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Nonadiabatic Berry's phase for a quantum system with a dynamical semisimple Lie group
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The nonadiabatic Berry s phase is investigated for a quantum system with a dynamical semisim-

ple Lie group within the framework of the generalized cranking approach. An expression for nona-

diabatic Berry's phase is given, which indicates that the nonadiabatic Berry's phase is related to the
expectation value of Cartan operators along the cranking direction in group space, and that it de-

pends on (i) the geometry of the group space, (ii) the time evolution ray generated by the Hamiltoni-

an (i.e., by the dynamics) in some irreducible representation Hilbert space, and (iii) the cranking
rate. The expression also provides a simple algorithm for calculating the nonadiabatic Berry's

phase. The general formalism is illustrated by examples of SU(2) dynamic group.

The adiabatic Berry's phase' has been exploited exten-
sively in a great number of theoretical and experimental
articles, and much knowledge and deep insights have
been obtained in this respect. However, although the
nonadiabatic Berry's phase has been addressed by Berry
and several other authors, we do not have the same level
of insight and knowledge as for the adiabatic phase.
Since the nonadiabatic Berry's phase is related to the
dynamical effect on the adiabatic-geometric Berry's
phase, its study depends on specific dynamics, i.e., the
structure of the Hamiltonian. Thus investigation of the
nonadiabatic Berry's phase is more difficult. From our
previous studies, we found that the study of nonadiabati-
city may become easier if a quantum system possesses a

dynamical group. In our previous papers, three types of
systems are investigated: A photon propagating in an op-
tical helix, a spin particle in a rotating magnetic field,
and a rotating deformed nucleus. For all the three sys-
tems, the relevant dynamical group is the SU(2) group,
and the problems are solved by the cranking method,
developed in nuclear physics. Berry's phase is obtained
analytically if the Hamiltonian is a linear function of
SU(2) generators, and can be calculated straightforward-
ly, even though the Hamiltonian is nonlinear in the gen-
erators. It is found that for the SU(2) dynamical group,
Berry's phase is related to the expectation value of spin,
and the nonadiabatic effect on Berry's phase manifests it-
self as spin alignment. In this article, we generalize the
above-noted studies to a quantum system that possesses a
dynamical semisimple Lie group and exploit physical-
geometrical aspects of the nonadiabatic Berry's phase.

Consider a quantum system whose Hamiltonian is a
function of generators of a semisimple Lie group G,

&o=&v(X„)=& (Ho„E ),
where the generators IX„I or IH, ,E ] in the Cartan
form obey standard commutator relations

[H„HJ]=0, i,j =1,2, . . . , 1

[H„E ]=a;E, a=1,2, . . . , n —1,
[E,E ]=a'H, ,

[E,E(3]=N &E +(3 if a+pWO,

(2a)

(2b)

(2c)

(2d)

where I H, ] is the Cartan subalgebra, I E,E ] are rais-
ing and lowering operators, l the rank of the group, and n

the order of the group.
First consider the simplest case where the Hamiltonian

is a linear function of the generators. Generally,

&o=eP X=e+P„X„=e gP E +gP, H,
a

(3a)

where e is an energy constant and p is a vector in group
parameter space,

P=IP„l =tP. P, I

%0 can be rewritten as

.&D=eexp g(z E z*E— ) a H—
a

Xexp +g(z E z*E )—
(3b)

(4)

where

a H=ga, H„+a; =1, glP l +QP, =1,

Now we crank the system through a periodic time-
dependent unitary transformation. The Hamiltonian of
the system then becomes time dependent,

and a, and z (z* ) are functions of p„. Suppose lm ) are
eigenvectors of H,

H
I
m ) =m

I
m &, m =

I m, li = 1, . . . , l
l

.
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%(t)=exp( —in Hoot)&oexp(in Hoot }

=e[P,( t }.E+~tt'H] (7)

We turn to the intrinsic frame through a unitary transfor-
mation,

where

P&(t)= IP exp( in—acct)I, P&&= IP, ],
with

n a =g n; a; =+i nteger .

g(t)=exp( i—n Hoot)g(t) .

(8)
Equation of motion for rt( t) is

i =%(co)g(t ),. Bq(t)

where Routhian operator &(to) is defined as

(12)

Since b X can be considered to be a Cartan operator or a
combination of Cartan operators, exp( in —Htot) is a
general periodic time-dependent transformation in the

group space. Thus the cranked Hamiltonian (7) is a gen-
eral form.

The equation of motion for the cranked system is

&(~)=& —ton H

=e +PE +g P, — n—
, H,

a l

=F(P, E+P„H), (13a)

(10) which can be rewritten as

%(co)=Pe p
—g(z E z'E —

) a Hexp g(z E —z 'E )
a a

(13b)

where a;, z, and z * are functions of P„, and the renor-
malized parameters are

=exp g(z E —z*E ) —~m } . (22b)

(14) Consider solutions in one period T (T=2ttlto). The evo-

lution operator in one period is

2

1 —2 gP;n;—+ — g n;
1

1/2

(15a)

(15b)

U(T)=exp( —in H2n)exp[ i&(co)T—] .

