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Stability of particle trajectories and generalized coherent states
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We show that particle trajectories in the Wilson cloud chamber are straight and stable, using per-
turbation theory and generalized coherent states. The model consists of an incoming particle, many
molecules, and the immediate environment of each molecule acting as a detector. Each such detec-
tor has many harmonic oscillators whose states are totally described by generalized coherent states,
because of which particle trajectories are almost stable. That is, if a molecule is ionized through its
interaction with the particle, the ionized excited state does not return to the lower states. Many
molecules can be ionized when the line joining them is practically parallel to the direction of motion
of the particle. However, when the molecules do not lie on a straight line, all of them cannot be ion-
ized. The particle trajectory that is made up of the ionized molecules, therefore, is straight.

I. INTRODUCTION

In a quantum-measurement process, we know the state
of an object system through its interaction with a detec-
tor. The detector may be described by quantum theory,
so we can treat the total system quantum mechanically,
with one of the characteristic features of quantum theory
being that one must use noncommutative observables in a
Hilbert space to treat quantum Auctuations, unstable ex-
cited states, and quantum jumps between states and other
phenomena. However, the detector must register each
state of the object system by its pointer. Thus the state of
the detector has to be almost stable, i.e., it must behave
like a macroscopic (or classical) object. In classical
theories, we meet with commutative physical quantities
having definite values, whose dynamics are described
with the help of a phase space, the Poisson bracket or a
symplectic form„and a classical Hamiltonian. There are
a large number of differences between these approaches.

Many authors have made efforts to find a link between
the microscopic and macroscopic theories. A wide class
of quantum theories contain some measure of the number
of dynamical variables N (or I /R); these quantum
theories have a sensible large-N limit, in which the dy-
namics become much simpler. ' Coherence groups and
generalized coherent (GC) states play important roles in
this approach. In the large-N limit, the expectation value
of any product of reasonable operators (called classical
operators) satisfies the factorization relation, that is, the
expectation value approaches the product of the expecta-
tions of each operator. As a result, quantum fluctuations
of these operators become irrelevant in this limit. This is
due to the fact that any GC state is almost an eigenstate
of any classical operator, and as a result standard devia-
tions of these operators are almost negligible when X is
very large. Also, the phase space, Poisson bracket, and
classical Hamiltonian from the quantum Hamiltonian

emerge in a natural way in this limit. Moreover, quan-
tum evolutions reduce to classical ones.

We have applied this approach previously to a
quantum-measurement process, and presented several
models in GC-state formalism. ' The detectors in our
formalism are described by GC states, and have many
desirable functions as a measuring apparatus. These
models indicate that the GC-state approach to quantum
measurement can become a powerful method for a unified

description of various measuring processes, in particular
for a macroscopic description of detectors.

The essential features of particle trajectories in the
Wilson cloud chamber have been explained by several au-
thors using the perturbation theory These treatments
are justified from the Copenhagen point of view. Howev-
er, the stability of the particle trajectories in the chamber
cannot be treated without modifications to the theory.

We have considered previously a model consisting of
an incoming particle, one molecule, and the environment
of the molecule acting as a detector, all treated as quan-
turn systems. The detector was treated as N harmonic os-
cillators described by GC states, and exhibits sensible be-
havior in the large-N limit. We showed that the detector
behaves like a macroscopic object when N &) 1, and as a
result a particle trajectory in the cloud chamber is stable.
The macroscopic properties result from the properties of
GC states and classical operators. However, some calcu-
lations in the model are difficult because the coherence
group used there is small, that is it does not contain all
bilinear operators.

The model treated in this article consists of an incom-
ing particle, many molecules, and the immediate environ-
ment of each molecule. When the particle interacts with
many molecules simultaneously, the measuring process
will be quite different, and analysis of trajectories is per-
formed more precisely. Molecules can be ionized only if
they lie on a straight line parallel to the momentum of
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the incoming particle. And there is essentially only one
trajectory in the cloud chamber if one particle enters it.
In a similar way to the previous model, stability of the
particle trajectory is a result of the properties of the GC
states and classical operators. Furthermore, the coher-
ence group is extended to SU(1,1), so that the treatment
of this model becomes quite simple, because many calcu-
lations can be made group theoretically. The SU(1,1)
coherent states and their applications to physical prob-
lems have been studied by many authors. As a model of
a detector, we use a harmonic-oscillator model based on
the extended coherence group, which is a modified ver-
sion of the previous one. The interaction between the
particle and each molecule is assumed to be weak, and
thus the interaction may be treated as a perturbation.

