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We have proposed a formal theory for the continuous measurement of relativistic quantum fields.
We have also derived the corresponding scattering equations. The proposed formalism reduces to
known equations in the Markovian case. Two recent models for spontaneous quantum state reduc-
tion have been recovered in the framework of our theory. A possible example of the relativistic
continuous measurement has been outlined in standard quantum electrodynamics. The continuous
measurement theory possesses an alternative formulation in terms of interacting quantum and sto-
chastic fields.

I. INTRODUCTION

Considering quantum theory, Bell' has claimed recent-
ly that a fundamental theory should not refer to the term
"measurement. " In fact, bearing in mind the standard
theory of quantum measurements, one would incorpo-
rate a spontaneous measurementlike process into the uni-
tary quantum theory. ' The resulting theory contains
the proper nonlinearities and stochasticity in addition to
the unitary evolution. And then one may delete the term
"measurement" (now a necessary and distinguished word)
from the syntax of the theory. Such a modified theory, in
itself, would be able to show the collapse of the wave
function and when and how collapses are expected to
occur.

We need a plausible mathematica1 model of what may
and should be called "continuous quantum measure-
ment" (alternative terms such as "continual" or "per-
manent observation, " "collapse, " or "reduction" are
often used). This paper is devoted to this technical aspect
of the fundamental project. We develop a possible theory
for continuous measurement of relativistic quantum
fields.

The literature of previous work is rather large, so we
only emphasize the main points. While a consistent non-
relativistic theory of Markovian continuous quantum
measurements has been developed by Barchielli, Lanz,
and Prosperi, a flexible formalism was still lacking.
Gisin, independently, has introduced quantum-stochastic

differential equations governing the evolution of the state
vector under continuous measurements. Caves and Mil-
burn observed that the measured information can be fed
back into the original dynamics. After all, it has been
shown" that the state vector and the measured value
satisfy a couple of stochastic differential equations.
There are only a few papers related to non-Markovian
continuous measurements' ' and to relativistic
ones.

In this paper a straightforward relativistic (not neces-
sarily Markovian) generalization of the above-noted re-

suits is proposed. This task can be solved successfully in
scattering theory, leaving interpolating fields to be dis-
cussed elsewhere.

Section II contains our proposal for a relativistic con-
tinuous quantum measurement theory (CQMT); in Sec.
III, the corresponding scattering superoperator is de-
rived. In Sec. IV specific equations for the Markovian
case are traced; Sec. V presents some applications; Sec.
VI contains the conclusions. Appendixes A and B are
useful to study in advance, as they familiarize the reader
with notations and with superoperator formalism. Ap-
pendix C is not technical; in it we point out that CQMT,
defined previously in Sec. II, can be reformulated in
terms of a given quantum-stochastic field theory (QSFT).

II. CONTINUOUS MEASUREMENT
OF RELATIVISTIC QUANTUM FIELDS

Let us start with the scattering equation of the stan-
dard relativistic quantum field theory, in the interaction
picture:

~out) =Texp i JA'd—x ~in)—:S~in), (2.1)

where &(x ) is the density of the interaction Hamiltoni-
an, S denotes the unitary scattering operator, T stands
for time-ordering.

Let q(x) denote the Hermitian boson field (not neces-
sarily a scalar) we choose to be continuously measured.
Actually it may be one of the primary boson fields the
given field theory is built of. Nevertheless, any composite
field operator, e.g. , a current, is acceptable too. We re-
quire that q(x) be local, i.e. , [q (x),q&(y)]=0 when
(x —y ) (0. Greek indices, usually suppressed, label field
components.