Since

exp( —in H2n. )A(to)exp(in H2n )=&(co),

(23)

(24)

The solutions of Eqs. (10) and (12) are

rt(t) =exp[ i''(to)t]g(—0),
g(t) = U(t)g(0) .

Where the evolution operator is

U(t) =exp( in Htot —)exp[ i&(to)—t ] .

Let us consider the eigenequations of %o and %(co),

~OS m &m%m

&(co)ri =E

with the solutions

(16)

(17)

(18)

(19)

U( T)ri =exp( —i/ )rt (25)

where the total phase P will be given later.
Consider cyclic or recurrent solutions whose initial

states are eigenstates of &(~o),

(0)=g (26)

After one period,

( T) =exp( —in. H2vr)exp[ —i&(cu)T]rt

U(T) and A(co) commute and have common eigenvec-
tors, i.e, ,

e =ra m=e~ a mm (21a) =exp( —iE T i 27m m)g (0) . — (27)

and

=exp —g(z E z*E ) ~m }, —
a

(21b) The total phase is

=E T+2mn. m . (28)

E =ca.m=Fg a, m, , (22a)
The expectation value of &(t) is



42 NONADIABATIC BERRY'S PHASE FOR A QUANTUM SYSTEM. . . 5105

E (t)=&g (t)~&(t)lp (t))

=(s) /&, ivy

=E (co)+co& rt In'Hln

=E (co)+con (m),
where

(29)

which indicates that the magnetic field is in precession
along the z axis with frequency co. The Routhian opera-
tor and its eigensolutions are

%(co)=%0—coJ, =Q.J
=Q exp[ —8(J+ —J )]J,exp[+8(J+ —J )],

(38a)

From Eq. (29) we obtain the dynamical phase

P" = J s (t)dt=E (co)T+2mn (m),
and Berry's phase

(30)

(31}

Q =Q(sin8, 0,cosH ),
=exp( —i8J~) m ),

F. =mQ,

N NQ=Qy, y = 1 —2—cos8+0 0
2 1/2

(38c)

(38d)

(38e)

= —2n.n m(1 —n (m) /n m)

= —2+n m(1 —(rt ~n H~rt )/n m) . (32)

Berry's phase is

= —2m'(1 —(ri ~ J, ~ri ) /m ) (39a)

Equation (32) indicates that Berry's phase is related to
the expectation value of Cartan operators along the
cranking n direction and depends on (i) the geometry of
the group space where the vectors n and m reside, (ii} the
ray or rt generated by the Hamiltonian (dynamics), and
(iii) the cranking rate co. The expression (32) also pro-
vides an algorithm to calculate the nonadiabatic Berry's
phase, since, given an irreducible representation of the
dynamical group, the calculation of eigenvectors g and
expectation value (q ~n H~rt ) is straightforward.

Now consider general cases where the Hamiltonian is a
nonlinear function of the group generators,

= —2m n( 1 —cos8), (39b)

where

cos8=(cos8 —co/Q)/y . (39c)

and

So=(Q J) (40a)

For the nonlinear case, the Hamiltonian is assumed

&0=%0(p E,p;H;) . (33) &(t)=[Q(t) J]', (40b)

After cranking, the Hamiltonian becomes

%(t)=%,(P (t)E,P, H, ) . (34)

The expression (32) of Berry's phase is also applicable for
the nonlinear case. However, the eigensolutions of %(co)
should be obtained by numerical calculation, although it
is straightforward.

In what follows we give examples to illustrate the
above general formalism. Consider the SU(2) dynamical
group, which, as we mentioned before, is of practical and
theoretical interest. For the linear case, the Hamiltonian
is assumed to be

which describes a spin particle in magnetic field, where

&O=Q J=Q exp[ —8(J+ —J )]J,exp[8(J+ —J )],
(35)

which are used to describe nuclear quadrupole reso-
nances. ' The Berry's phase takes the same expression
(39a). However, the eigensolutions of %'(co) should be
calculated numerically.

In conclusion, we have generalized the investigation of
the nonadiabatic Berry's phase of a quantum system with
the SU(2) dynamic group to a quantum system with any
dynamic semisimple Lie group within the framework of
the cranking approach. The nonadiabatic Berry's phase
is given in terms of the expectation value of the Cartan
operators, which provides a simple algorithm to calculate
the nonadiabatic Berry's phase and gives Berry's phase a
physical-geometric explanation, since the expectation
value of Cartan operators in a quantum system has both
physical and geometric meanings. The illustrations of
the SU(2) examples indicate that the above formalism is
useful.

a.H= J, ,

Q=Q(sin8, 0, cos8) .

The cranked Hamiltonian is

&(t)=exp( iJ,cut )&oexp—(iJ,cot ) =Q(t) J,
Q( t ) =Q(sin8 cosset, sin{9 singlet, cos8),

(36a)

(36b)

(37a)

(37b)
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