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Different neutron-interferometric setups for the joint detection of “path” and “interference” are
investigated from the point of view of the theory of joint measurement. It is seen that this joint
detection can only be done with limited quality. This substantiates Bohr’s insistence that the impos-
sibility of jointly seeing interference and path is a consequence of the uncertainty principle. A con-
nection between joint measurement and Wigner distributions is noted.

INTRODUCTION

Recently neutron-interferometric experiments' > have
been extended to the experimental domain in which both
particle and wave properties of the neutron are studied in
the same experiment.> > This is done by inserting an ab-
sorber into one of the two interferometer beams, with the
intention of obtaining a (partial) determination of the
neutron path without completely wiping out the interfer-
ence pattern. In neutron interference experiments a neu-
tron beam is split in an interferometer (cf. Fig. 1) into two
beams, one of which can be phase shifted so as to realize
phase-dependent detection probabilities in the neutron
detectors D 4, and Dy, to be indicated as the interference
pattern (see, for instance, Fig. 2 of Ref. 4). An aluminum
plate can be used as a phase shifter, the phase being
varied by varying the path length of the neutron path in
the plate. This is done by rotating the plate. In the ex-
periments described in Ref. 4, a single-crystal silicon in-
terferometer is used by which a beam separation of a few

Phase shifter

FIG. 1. Basic interferometer setup. A neutron beam is sent
along one of the incoming paths, and then coherently split. One
of the partial beams undergoes a phase shift y. The beams are
then coherently mixed.

centimeters can be achieved. Due to this large separa-
tion, it is possible to physically interact with the neutrons
in either the left- or the right-hand beam separately, and
study the influence of this interaction on the interference.

In particular, it is an interesting question what happens
with the interference pattern if it is determined by which
path the neutron traversed the interferometer. It is often
said that by such a determination the interference pattern
is wiped out completely. This indeed is the case if one of
the paths is blocked completely, so that we know with
certainty that the neutron went the other way. However,
as predicted theoretically by Wootters and Zurek,® and
demonstrated experimentally by Mittelstaedt, Prieur, and
Schieder’ in the case of photon interference, if the path is
determined with a probability less than 1, the visibility of
the interference pattern may be preserved to a certain ex-
tent.

The experiments of Summhammer, Rauch, and Tup-
pinger* are essentially of the latter kind. In these experi-
ments an absorbing element is inserted into one of the
beams (cf. Fig. 2), so as to decrease the probability that a

Phase shifter

FIG. 2. Extended setup. Neutrons are deleted (either sto-
chastically or deterministically) with probability 1—a or 1—v
from the right partial beam.
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neutron reaching the detectors did so via the path con-
taining the absorber. In this paper we will discuss two
different kinds of absorption studied in Ref. 4, viz. sto-
chastic and deterministic absorption. In the stochastic
absorption experiment the absorber consists of a stack of
1-mm-thick slabs of gold or indium permitting the
transmission probability to be varied between 0.9% and
48.0% by stacking different numbers of slabs. In the
deterministic case the absorber is a chopper consisting of
a rotating disk of 1-mm-thick cadmium, a number of oc-
tant sections having been cut out. Since the closed posi-
tion of the chopper ensures an absorption probability of
better than 99.99%, the neutron is either transmitted or
stopped depending on whether it finds the chopper in an
open or a closed position. In Fig. 2 of Ref. 4 the experi-
mental interference patterns for stochastic and deter-
ministic absorption are compared for approximately
equal transmission probabilities.

NONIDEAL MEASUREMENTS

Realistic measurements can best be described by means
of so-called positive-operator-valued measures
(POVM’s).®  POVM’s are generalizations of the
projection-valued measures (PVM’s) which are usually
considered to represent quantum-mechanical observables
(i.e., the orthogonal spectral representations of self-
adjoint operators). A POVM is a set of operators {M, }
satisfying

Mkzoy EM}(:lr (1)
k

in which M, is not necessarily a projection operator, and
in general [M, ,M j]_ig, k+j. The detection probabili-
ties of the experiment are given by p, =Tr(pM,).