The outcome of continuous measurement of q(x) must
be a c-number field q(x). In other words, q(x) is the
measured (sampled or selected '

) value of the quantum
field q(x). In the case of standard quantum measure-
ments the outcome is random hence, by analogy, q(x)
will be considered as a real stochastic field.
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In order to incorporate a mechanism of the continuous
measurement of the field q, the unitary scattering (2. 1)
has to be modified as follows. Given a certain norm llq ll

(specified later) on the space of the measured fields, we in-
troduce the unnormalized "out" states:

iP,„,[q ]= T exp i—f (%+J"q )dx —
—,
'

llq
—

q ll l
in &,

(2.2)

which depend functionally on the measured (sampled or
selected) value q(x). The real "current" J" will realize
the q-dependent (hence also stochastic) feedback.

The normalized out states have the form

lout; q & =Ã '~'[q ]%,„,[q ], (2.3)

where JV is equal to the form of the unnormalized states:

Wq 1=+'...[q ]~...[q] (2.4)

Observing that JV is a positive functional of the measured
values q, it is possible to define the probability distribu-
tion functional m of the measured field values q so as to
be proportional to Ã:

~[q]=c 'Wq]=c-'e.'„,[q]e.„,[q], (2.5)

where C is a normalization factor so that fw[q]d[q]
=1.

We have postponed the explanation of certain details
of the right-hand side (rhs) of Eq. (2.2). The norm llqll is
specified by

llqll'—= (qll lq), (2.6)

J"(x)=f G "(x,y)q(y)dy . (2.7)

Here G "(x,y) is supposed to be a real retarded kernel,
i.e., it must vanish for xo &yo and also for (x —y ) &0.

Equations (2.2) —(2.7) define the proposed relativistic
continuous quantum measurement theory, measuring a

where I is the positive definite symmetric kernel charac-
terizing the strength of measurement of q. When q has
more components, e.g. , q is a vector or a tensor, I ac-
quires discrete (Greek) indices, too. And finally, we need
to specify the real current J" representing the retarded
feedback of the measured information into the quantum
dynamics:

given quantum field q, with strength I of measurement
and with retarded feedback J". The unitary scattering
(2.1) is obviously recovered when I =—0 and G"—=0.

This paper is not intended to give a systematic discus-
sion of the internal consistency of the CQMT. Neverthe-
less, we anticipate that the retarded feedback [i.e., G" in

Eq. (2.7)] cannot be chosen arbitrarily. We shall return
to this issue in the next section.

III. SCATTERING SUPEROPERATOR

(3.2)

where S is called scattering superoperator.
There is a general theorem, due to Gisin, ' from

which it follows that the above linear relation between
asymptotic states holds in any reasonable theory includ-
ing, e.g. , nonunitary ones, too. In addition, S must be an
automorphism of the space of density operators. This
represents very strong mathematical constraints. The full
classification of possible S s is lacking. However, for the
special case of Markovian systems we have definite re-
sults (see Sec. IV).

In the superoperator formalism of Appendix B, the
scattering superoperator of the standard quantum field
theory takes the following form:

S=S+S =T exp —i z x (3.3)

This S transforms pure states into pure ones. Let us
proceed to derive the scattering superoperator in the
presence of continuous measurement. By introducing the
asymptotic pure state projectors

P;„—= in & (inl, P,„,[q]= lout;q & (out;q l, (3.4)

Eqs. (2.2) and (2.3) yield the following relation between
them:

Let us illustrate the notion of scattering superoperator
in standard quantum field theory. If p;„stands for the in-
itial density operator of the system, then, after scattering,
the final-state density operator takes the form

poU( Sp S (3.1)

where S=rexp( i f—Rdx) is the unitary scattering

operator; cf. Eq. (2.1). Now, the relation (3.1) can be
written in the compact form

P, , [q]=A' '[q)Texp i f (A+J'q)dx —
—,'llq —q—

ll P;„Texp i f (&+J"q)dx —
—,'llq —

qll (3.5)

which can be written in the form

P..~[q] =Sl:q]P,.
In superoperator formalism, the selected ' scattering superoperator S[q] can be written as

(3.6)

S[q]=JV '[q ]T exp i f (&&+J"qz )—dx —
—,
'

llqz ll
—

llq,
—

q ll
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It is nonlinear because the normalization factor JV[q ] de-

pends always on the initial state of the system.
Up to now we have discussed the scattering process in

detail, i.e., by selecting (sampling) the measured values q
of the quantum field q. A pure state P;„ is scattered into
a pure state P,„,[q ]. We turn now to the averaged
scattering process.