In the next section the modified model is presented,
and we also show how the group SU(1,1) can be derived.
Using the new detector constructed in Sec. II, it is shown
in Sec. III that particle trajectories in the cloud chamber
must be straight and almost stable.

II. HARMONIC-OSCILLATOR MODEL
BASED ON SU(1,1)

[A,B]= A, [B,C']=

[C, A]= — B .
X

(2.4)

Setting

Dic(pi ) = B, Dw(pi) = .
&

(C —~ A ),
l Ado

D~(p3)= —
. (C+co A ),
l %co

we find

[Div (P i )) D~(pi ) ]= —2D~(P3 ),

[DN(P2), Dx(P3) ]=2DN(pl ),

[DN(pi), Div(pi)] =2D~(pi) .

(2.5)

(2.6a)

(2.6b)

(2.6c)

They constitute the Lie algebra su(1, 1) with generators

Hence we can restrict our attention to the O(N) invariant
sector of the present model. Then the Hilbert space %~
consists of O(N) invariant states.

The operators A, B, and C constitute a Lie algebra:

A. The coherence group and generalized coherent states
0 1

1 0
0

P2
1

—i 0
0 ' ~3 0 i (2.7)

H =HM+Hq +HI (2.1)

The modified model, which is used in Sec. III as a
detector for particle trajectories, consists of one molecule
and X harmonic oscillators, all oscillators have unit mass
and frequency co. Suppose that the total Hamiltonian of
the model is given by

satisfying the commutation relations

[p»pi]= —2p3, [p&,p3]=2p» [P3,P&]=2P2 . (2.g)

Equations (2.6) and (2.8) imply that D~ is a representa-
tion of su(1, 1) in the space &~. Using the annihilation
and creation operators defined by

with

N

H„=—,
' g(P;+a) X;)=N(C+co A )—,

a = (A@X, +iP, ), a = (col, i'), —(2.9)
2 tied 2fÃ0

(2.2a)
the representation for p; becomes

N

MA pg Mg( i & &
i)= g M (2.2b) 1

Dic(p, )=—g(a a —ajai),J J J J (2.10a)

A = gX, , B= g(X;P;+H.c. ),
2N ,

'' 2%

C= QP~ .

(2.3)

where H~ is the Hamiltonian of the molecule, X, and P,
are the position and momentum operators with respect to
the ith oscillator ([X,, P ]=i fi5;, ), and

1

D/y(pi) = y(aJ aJ +aJaj —),J J

D~(p, ) =i+(a a + —,
' ),

J

and so the Hamiltonian of the detector is given by

(2.10b)

(2.10c)

The interaction HM~ contains the Hamiltonian HM of
the molecule, which plays an important role in our
quantum-measurement process. Owing to this fact, the
detectors in the next section can register the states of the
molecules (see Sec. III). The total Hamiltonian H is in-
variant under the group O(N) consisting of all orthogonal
transformations in (X&, . . . , Xz) or (P, , . . . , P~).

H„= i ficoDIv(p3) =fin)g—(a, a, + —,
'

) .
J

(2.11)

1 0
SU(11)='u

~
u 0 1

u= 1 0
0 —1

(2.12)

The algebra su(1, 1) generates the coherence group
SU(1,1):



42 STABILITY OF PARTICLE TRAJECTORIES AND. . . 5095

all elements u of SU(1,1) being parametrized as follows: a a', ' = a a'

~p 0~3 rp+
u =u(a, p)—:e e 'e

e~ a'e~

ae~ e~* (2.13)
la —a'I'

—N/2

(2.17)

with

(1—Ial )e~+P =1, y=a*e~ (2.14)

Ia, P) —=Dz(u(a, P))lin) =e ~ Dz(e )Iin)

where p+ =(p, +ip2)/2, o 3=ip3, and a, P, and y are
complex numbers. Note that Ial & 1. The independent
parameters are, for example, a and the imaginary part of
P. Including A, 8, and C in su(l, 1) conveniently allows
one to express the action of the coherence group in Fock
space, which makes our calculations much simpler.

