2s-2p and

2p, /2-2p3/2 differences are presented in Figs. 2—4. The
deviation between the two calculations at low Z comes
from imprecision in the b,E„',coefficients [Eq. (2)] from
our MCHF method. This eff'ect decreases like 1/Z and
becomes negligible for heavy ions. The relativistic contri-
butions to electrostatic correlation are in good agreement
between the two methods, except for the transition

04-)
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CL 0.2—
CQ

0.0—
LL
Ci -02-

LLl

-0.4-

p g/p 2p I/2
2pI/2-2S I/2
2p5/2-2s )/

I

20
I

40
I

60
I

80

FIG. 7. Comparison between MCDF total energy (without
radiative corrections) and RMBPT total energies for 2p»2-2s
transition, 2p3/2 2s transition, and 2p3/2 2p)/2 splitting.

2p&&2-2s, &2 in uranium. The expected behavior for the
relativistic contribution to the electrostatic correlation
energy is Z . Our MCDF results for the transition
2p»z-2S, &z behaves exactly as expected, while results
from Ref. 7 do not. This could be due to higher-order
effects not included in our calculation, or to numerical
inaccuracy in the RMBPT calculation at high Z.

Finally, we have plotted in Fig. 7 the differences be-
tween the total energies from the two calculations. These
differences are easily traced from differences in Breit
correlations: The MCDF calculation does not include
terms corresponding to the exchange of several, instan-
taneous transverse photons in the ladder approximation,
while the RMBPT calculation includes those terms to
third order (i.e., up to three exchanged photons). Both
calculations lacks "box diagrams" contributions, where
one photon line crosses the others (in the ladder approxi-
mation all photon lines are parallel). The second-order
box diagram is expected to be of the order of few 0.1 eV.
As experimental results with accuracies of 0.1 eV are now
available, the calculation of those terms becomes a
great challenge. It also becomes important to go beyond
the ladder approximation to match such experimental ac-
curacies. At that level of accuracy, nuclear structure also
become an issue. For very heavy elements the nuclear-
size correction has to be included very carefully. We
have recomputed our uranium transition energies with a
more realistic nuclear model. Following Blundell, John-

TABLE VIII. Transition energies in lithiumlike uranium using deformed charge distribution (Ref.
36). Main contributions (eV) are the following: Coulomb, which includes mass polarization and
Coulomb correlation energy; Breit, which is the sum of the magnetic, retarded, and magnetic correla-
tion energies; and QED, which is the sum of one-particle self-energy, self-energy screening, and the
three contributions to vacuum polarization. The nuclear polarization for the 2s is estimated as —,

' of the

1s value from Plunien et al. (Ref. 37).

Transition
Coulomb with

correlations Breit QED
Nuclear Total

polarization (this work)
Total

(Ref. 35)

2p, /z
—2s

2p3/2 2s

2p3/2 2p & /z

286.038
4514.730
4228.692

36.756
—16.192
—52.948

—41 ~ 100
—38.662

2.438

—0.126
—0.126

0.000

281.6+0.9 281.023+0.6
4459.8 4459.38
4178.2 4178.36
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son, and Sapirstein, we have used a deformed Fermi
change distribution for the U nucleus. The parameters
of this distribution have been measured very accurately
by studying muonic x-rays for uranium. Since the
ground state of U has J =0, we take the spherical aver-
age of the charge distribution. We also include approxi-
mate nuclear polarization correction to the self-energy.
Those results are presented in Table VIII. Error esti-
mates in Table VIII take into account neither the missing
box diagram contributions nor the uncertainties in the
nuclear polarization.

IV. COMPARISONS WITH EXPERIMENT

x10

)
N

0
Q)

LU

CL
X

LLl

MCDF
4- — — RMBPT

0-

-2-

2P3/2-2S1/2

It is impossible to compare directly the RMBPT re-
sults of Ref. 7 with experiment since they do not include
radiative corrections. We have then arbitrarily decided
to add to them hydrogenic radiative corrections and
screening corrections estimated in Sec. IIC. Another
possible choice would have been to not include the
screening corrections. Still this would have prevented a
meaningful comparison, giving a difference between
theory and experiment about 10 times larger than when
the screening correction is included. This is a good hint
that our method of approximation provides a good esti-
mate of this screening correction in the low- to medium-
Z range. For this comparison we have used recent data
from Tokamak experiments for 22 Z ~ 42. The
2p, /2-2s and 2p3/2 2s transition energies in xenon have
been obtained in a beam-foil spectroscopy experiment at
GANIL (France). ' We have also included the recently
published preliminary value for the 2p»2-2s transition
energy in uranium. Comparison between theory and
experiment for the 2p&/2-2s transition is shown in Fig. 8.
Both calculations agree very well with experiment, with
possible discrepancies less than 2X10 Z eV up to
Z=54 for the MCDF calculation. The 2p3/2 2s transi-
tion energy (Fig. 9) and the 2p3/2 2pt&2 energy separa-
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FIG. 9. Comparison between theory and experiment for
2p3/2 2s transition. Error bars represent experimental contribu-
tions only.

tions (Fig. 10) are also very well represented by both
theoretical predictions. The 2p3/2 2p&/2 separation for
Z =54 has also been measured at GANIL by comparing
several n =3 to n =2 transitions observed with an x-ray
spectrometer.

From all three figures it is obvious that the RMBPT
provide a better description of the low-Z behavior, be-
cause of the higher precision in the calculation of the
nonrelativistic part of the electrostatic correlation. The
difference is consistent with the error estimate presented
in Sec. II E. The three figures also show that our method
for evaluating radiative corrections is efficient and does
not lead to errors much larger than the present experi-
mental uncertainties. The Auctuations of the data around
the theoretical values correspond to experimental irregu-
larities larger than the published uncertainties.
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FIG. 8. Comparison between theory and experiment for

2p&/2-2s transition. For Z=92 error bars represent quadratic
combination of experimental and theoretical error bars. The
RMBPT value is from Ref. 35. For all other elements error
bars represent experimental contributions only.

Z

FIG. 10. Comparison between theory and experiment for
2p3/2 2pi/& splitting. Error bars represent experimental contri-
butions only.
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V. CONCLUSION

In this paper we have presented in detail theoretical
transition energies in three-electron ions computed using
the MCDF method. We have shown that, although
many-electron QED corrections are still far from being
computed from first principles, both MCDF and RMBPT
methods (if corrected the self-energy screening with the
approximation we have used), which are completely ab
initio, can reproduce well all experimental data. In this
respect both methods are very successful. The slightly
better agreement of the RMBPT value (with semiempiri-
cal screening correction) with the recent 2p, r2-2s experi-
mental transition energy in uranium is due to the better
treatment of the magnetic correlation by that method
compared to the present MCDF result.

The MCDF method usually provides easily 85% of the
correlation energy. Beyond that, although one can reach
in principle any precision by extending the basis set
enough, it may be so cumbersome to do in practice (con-
vergence problems, excessive computer time, etc. ) that
one has to stop below the precision one is hoping to get.
This method also lacks a true many-body expression for
the retarded part of the electron-electron interaction. To
have more precise values for heavy elements it would be
interesting to redo the MCDF calculations, including the

magnetic interaction in the self-consistent-field process.
Numerical problems have prevented us from doing so for
large enough basis sets.
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