The average out state is a mixed state:

(3.8)

Let us calculate the average of the selected scattering su-
peroperator (3.7) too. Using Eq. (2.5) one obtains

ScQMT: 5 q w q d q

=C ' Sq qdq (3.9)

By substituting Eq. (3.7) the functional JV cancels. Re-
calling Eq. (2.7), we observe J" is a linear functional of q,
thence the Gaussian functional integration over q is easy
to perform:

r

~cQMT c 7 exp —i f~zdx —
,'i (q~ —IG "Iq, )

—,'i (q, I—G'Iqt,) ,'(—qt—, I
I 'Iq~ ) (3.10)

with the convention 6'(x,y )—:6 (y, x ); and a transposition of possible discrete indices is understood too. The new ker-
nel

I"(x,y ) = I (x,y )+ f f 6'(x,x')I '(x', y')6 "(y',y )dx'dy' (3.1 1)

pout ~cQMT Pin (3.12)

reAects the way the feedback modifies the strength I .
ScQMT is the scattering superoperator in the presence

of continuous measurement. Its linearity would seem ob-
vious and, consequently, the scattering relation

IV. MARKOVIAN MEASUREMENT

In this section we consider a special (Markovian) case
of the relativistic CQMT defined in previous sections. In
a Markovian theory the strength I as well as the feed-
back function G" are assumed to contain a 5(xo —yo) fac-
tor:

which follows from Eqs. (3.6), (3.8), and (3.9), could be
generalized for mixed initial states as well:

I (x,y ) =y(xo;x, y)5(xo —yo),

G "(x,y ) =g(x )5(x —y ) .

(4.1)

(4.2a)

Pout CQMTPin & (3.13)

in accordance with Gisin's theorem. '
However, the case is slightly more complicated. The

constant C must be a number independent of the initial
state Iin), otherwise the scattering superoperator SCQM f
ceases to be linear, as seen from Eq. (3.10). If feedback is
absent (i.e., D"=0) then C is always a pure constant, as
shown at the end of Appendix C. The requirement that
C must be a number presents a stringent constraint on
the feedback mechanism. The generic problem of intro-
ducing causal nonlocal feedback is unsolved; for a partic-
ular (not completely pursued) example see Sec. V.
Classes of Markovian feedbacks, both relativistic and
nonrelativistic, are shown to work (Secs. IV and V).

In relativistic Markovian theory the above local feedback
would be the only causal one. However, in the nonrela-
tivistic Markovian approximation, instantaneous remote
signals are allowed, hence we shall use the more general
form

6 "(x y)=g "(xo x y)5(xo yo) (4.2b)

X A
SCQM f 'r exp L ( t )dt (4.3)

where L( t) is the linear euolution superoperator:

with an arbitrary real function g". We also retain the
convention g'(xo;x, y)—=g "(xo;y,x), with possible index
transposition understood.

In Markovian theory the scattering superoperator
(3.10) can be rewritten into the form

L(t)= —i fWt, (t, x)dx —,'t(q& g "Iq, ), ——,'t(q,—.lg'Iqt, ), ,'(q&ll" Iq, ), . —— (4.4)

In accordance with Eqs. (3.11) and (4. 1)—(4.2b) we introduced

y'(t;x, y)=y(t;x, y)+ f fg'(t;x, x')y '(t;x', y')g "(t;y', y)dx'dy' . (4.5)
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The normalization constant C in Eq. (3.10) will turn out
to be 1.