The GC states are generated by applying elements of
the group SU(1, 1) to a "base state" Iin); that is, for any
element u(a, P)ESU(1,1), we find a GC state

This is a very important property of GC states, because it
is used later for deriving the mixed-state statistical opera-
tor and for explaining stability of particle trajectories.
The reduced coherent states Ia ) are very useful in the ac-
tual calculations.

B. Classical operators

Any operator in 2; and P, need not have a sensible lim-

it as N~ ~. In order to have control over this limit, we
have to introduce a restricted set of operators E, consist-
ing of operators A whose coherent state matrix elements
&u

I
Alu')N/&u Iu') v have finite limits as X~~, that

1S,

&,plAl, p &.
lim . . . & ~ for all a,p, a', p'EtL',

N~ao a, Ia,
=—exp i —

p2
—Ia), (2.15)

(2.18)

where p=p, +ip2 (p;ER). It follows from Eqs. (2.13)
and (2.15) that Iin ) = IO, O). Different coherent states are
not orthogonal; their overlaps are given by

where Ia,p)~E&z and Ial, Ia'I &1. Such operators are
referred to as classical operators. The expectation value
of any pair of operators A, BCE satisfies the factoriza-
tion relation

&a,pla', p') = &O, OID~(u '(a, p)u(a'p'))IO, O)
lim (&uI Aalu &g

—&ulAlu &~&ula u &~)=o
N~ oo

(2.19)
—[eu +fr(1 anal )]

—NI2 (2.16a)

&ala') = 1 —a'a'
&(I—Ial')(1- la I)

—N/2

(2.16b)

When N )) 1 and a%a', these two different states are ap-
proximately orthogonal, because

Therefore the variance of any such operator vanishes as
N ~ ~, and then the quantum fluctuations for the opera-
tors become irrelevant. All N-independent polynomials
in A, 8, and C given by Eq. (2.3) are classical operators.
These facts will be shown below by explicit calculation.

Let us consider the matrix elements of the operators
Dz(p; };they are obtained as follows:

& a»IDN(p; )Ia'»'&N =
& a»IDN(e ' }la' p' &N

Bt r=0

=—
& O, OIDJv (e e 'e +

) IO, O) ~
t=0

a
exp ——p"

c}t 2 i=0
(2.20}

where a", P", and )
" are defined by

tl lf

u '(a, p)e 'u(a', p')=e e 'e + (2.21)

& a,PID~(p, )la', P' &~ = [e~ +~—(1—a*a')]

X ei'*+~(a*—a') . (2.22)

Taking into account the (1,1) element
'(a, P)e '

( uPa'), which is given
e + [(1—a'a')cosht+(a' —a*)sinht], we arrive at

of
by

Xe~*+~(a'+a'), (2.23a)

Similarly,

&,plD (p, )l ',p') = [ ~*'~'(1— ' ')] "" '
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(a,PIDIv(p3)Ia', /3')Iv = [e~ +~(1—a*a')]

Xe~ +~(1+a'a') . (2.23b)

The matrix elements for the operators A, B, and C are
thus obtained:

Iimiv „(a,PIH„Ia,P)NINE&) is thus (co/2)(1+Ial )l
(1—

I
a

I ), which determines the classical dynamics.
Let us proceed to estimate the matrix elements of any

polynomial in A, B, and C. To this end we need some
manipulation to reduce some quantities described in
terms of X to those with X = 1. For example, we find

&a,PI A la', P'&Iv iri 1+a*+a'+a'a'
(2.24a

&a, Pla', P'&Iv 4~ 1 —a'a'
Dx(p ) = g D'i"'(p, »

k=1

N

(2.27a)

& a,PIB la' P &Iv ig a~ —a'
(a,Pla', P')„2

&a»ICIa'»'&~ ~~ 1 —a —a+a'a
& ,Pl ,P ) 4

(2.24b)

(2.24c)

=—g la, P(k)), ,
k=1

(2.27b)

where D', "'(p, ) contains only ak or a„, for example,
D',"'(p3) =i(akak+ —,

' ). We thus find easily

The right-hand sides of Eq. (2.24) are all independent of
X, indicating that A, B, and C are classical operators. In
the case of a=a' and/3=P', Eq. (2.24) reduces to the ex-
pectation value

(a,PIa', P')~= g &a,P(k)la', P'(k)),
k=1

PILI P&
=~ '+ ++I

4~
(2.25a) where

=((a,pla', P') i) =(e ~ ), (2.28)

&a, plala, P)~= '

1 —a
(2.25b)

(a,P(k) Ia', P'(k) ), —= (a,pla', P') I

II

is independent of k and e~ =eP +~(1—a'a'). The ma-
trix elements of Dz(p; ) also reduce to those of Di'"'(p; ):

&,PILI, P& = ~ ' +I I

x 4
(2.25c) ( a,PI Div (p, ) la', P') ~.