A POVM {M,} is said to represent a nonideal mea-
surement’ of an observable described by the POVM (N, }
if a stochastic matrix (A;,) exists, such that

M, =3 AuN;, AyzZ0, P Ay=1. )
! k

The two POVM'’s will be called equivalent if, apart from
(2), we also have

N=3uuMy, pyz0, Zpp=1. 2)
k !

Evidently, equivalent POVM’s describe measurements
yielding the same statistical information about the object,
with equal quality.” For example, two POVM’s differing
only in labeling are equivalent. Another example of
equivalence is given through the notion of equivalent
refinement. A Dbivariate POVM {M;} is called an
equivalent refinement of the POVM {M,} if
Mik =a‘~kMk, OSa,-k < 1, and zia[k =1.

If {M,} and {N,} are not equivalent, it may neverthe-
less be possible to invert the relation (2) according to
N,=3 (A" Yy M,, in which [(A~1),] is the inverse ma-
trix of (Ay;). In general, the matrix [(A™'), ] is not a sto-
chastic matrix, its matrix elements not even being posi-
tive. So, if (2') is not satisfied together with (2), {N,} does
not describe a nonideal measurement of {M, }. If the re-

WILLEM M. de MUYNCK AND HANS MARTENS 42

lation (2) does, however, have an inverse, we call the mea-
surement {M, ] an invertibly nonideal measurement of
{N,}, because of the possibility of obtaining exact infor-
mation on {N;} by measuring {M,} and calculating all
the {N,} probabilities by means of the inverse matrix
(A" g1’

A bivariate POVM (R, . ] represents a joint nonideal
measurement'® of two POVM’s {M, ] and {N,]}, if its
marginals {¥,R,..} and {3, R,.,} represent nonideal
measurements of { M, } and {N,}, respectively, i.e., if two
stochastic matrices (A, ) and (u,,;) exist, such that

zﬂmnzz)"mkMk’ )"mkzo’ Ekmkzl’
n k m

(3)
zl—amnz zlunlﬂl! .u'anO’ 2:“’;11:1 .
m ! n

In Ref. 10 an inequality was derived that can unam-
biguously be interpreted as limiting the inaccuracies
achievable in a joint measurement of two PVM’s on a
finite-dimensional Hilbert space. These inaccuracies are
embodied in a deviation of the stochastic matrices (A,,;)
and (u,;) in (3) from the unit matrix. It turns out that
these matrices satisfy a principle of complementarity
with respect to this deviation: they cannot both ap-
proach the unit matrix if {M,} and {N,} are incompati-
ble.

We shall demonstrate that the above-mentioned
neutron-interference experiments fit into this scheme.
We show that these experiments also exhibit complemen-
tary behavior. In order to do this in a quantitative way
we must introduce some measure representing the inac-
curacy embodied in the matrices of relation (3). An ex-
ample is the mean row entropy

A

1 mk
dun=—— 3 Axln , (4a)
no= A,
J
where n is the number of elements in {M,}. For square

nonideality matrices we can also take as such a measure
the quantity

en=1—TI VAl . (4b)

where v(A,,,) represents the eigenvalues of (A,, ). The
measure €;)[8,,] takes values between O and 1 [between
0 and In(n)]. For A, equal to the unit matrix we obtain
€,,=0 [8,,=0], whereas ¢€;,=1 [6,;,=In(n)] if
Apk =X,,, i.e., for maximal inaccuracy. The inaccuracy
relation presented in Ref. 10 used §;,. An inaccuracy re-
lation using €, has as yet not been derived.
Unfortunately both versions of the absorption experi-
ments mentioned before do not yield information beyond
that given by the separate observations (in this case we
call a joint measurement a trivial one). The deterministic
absorption experiment can even be seen as an experiment
in which either path or interference is measured in two
subensembles, instead of a true joint measurement.
Therefore we consider a third setup, containing a quan-
tum nondemolition (QND) detection of the neutron’s
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path.>!" This also fits into our formalism, but does not
have the above-mentioned drawback.