Recalling that the scattering superoperator S&&~z re-
lates asymptotic states via Eq. (3.13}, the Markovian

Sc«~ (4.3) allows one to interpolate between the in and
out states. The interpolating state p(t) obeys the follow-
ing evolution ("master" or Liouville) equation:

dp(t)
=&(&)p(&) .

dt
(4.6}

+,[q]=T exp i f —(%+X"q)dx

q
—

q dxo in
0

(4.7)

Lindblad ' classified all finite-dimensional L's; our evo-
lution operator (4.4) is formally of the Lindblad type.
Since the evolution equation (4.6) retains the normaliza-
tion of the state, the choice C = 1, mentioned earlier, has
thus been confirmed.

Of course, in a Markovian theory the selective evolu-
tion of the pure quantum state lt;q) is also easy to
define. It is natural to generalize Eqs. (2.2) —(2.7) of
the generic CQMT, in order to interpolate between
the asymptotic states lin)—:lt = —~ ) and lout;q )
—:t = ~;q ) . The corresponding equations are as fol-
lows:

= —,'[y(t;x, y)+ig"(t;x, y) ig—'(t;x, y)]dt . (4.15}

Then P and Q obey the following coupled stochastic Ito
equations:

dP(t) =L(t)P(r)dr

+ f dg(t, x)[q(t, x)—(q(t, x)), ]dxP(t)

+H. c. (4.16)

dQ(t, x)= (q(t, x) ),dt + f y '(t;x, y)dg(t, y)dy, (4.17)

where (q(t, x) ), stands for tr[q(t, x)P(t)] and L is given

by Eq. (4.4).
The Ito stochastic differential equations (4.16) and

(4.17) offer a powerful formalism of the Markovian
CQMT. If one wishes to impose the relativistic causality
then the feedback functions g"(t;x,y), g'(t;x, y) must be
replaced by g(t, x)5(x—y) and g (t, x)5(x—y), respec-
tively, according to Eq. (4.2a).

Furthermore, we introduce complex-valued Wiener pro-
cesses g(t, x) with dispersions

dg(t, x)d( (t, y)

I&;e &=~, '"[Bq',[8, (4.8) V. APPLICATIONS

(4.9)

(4.10)

Ilail'—= (e lr le)

J'(t, x)= J g "(t;x,y)q(t, y)dy .

(4.1 1)

(4.12)

These equations represent the interpolating joint Mar-
kovian processes for the state

l r; q ) and for the measured
value q(t). Still the Markovian nature of the processes
mentioned is rather implicit. This would become more
transparent in terms of quickly repeated imprecise mea-
surements ' "(elsewhere called the "hitting process"' ).

The Markovian process (4.7)—(4.12) can be cast into
the form of stochastic differential equations (cf. Ref. 11).
For technical reasons, we introduce the pure state projec-
tors

y(x, y) = Gv lx —
yl (5.1)

MarkoUian nonrelati Uistic measurement. According to
a concept outlined in the Introduction, a certain univer-
sally and spontaneously measured field is supposed to ex-
ist. This may be the relativistic energy-momentum tensor
T,~. Now we have only a nonrelativistic picture of the
required theory of spontaneous measurement (reduction).
In a recent paper, ' the nonrelativistic mass distribution

f has been suggested for the role of a universal spontane-
ously measured quantity. The quantum field f ( t, x ) is
equal to a certain nonrelativistic limit of the component
Too( t, x).