It follows from Eqs. (2.11) and (2.25) that the expectation
value of the Hamiltonian H~ of the oscillators is written
in the form

= g (a,P(k)ID'I" (p; )Ia', P'(k) ) i(a,Pla', P')Iv
k=1

=N(a, pla', P') v(a, PIDi(p, )la', P'), ei ~2, (2.29)

(
1 i)ia) 1+ lal

a, p H„a,P— where we have used

(,Pl ', P ), , =&,P,P &,"""'~". (2.30)

The corresponding classical Hamiltonian h, i (defined by Similarly we obtain

(a,PIDIv(p,
,

) DIv(p; )la', P')~=
kl, . . . , k

(a PIDi '
(p;, ) 'D "(p; )la', P')

T

n
(n /2)=N"(a, Pla', P'&~ g &a,PID, (p, )Ia', P'), e'"~ 'I' +0

k=1
(2.31)

From Eqs. (2.29) and (2.31) we arrive at

&a Pl(IIN)DIv(p; ) (I/N)DIv(p, )la', P')z
lim

N & a,PIa', P' &~
= g (a PID ( )Ia P ) ei i2)i3"

k=1

&a,PI(llN)Di, (p; )Ia', P')„
&,PI,P &.

(2.32)
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Equations (2.5) and (2.32) show that any N-independent
polynomial in A, 8, and C is a classical operator; Eq.
(2.32) is nothing more than the factorization relation.
Then the variance of such polynomials becomes very
small when N &&1, and the quantum Auctuation for these
operators vanishes.

In the large-N limit, a phase space and the Poisson
bracket can be defined; the quantum equation of motion
for a classical operator reduces to a "classical" equation
expressed by the Poisson bracket.

III. PARTICLE TRAJECTORIES
IN THE CLOUD CHAMBER

A. Perturbation theory

The model discussed in this section consists of an in-
coming particle (with Hamiltonian Hs and momentum p)
and some molecule-detector systems as described earlier.
Each detector is constructed of many harmonic oscilla-
tors. The molecule-detector systems are contained in a
cloud chamber. The incoming particle enters the cloud
chamber, and makes a stable trajectory. In our model the
stability of the particle trajectory is a result of macro-
scopic properties of GC states of the detectors. Suppose
that the particle interacts only with the molecules, and
that the interaction V between the particle and the mole-
cules may be treated as a perturbation.

When the particle interacts with I molecules simultane-
ously, and each molecule also interacts with its immedi-
ate environment (i.e., a detector), the total Hamiltonian
of the model becomes

H, (t)=U, (t, t, )VU, (t, t, ) .

Hence the perturbation series for UI is obtained:

Ut(t, tp)=1+ I dt(Ht(t, ). . .i' &p

—= 1+U,'"(t, t, )+ U,"'(t, t, )+ (3.4)

%(t)= UM" (t, tp) Ups(t, tp) U, (t, tp)% (t, )

—= UM" (t, t, )4(t) .

The state 41(t) satisfies

(3.5)

(()t—4 (t) = (H + V)4 (t),5 (3.6)

where V= Up "'(t, tp) VU(™)"(t,t(i).
The perturbation theory is applied to the wave equa-

tion (3.6) for 41(t) rather than that for %(t), as then the
calculation will be much simplified. Set the perturbation
series

P(t)= g 4(("'(t),
k=0

where

If the interaction V between the particle and the mole-
cules is neglected, the particle and molecule-detector sys-
tems can move independently, and so Up(t, tp)
= Up(t, tp)UQ "(t, tp), Up and Up "being the time evolu-

tion operators with respect to the particle and the
molecule-detector systems respectively. The state at time
t is thus written