NEUTRON INTERFERENCE WITHOUT ABSORPTION

We first consider the basic neutron interference experi-
ment without absorption.> A neutron beam enters on one
of the indicated paths (Fig. 1), and is passed coherently
through two beamsplitters. In between these the phase
of one of the partial beams is shifted by an amount Y.
The two partial beams are allowed to interfere in a third
beamsplitter, after which the neutrons are registered by
one of the detectors D , and Dy (cf. Fig. 1). Ignoring the
neutron’s polarization, the experiment can be completely
described by the two-dimensional Hilbert space spanned
by the orthogonal state functions |L ) and |R ) represent-
ing the left and right beam, respectively. Assuming® that
each reflection introduces a phase shift 17, the
interferometer’s action can be described by

IL)—1V20GILY+|R))
—LV2[i|L ) +explix)|R )]
—dif{[—1+explix)]IL)
+[i+iexplix)]IR)} . 5

Thus the final probabilities for finding the beam in the
detectors are 1 F J-cos(y).

More generally, if the incoming state is
[,.) =alL )+B|R ), the outgoing state is given by

[You ) =31i{al —1+explix)]+Bli +iexplix)]}|L)

+difali+iexp(ix)]+B[1—explix)]}IR ).
(6)

The detection probabilities of detectors D 4, and Dp are
then given by

D4 ZTI'(Bin}_)A ):|<L|¢out)|2 ’

(7
Pe=Tr(p;Pp)=1(R Yo, ) |*,

and

sin’(1x) Isin(y)
Ps= Lsin(y) cos*(Lx) o
2 2

The observable represented by {P 4,Pp} can be interpret-
ed as the quantum-mechanical observable measured in an
interference experiment. Since P, and Py are orthogonal
projections, {P ,,Pp} isa PVM.

NEUTRON INTERFERENCE
WITH STOCHASTIC ABSORPTION

In the case of stochastic absorption a partial absorber
is inserted in one of the beams (Fig.2). This induces the
possibility that the neutron does not enter either detector
D , or Dg, but is transferred to a third mode, described
by |Z ), orthogonal to both |L ) and |R ). Assuming that
the absorber does not induce an extra phase shift (if a
phase shift occurs, then it can be accommodated by a
constant additional contribution to Y), if a is the
transmission probability, we obtain for the outgoing state

[You) =Li{a[ —1+Va explix)]+Bli +iVa explix)]}|L)

+Lifali+iVa explix)]+B[1—Va explix)]}|R ) +Liv2(1—a)a+iB)Z) , 9

yielding

Pa=TrlpM =L * pp=TrlpsMp)=[(R¥eu)I?, pz=Trlp Mz)={Z]Uou )|, (10)

and

—i(l1—a)+2Va sin(y)

1+a +2Va cos(y)

. (1+a)—2Va cos(y)
F477% li(1—a)+2Va sin(y)

(14+a)+2Va cosly) —i(l—a)—2Va sin(y)

(1—a)—2Va sin(y) (1+a)—2Va cos(y) | (1




5082 WILLEM M. de MUYNCK AND HANS MARTENS 42

For a=1 this POVM reduces to the “interference” ob-

servable  {P,,Pg,0}. For a=0 we obtain
{+P,,iP,,P_}, in which P, =1—P_ is the projection
operator %(,' . "), corresponding to the neutron passing

on the left-hand side after the first beamsplitter. So, an
equivalent refinement of the “path” observable {P_,P_}
is obtained when a=0. For a=0, =1 we obtain from
(10) and (11)

p4=+(14+a+2Va cosy), (12)

in accordance with formula (8) of Ref. 4.

In order to be able to interpret the neutron interference
experiment as a joint nonideal measurement of the in-
terference and path observables, we reorder the POVM
{M ,,Mgz,M,} into the equivalent refinement

M, M;

M, M, | 13

This is a bivariate POVM, the marginals of which can be
calculated to yield

M, +Mp P,

M, =) p_ |’

1 a
Mmi)= o 1—a|> (14)
and

M, +iM; P,
My+1M, |~ ) |y |

g [1+Va 1—Vva
wa)=5 v 14+va |- (15)

This precisely fits our definition (3) of a joint nonideal
measurement of interference and path observables. It is
seen that in the case a=0 the marginal (14) reduces to
the path observable {P,,P_}, whereas (15) yields the in-
terference observable {P ,,Pp} ifa=1.