Let us specify the strength (4.1) and feedback (4.2b) of
the continuous measurement:

g "(x,y) =g'(x, y) = —y(x, y), (5.2)

P(~)—= lr &«l (4.13) where G~ is Newton's constant. Then, replacing q by f,
Eq. (4.4) yields the evolution operator of the form

instead of the current state vectors lt;q), and replace
variable q by a new one Q via the relation &(&)= ~H~(&) E(fglylf, }, ,

'—(frill lfg—), , ——

dQ(t, x)—:q(t, x)dr . (4.14)

where H= J&dx. In the usual operator formalism the
evolution equation (4.6) of the density operator p reads

dp(t) =L(t)p(t)= —i[H(t)+H'(t), p(t)] —
—,
' J f y(x, y}[f(t,x), [f(t,y), p(r)]]dxdy,

t
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where H'( t) = —,' (f—Iy If ), is just the Newtonian gravita-

tional interaction induced by the feedback. In Ref. 12 no
feedback was used; apart from this, the same results have
been obtained there. It is not necessary to write down the
Ito equations (4.16) and (4.17) of the selective evolution
since they can be found also in Ref. 12.

Markovian relatiUistic measurement. Let us choose a
certain, yet physically not identified, Hermitian scalar
field cp for the universally measured field. Let us assume
that cp couples to basic matter fields. Then a universal
spontaneous measurement (reduction) theory can be con-
structed, which is relativistically invariant.

Let the strength (4.1) of measurement be the simplest
one:

sRQED = T exp t —,
'

~ [(j + I
G jI+ ) —(j—I G Ij

(5.11)

where 6's are standard photonic Green functions of
quantum electrodynamics and RQED denotes reduced
quantum electrodynamics. In physical representation
(see Appendix B) the following expression can be ob-
tained:

~RQED T exp[-,' ~ (j~ I G "jI,)+ ,
' t (j, -I G'jI, )

(5.12)

I (x,y ) = F5(x —y ), (5.5)

with constant Ic, let the feedback (4.2a) be absent. Then,
substituting q& in place of q, the evolution operator (4.4)
takes the form

where the physical Green functions are defined by

iD'(x, y)=(2') f 2m5(p )e '«'" 'dp,

6"(x,y ) =(2vr) f [p ipo—e] 'e '«'" «'dp

(5.13)

L(t)= f [ i&~(—t, x) —,'xgP—z(t, x)]dx . (5.6)
= —

( I /2m )e(x 0
—

yo )5((x —y ) ) . (5.14)

(5.7)

Let us write down the Ito equations of selective evolu-
tion. According to Eq. (4.15) we introduce the real scalar
Wiener process ( with dispersion

dg(t, x)d((t, y) = ,'~5(x y)dt—, —

then the selected pure state P satisfies Eq. (4.16):

(5.8)

dP(t ) =L(t)P(t)dt+ f [y(t, x) —(y(t, x) )„P(t ) ]

Xdg(t, x)dx (5.9)

In ordinary operator formalism the evolution equation
(4.6) of the density operator is as follows:

dp(t) =L(t )p(t) = —i [H(t ),p(t)]
dt

cpt, x, yt, x,p t dx.

With the choice I '=iD' the scattering superoperator
SRQED (5.12) shows structural similarity to the scattering
superoperator Sc«T (3.10) of the relativistic CQMT.
The opposite signs are due to the (+, —,—,—) conven-
tion for summing up Lorentz indices. Had we chosen
( —,—,—,+ ), the scattering superoperator (5.12) of the
reduced dynamics of the charges in quantum electro-
dynamics would be completely identical to the scattering
superoperator (3.10) of a system, where charges are free
of any photonic interaction, however, their current j is
continuously measured in the sense of Sec. II, with nonlo-
cal retarded feedback included.

However, this case is not so simple. As is seen from
Eq. (5.13), the kernel I is degenerate, i.e. , it is positive
semidefinite. Therefore the aforementioned reinterpreta-
tion of electromagnetic interaction in terms of continuous
measurement of the current j requires more care. Never-
theless, the above formal similarities of formulas are not
at all accidental. There is a certain field, though not j it-
self, which seems to be continuously measured.

and the measured value tp evolves according to Eq. (4.17):

d4(t, x)= (q&(t, x)),dt+~ 'dg(t, x), (5.10}

where 4 and g are related by dC&(t, x) =y(t, x)dt; cf. Eq.
(4.14).