H =H0+ V,

H0 =H~ +H~ +H ~ +H~~

with

(3.1a)

(3.1b)

4 (t)= UQ(t tp)Ut (t tQ) P(tp)

and UI '=1. The perturbation theory then gives us

inert
—Hs 4 '"'(t) =—V4 '" "(t),

(3.7)

(3.8)

I I
V= g V;, HM= gHM;, Hq = gHq;,

I I

HMq = QHMqi = QNgHM(B

(3.2)

where + ' "=—0. The perturbation expansion of the orig-
inal wave function becomes

p(t)= g q('k'(t)
I(.
. =0

where V; is the interaction between the incoming particle
and the ith molecule, K„; is the Hamiltonian of the ith
detector which is given by Eq. (2.2a), etc. Although the
incoming particle interacts with l molecules simultane-
ously, we assume that the particle meets with them con-
secutively. Using the definition in Eq. (3.2), the calcula-
tions below are almost parallel to our previous paper.

The state of the total system at time t becomes
0'(t)= U(t, tp)%'(tp), where 'p(tp) is the initial state at
time tp. Setting U(t, tp)= Up(t, tp)Ut(t tp) (where Up is
the free evolution operator), we find

with

q(( k )
( t )

—U M ~
( t t )4( ( k )

( t )

Suppose that the initial state %(tp) has the lowest ener-

gy; then the molecules and detectors are all in their
ground states. Thus their state is lo)lo, o), where lo)
and lo, o) are, respectively, the ground states of the mole-
cules and detectors. The initial state becomes

(3.9)

iA Up(t, tp) HQ—UQ(t, tp) (3.3a)

(3.3b)

where y(tp) =expi(px —p tp/2m )/i('t is the initial state of
the particle (I and m are, respectively, the position and
the mass). The state (p ' '(t) at time t can be written

(3.10)

where then, using Eq. (3.5), the total state at time t becomes
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+'o'(t) =q)(t) ~0) exp — H—
p (t —to)

where Eo —=0. Since every eigenstate
~

n ) =
~
n

&
) .

~ nI )
of the molecules (where

~ n, ) is a state of the ith molecule)
and GC states ~a, p) are, respectively, complete in each
Hilbert space, the function t'"'(t) (k=1,2, . . . ) for kth
perturbation can be expanded as

4 '"'(t)= y u„'"p'(x, t) n &~a,p) =yu„'".'(x, t)~n &~a&,

and ~a,p) and ~a ) are GC states given by Eq. (2.15). Al-
though a and P are continuous complex numbers, they
have been treated as discrete. Note that
~a,P) =~a, ,P, ) . ~alPI), where (a, ,P;) is a GC state
with respect to the ith detector, and the functions
u' '(x, to) =0 because UJ"'( to, to ) =0.

B. Properties Of the functions U' '

n, a, /3 n, a
(3.12)

where
u„'"' =gu„ tt(x, t )exp( iNp—2/2),

p~

(p=p, +ip2, p;ER),

Let us investigate the conditions that ensure that a
nonzero solution u"'(x, t) exists following the treatment
of Refs. 4—6. Substituting Eqs. (3.10) and (3.12) into Eq.
(3.8), we obtain

i% Hs —v„'—"(x,t)(a a') =(n
~
V~O)(a~exp (E„+H—„+HM„)(t to) e—xp — H„(t —to) ~—0,0)y(t),

a'

(3.13)

where E„=g,',E„; and

l

HMq QNgE„(B, .

the condition for nonzero v„"' is as follows:

la & = la„&, (3.16a)

E„, and B, are with respect to the ith molecule. When N
is large, Eq. (3.13) thus reduces to

T

iA Hs —u„"'I(x,—t)=(nlVlo)(a a„,P„)g(t),~ ~ (1j
at

(3.14)

where

~a„,P„)=exp (E„+Hz +H—~„)(t—to)

I

(n
~
V~O) = y S„, fi„,(n, ~

V ~0&fi„, fi„,+0,
i=1

(3.16b)

where

~a„,P„)=exp( iNP„z/2—) ~a„)

(p„=p„,+ip„2, p„, FR) .

Since according to Eqs. (3.14) and (3.16), v„'" is zero un-
n

less at least (1 —1) n, 's are zero, to the first-order approxi-
mation only one of the molecules can be excited. Substi-
tuting Eq. (3.16a) into Eq. (3.12) we find

Xexp — H„(t —to) ~0—,0) .
l

(3.15) 4"'(t)=y "Iu„". (x, t)~n)la &,
n

(3.17)

If the right-hand side of Eq. (3.12) is zero, then we have
v„'" =0 because of the initial condition. Consequently,

I

where g'„" is a sum such that at least (1 —1) n s are zero.
Equation (3.17) leads us to

4"'(t)=g" u„'" (x, t)exp i P„~ ~n )—exp — H„(t —to) ~0, 0—) . (3.18)

It should be noted that ~a ) in Eq. (3.12) is independent of
time, while ~a„) in Eq. (3.17) contains a variable t Ifwe.
fix the number n and time t in Eq. (3.12), then only u„'"' is

n

nonzero, and we arrive at Eq. (3.17). Hence all states ~n )
of the molecules couple with the same GC state
exp[ —(i/&)H„(t —t, )]~ 00) ~ ~0, 0), and as a result the

detector does not register each state of the molecules. To
the first approximation two molecules cannot be ionized
simultaneously, so that the incoming particle cannot
make a visible trajectory, because such trajectory is made
up of more than one ionized molecule.

Henceforth we consider for simplicity the case where
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the particle interacts with two molecules simultaneously,
i.e., l =2. Then there are three types of U"'. U(0'0),
U', "+,, U',

"
+,, where n,*&0, and we have omitted the(, ,0)' (0, )'

subscript a. For v Io'o) Eq. (3.14) reduces to

i' —Hs—v(o, o)(x t)

=((0~ v, ~0&+ &0~ v, ~0&)p(t)exp i —p„—„,.X

(3.19)

The nonzero region of the term (0~ V;~0&p(t), which is
the fictitious oscillator producing the wave, is located in
the small volume near the ith molecule. The volume is
determined by the function (0~ V; ~0&. The function v Io'0)
is diferent from zero only in two beams originating in the
small volumes near the two molecules and having the
direction p. Similarly, U,"'+, and v,

"'
+, are beams origi-

(n ],0) (O, n~ )

nating, respectively, near the first and second molecules
and having the direction p.

%e now proceed to the second-order perturbation.
The equation for U' ' is obtained in a similar way to the
first approximation:

iA Hs —v„'—"(x,t)=y) "v"' (x, t)&n~V~m &&a~a„&exp i (P—, /3„—, )
2m

(3.20)

The condition for v' Wo is thus ~a& = ~a„& and g"'v") (x, t)(n
~
V~m &exp(ii))tP il2)WO No. te that there is no re-

striction on the number n in v„' ' because I =2. The function U', '+, satisfies
n

iR Hs—v'
,

',—
,

( xt)=v IOO)( xt)(n*,
~ V, ~o&exp i—(13)00)i—f3, )

at (n ],0) (n ],0)2

+gv,"',
, ( x, t)((n*)~ V, ~m*) &+(O~vz~o&5, , )exp i (P. —. .

—P ~, ) . (3 21)
m*

I

By Eq. (3.21) v,'', is a beam originating near the first molecule, and containing a contribution whose source is near
(n ],0)

the second molecule if the second one lies in the first beam. The function v', '+ +, satisfies(n], n& )

i' Hs v', —'. .—.( xt)=v"',
,
( xt)(n

~ ~V~ &0ex pi (P,—,
—P

dt nl n2n] (n]
(3.22)

)])' '(t)=gv„' '
( xt)~n i&u„ (3.23a)

qI'"(t) =yv„") (x, t )e' "'~n &

from which the function v'
,

'+ + is nonzero only when(n], n2 )

the two molecules lie nearly on straight lines having
direction p. It should be noted that the term with the
subscript (n ', , n z ) represents two ionized molecules. The
functions v(0'0) and U',

'
+, have similar shapes to those of

(O, n& )

(&)

In the second approximation, we have

'P'" (t)=gv„' (x, t)exp i P„2 ~n &-
n

X exp — H„(t to) ~0,—0&—.
l (3.24b)

q)(t)=gv„(x, t)exp i—p„i ~n &

n

The functions U„' have the same properties as those of
n

v„' '. Consequently, we arrive at
tl

X exp — H„(t —
to) ~0, 0 &

—. (3.23b)
Xexp — Hz{t —to) ~0, 0&—, (3.25)