Note that as Eqs. (5.7)—(5.10) represent a relativistical-
ly invariant theory, they are valid in an arbitrary Lorentz
frame. In our opinion, the above construction is
equivalent to the former proposals. ' '

Relatiuistic measurement, nonlocal feedback We are.
going to illustrate that in standard quantum electro-
dynamics certain mechanisms resemble, at least formally,
the continuous measurement of the electromagnetic
four-current j(x). In Ref. 22 the following scattering su-
peroperator has been derived for the reduced dynamics of
the charges:

VI. SUMMARY

We have proposed a possible theory for the continuous
measurement of relativistic quantum fields. We have also
derived the corresponding scattering equations. The pro-
posed formalism reduces to known equations in the Mar-
kovian case. Two recent models for spontaneous quan-
tum state reduction have been recovered in the frame-
work of our theory. A possible example of the relativistic
continuous measurement has been outlined in standard
quantum electrodynamics. The continuous measurement
theory possesses an alternative formulation in terms of
interacting quantum and stochastic fields.

The proposed theory should be considered as a first ap-
proach to the problem of relativistic continuous measure-
ment. Hence we did not go beyond the level of accuracy
of formal field theories. This formal level is not yet ex-
hausted. In future investigations the construction of in-

terpolating quantum fields seems to be straightforward
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enough. Presumably the generic form of causal feedback
of measured information will represent more serious
problems.
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APPENDIX A: SPECIAL NOTATIONS

q~p=lq p] q,p= ,'lq-p1. (B3)

In superoperator formalism the notion of the usual time-
ordering has to be generalized as well. T, the time-
ordering superoperator, will prescribe time-ordering (T)
for field operators with label (+) and, respectively, anti-
time-ordering ( T ) for operators of label ( —).

By using the relations (B1) it is easy to see the effects of
the following simple superoperators:

C &(x,y)=c &(xi, ;x,y)5(xo —yo) . (A2)

We introduce a separate notation for the matrix element
of real spatial kernel c tt(t;x, y):

For the intelligibility of the appendixes first we intro-
duce a set of notations. Latin letters x and y always
denote four-coordinates; dx and dy stand for the corre-
sponding four-volume elements. Time components are
denoted by xo and yo, respectively, or by t; x and y stand
for spatial components, dx and dy are spatial volume ele-
ments.

Given real bosonic (not necessarily scalar) fields q(x)
and p(x), the "matrix element" of a real kernel C(x,y)
will be denoted in the following compact way:

g f f C p(x, y)q (x)pt3(y}dx dy=—(qlClp), (Al)
a, P

where Greek indices label field components.
In Markovian theory, one is faced with kernels of the

form

APPENDIX C: QUANTUM-STOCHASTIC
FIELD THEORY (QSFT)

w, „[q]=exp( —ffq//'} .

Introduce the stochastic field

J (x ) = f I (x,y )q(y)dy .

(C 1)

(C2)

For completeness, let us invoke the definition (2.7) of the
retarded stochastic current too:

J"(x)=f G'(x, y)q(y)dy . (C3)

Now, observe that on the left-hand side (lhs) of Eq.
(2.2) one can cancel a trivial c-number factor by introduc-
ing a new state vector w;„'~ [q]4„„,[q] instead of
+...[q]:

Consider the equations of relativistic CQMT specified
in Sec. II, and define the following a priori distribution of
the c-number stochastic field q:

g f f c tt(t;x, y)q (t, x)p&(t, y) dxdy=(
ql

cl p, )

a,P

(A3)

The following relation is then fulfilled:

%,„,[q]=Texp i f [A+—(J"+iJ )q]dx

(C4)

c p tdt= q Cp (A4)
The normalized out state is of the same form as in Eq.
(2.3)