Similarly, in the kth- order perturbation (k ~ 3),

q' '"'(t) =+v„'"' (x, t ) ~n & ~a„&, (3.24a)

where v„=gk ov„', v„' ' =g(t)5„0, and v', ". .. =0.
tl 11 tt (nl, n2 )

In all higher-order perturbations also, two molecules
can be ionized only if the line joining them is practically
parallel to the direction of motion of the incoming parti-
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cle. This e6'ect only appears in the second and higher ap-
proximations. Equation (3.24) shows that all states fn )
of the molecules couple with the same GC state (i.e., the
initial state f0, 0)), and as a result the detectors cannot
detect each state of the molecules.

C. Statistical operator

If the interaction V can never be neglected, then the in-
itial state of the detectors remains unchanged. Thus we
assume that the interaction V is a short-range one so that
at a later time v.

o the interaction is negligibly small. In
this situation, Eq. (3.25) gives us the total state at time ro

0 ('ro) gv (x To)exp'i p—„& f
n )

n

Eq. (3.28) becomes

exp — (—Hz +H~„)(r—ro) f0, 0)

I I I

=DE(e " e " 'e " +)f0,0)

(3.29)

with

g3 „I g&
e "=cosh8 i ——sinh8, g' e "= sinh8 . (3.30)

g
& P7 g

In Eqs. (3.29) and (3.30), we have used Eq. (2.13) and

exp(8,p, +83p3)

Xexp — H„(ro—to) —f0,0), (3.26)
cosh8 —i (83/8)sinh8 (8, /8)sinh8

(8, /8)sinh8 cosh8+i(83/8)sinh8

where we have suppressed the ~0 dependence of the sub-
script of v„. Since V=O (r) ro}, the time-evolution

n

operator becomes

(3.31)

When 8 (0 (P—=+—8 ), Eq. (3.28) reduces to fg„,ri„),
where

U(r, ro)=Uc(r, ro)Uu "(~,ru),

from which we find

g'
e "=cosP i —sing, g„e "= sin(() . (3.32)

%(r)=gv„ tt (x, r) fn )exp i p„2—
n

Similarly in the last case 8 =0, the corresponding GC
state is fg„,rl„), where

X exp — (E„+H„+—HM„) (r —ro)
e "=1—i83, g„e "=8, . (3.33)

X exp — H„(ro—to—) f0, 0), (3.27)

The total state at time ~ now becomes

%(r)=gw„(x r) ln ) Ig, g, & (3.34)

where u„(x,r)= Uo(r, ro)u„~ (x, ro). In this case each
n n

energy state of the molecules correlates with each GC
state labeled by n.

Let us obtain a GC state fg„,q„) corresponding to a
state fn ) of the molecules. Using Eqs. (2.11) and (3.2),
we find

where

w„(x,r) =u„(x,r)exp i P„~—. N
n 2

X exp[ iE„(r ro—)/A]—
Xexp[ iNcol(ru to—}/2], —

exp ——H„(ro to) f0,0—) and g„and g„are given by Eqs. (3.30), (3.32), or (3.33).
The correspondence between the states of the molecules
and the detectors are thus as follows:

=exp i (r—o —to) f0,0).. Ncol
fn& (3.35)

Equations (2.2b) and (2.5) give the GC state

exp ——(H„+H~„}(~—ro) f0, 0)

=D (.""""')10,0&

The statistical operator p corresponding to the state
%(w) is written in the form

p=po+ g w„(x, r)w (x, v ) fn ) & m f fg„,q„)& g
num

(3.36)

(3 28) where po is the mixed-state statistical operator given by

where 8, =gE„(r ro) and 83 = col—(~ ~0). Setting- —

(g E„(cu l }, 8 =0 (g E„=to 1 ) we have three types of
the corresponding GC states. When 8 )0 (8—= t/8 ),

po=g fw„ f2fn &&n fee fg„,vg„&&/„, vy„ f
. (3.37)

Consider the expectation value of any observable 0 with
respect to the molecules and any classical operator A
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When N is sufficiently large, using Eqs. (2. 17), (2.18), and
(2.24), we find

=constX &g'„, vy /g„, vy„)/
' —N/2

(3.39)

Hence for operators such as O A ( A HK ), the difference
between the expectation values for p and po is very small
when N»1. In this sense, the operator p is approxi-
mately the mixed-state statistical operator, so that the
probability interpretation may be introduced into our
model.

D. Stability of particle trajectories

The incoming particle interacts with the molecule-
detector system, after which the operator p of the total
system reduces, in the above sense, to the mixed-state sta-
tistical operator. Then, with a certain probability, the to-
tal state %(r) changes, for example, into a state
w„(x, ~)

~
n ) ~g„,rI„), where w„ is a beam originating near

the mo1ecules and having the direction p. When
w„=w. . .

, (n,'%0), the two (or in general 1) moleculesn {nl,n2 )

are ionized; this occurs if the line joining the two mole-
cules is parallel to the direction p of the incoming parti-
cle. When the two molecules do not lie on a line parallel
to the direction p, only one of them can be ionized. It
has therefore been proved that the ionized molecules will
be practically on a straight line.

Excited states of molecules are in general unstable, so
that the molecules revert to the ground state almost in-
stantaneously. However, in GC-state formalism the situ-
ation is quite different. Equations (3.30), (3.32), and (3.33)
show that if E„AE, then g„Ag, where we assume for
simplicity that the energy states of the molecules are non-
degenerate. Taking into account Eq. (2.16), one gets
(g, g ~ g„,g„)=0 if E„AE . Therefore we find

=const X (m ~o~n ) (g, ri (g„,g„)=0, (3.40)

when N )) 1 and E„WE . Because of this fact the states
of all molecule-detector systems are almost stable. Each
quantum state of the rnolecules associated with the corre-
sponding GC state behaves like a macroscopic one. The
trajectory of the incoming particle, which is made up of
the ionized molecules, is thus also stable.

with respect to the detectors:

Tr[p(o A )]=Tr[po(o A )]

+ g ww'
& m ~O]n ) & g, g ~ A~)„,g„).

num

(3.38)

IV. CONCLUSIONS

We have considered a model consisting of an incoming
particle, many molecules interacting with the particle
simultaneously, and detectors. We have used the coher-
ence group SU(1,1) to construct the states of the detec-
tors. Because of this our calculations became much
simpler. The excited states of the molecules, which are
considered to be ionized, are registered by the detectors
through their interactions.

Treating the interaction V between the particle and the
molecules as a perturbation, we have shown that all mole-
cules can be ionized only when the line joining them is
practically parallel to the motion of the particle. That is,
the functions v„ in Eq. (3.25) and w„ in Eq. (3.34) are

n

beams originating near the molecules and have the above
properties. In particular, there is no possibility that two
molecules which lie on different parallel lines are ionized.

If the interaction V is a long-range one, the initial state
of the detectors remains unchanged, and thus they can-
not register the states of the molecules. We assumed
therefore that the interaction is a short-range one. Then
the states of the molecules and detectors correlate with
each other, as is confirmed in Eqs. (3.34) and (3.35).

The statistical operator p constructed by the state %(r)
[see Eq. (3.34)] is pure. However, if we assume that it is
very difficult to "detect" nonclassical operators by means
of another detector, i.e., we can treat only classical
operators, then it follows that

Tr[p(o A )]=Tr[po(OII A )]

when A EE and N »1. In this situation we may intro-
duce the notion of "approximate" probability into our
model, which becomes more correct as N ~~. The total
state 4 changes into a state w„~n ) ~g„q„) with a certain
probability, and then we can discuss particle trajectories.

Introducing the notion of equivalent states (or statisti-
cal operators) Jauch has studied the problem of quantum
measurement. The two states p, and pz are called
equivalent with respect to the set of observables S of a
physical system if Tr(pt A ) =Tr(p2A ) for all A ES. Such

p; are written as p, -p2. The relation p, -p2 means that
the two states cannot be distinguished by any measure-
ment whatever with observables from the set S. In our
GC-state formalism also, we can define such equivalent
states: p, -p2 if

Tr[(p, —p2)(og A )]~0 (N~ co )

for all A EI(:. These equivalent states wi11 be discussed
elsewhere.

We have also shown for the case of classical operators
that the trajectory of the particle made up of the ionized
molecules is stable. Excited states of the molecules asso-
ciated with GC states are almost stable; a single molecule
with the appropriate environment cannot revert to its
ground state.
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