APPENDIX B: SUPEROPERATOR FORMALISM

~out;q ) =JV '~'[q ]4,„,[q ],
with

(C5)

This formalism is a simplified version of the closed-
time-path technique, a detailed presentation of which is
given in Ref. 24. Let p stand for the density operator
corresponding to a given, pure or mixed, state of the sys-
tem. An operator, say q, multiplies p from the left or, al-
ternatively, from the right; it depends on the mathemati-
cal term in question. In superoperator formalism, one
appends a label (usually + or —} to each operator and
the label tells the direction of multiplication. In our case
e.g. ,

q+p qp q —p=pq . (B1)

q~=q+ q — q, = , (q++q —}—(B2)

By convention, each labeled multiplier can formally be
grouped on the left and they can be combined together.
For example, it is customary to switch on the so-called
physical representation qz, q, :

Wq ]=+...[q]~...[q l, (C6)

=C 'JV[q]exp( —
)/qff ) . (C7)

Note that q was called the measured value through the
entire paper. Construction (C 1)—(C7) is mathematically
equivalent to the CQMT of Sec. II, nevertheless here no
reference to "measurement" is needed. We propose the
following interpretation.

The classical stochastic field q possesses the initial dis-
tribution (C1). It creates a non-Hermitian interaction
"Hainiltonian" as seen in Eq. (C4). Then, this scattering
will have a back-action on the classical field q, leading to

which differs from JV[q] of Sec. II by a factor w;„[q].
Let us now introduce the notion of a posteriori distribu-
tion w,„,[q] of the stochastic field q. By definition, let it
be identical to the distribution (2.5), hence

w...[q]=C 'Wq]w, .[ql
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its final probability distribution (C7).
Such a theory may be called quantum-stochastic field

theory: the quantum and stochastic fields interact with
each other. We wish to make a distinction here: In con-
trast to this scheme, in the ordinary (unitary) stochastic
quantum field theories (SQFT) the a priori statistics of the
stochastic field q does not change since q is considered all
the time as an external stochastic field.

Finally we show an interesting relation between the
QSFT (Cl) —(C7) and a given ordinary unitary SQFT.
Let us modify the scattering equation (C4) of the QSFT.
Let us neglect the feedback term as well as the last term—

—,'~~q~~ in the exponent and, furthermore, omit the fac-
tor i of the term J"q. One obtains

= T exp i f—&.t,dx —
—,
'

//q~ f[~ (C10)

By comparing SsQFr and Sc&MT (3.10) one observes
that they are identical apart from the absence of the feed-
back. The constant C, normalizing ScQMT has turned
out to be 1. Since the CQMT of Sec. II is, by construc-
tion, equivalent to the QSFT (Cl) —(C7) their scattering
superoperators Sc«T and SQsFT are obviously the same.
A11 this can be summarized in the form

This superoperator is linear [cf. Eq. (3.7)] and it needs
no normalizing factor. Now one can take stochastic
average over the external stochastic field q; invoking Eq.
(C 1) we get

SsQFT= fS[q]w,„[q]d[q]

= T exp i f—(A+J"q )dx
~

in } . (C8)
SCQMT = QSFT

—SSQFT (C 1 1)

S[q ]= T exp i f—(&~+J q~ )dx (C9)

This is unitary scattering in the presence of the exter-
nal stochastic current J (C2). To approve consistency

—r

with what we stated about unitary SQFT's, observe that
Eq. (C7) yields now the trivial result w, „,[q]=w;„[q]
since JV[q ]—:1.

The corresponding (selected) scattering superoperator
can be written in the form

We formulate the following conclusion: at the level of
asymptotic density operators p;„and p,„„the scattering
in CQMT (or in the corresponding quantum-stochastic
field theory) can be reproduced by an ordinary stochastic
quantum field theory, i.e., by unitary scattering in the
proper external stochastic field (provided there is an ab-
sence of feedback).
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