Now we can evaluate the inaccuracy measure (4b) for

these two matrices, obtaining
€EnTa, 5(#)21_‘/; . (16)

As a function of the parameter a, this tracks out a curve
in R?, which indicates the complementarity in the experi-
ment because of the impossibility that both €,, and €,
approach the value zero [Fig. 3(b)]. For the measure (4a)
the analogous curve is shown in Fig. 3(a) (solid line). In
this figure we also indicated the quantum limit of the
inaccuracy relation of Ref. 10: according to this relation
it is impossible to find any joint nonideal measurement
procedure of interference and path with the pair
(8(,)»8(1) of the inaccuracy measures (4a) in the shaded
region of Fig. 3(a). It must be emphasized here that this
result, representing the complementarity of these two ob-
servables, is derived from a relation that is different from
the Heisenberg uncertainty relation. As a matter of fact,
the inaccuracy measure (4a) is a property of the observ-

able only. Contrary to the standard deviation, it is in-
dependent of the state function and, for this reason,
seems to be more suitable to represent a notion of mea-
surement accuracy that is independent of the uncertainty
induced by the preparation.

Outside the limits a=1 and 0 both stochastic matrices
(&) and (u,), in (14) and (15), have inverses. This im-
plies that the nonideal measurements described by (14)
and (15) are invertible. Consequently, it is possible to cal-
culate the probabilities of the ideal interference and path
observables from the data obtained in the measurement
considered here. So, notwithstanding the complementari-
ty discussed before, the experiment can be interpreted in
this sense as a joint measurement of interference and
path.
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FIG. 3. Complementarity of path and interference using
inaccuracy measures (4). In (a) the shaded area represents the
8(x)— 8, combinations that are prohibited by the uncertainty
principle (Ref. 7). (b) For €,—¢,, such an inaccuracy relation
has not yet been derived. The curves indicate the performance
of deterministic (dashed lines) and stochastic (solid lines) ab-
sorption setups, and of the QND setup (dotted lines).



NEUTRON INTERFERENCE
WITH DETERMINISTIC ABSORPTION

In a different neutron-interference experiment the sto-
chastic absorber is replaced by a beam chopper.>* By
this chopper the particle is either left completely undis-
turbed (probability v) or is completely absorbed. This can
be interpreted as a measurement of the observable de-
scribed by the bivariate POVM

(M/}=[vM,(a=1)+(1—v)M,(a=0)], i=A4,B,Z (17

with { M;} being given by (11). For i = A this yields

1+v—2v cos(y)

1 —i(1—wv)+2vsin(y)
4 |i(1—v)+2vsin(y)

M, = 14+v+2vcos(y) |

(18)

which has to be compared with the first matrix of (11).
From (18) the detection probability of detector D, for
a=0, B=1is calculated, analogous to (12), as

ply=——+Lv[1+cos(x)], (19)

which is in accord with formula (9) of Ref. 4. Written in
this way we see that p); consists of a contribution
[~(1—v)] stemming from “labeled” neutrons* that do
not contribute to the interference because their path is
known accurately, and a contribution (~v) having a max-
imal interference amplitude as in the pure interference
experiment described by (8).

In Ref. 4 the peculiar difference was noticed between
(12) and (19) as a function of the transmission probabili-
ties a and v, respectively. The results illustrated by Figs.
3(a) and 3(b) corroborate the conclusion of Ref. 4 that the
interference is smaller in the case of deterministic absorp-
tion. This difference highlights the difference of the two
measurement processes, deterministic absorption just cor-
responding to a classical mixture of the two extremes
a=1 and 0, whereas in stochastic absorption the absorp-
tion process is fundamentally quantum mechanical, hence
wiping out phase relations less effectively. In this connec-
tion we may refer to the paper by Mittelstaedt, Prieur,
and Schieder’ in which it is demonstrated in an analogous
interference experiment that the information on one ob-
servable is not always destroyed completely by the mea-
surement of an incompatible observable. The neutron-
interference experiment with stochastic absorption evi-
dently has comparable characteristics.

Analogously to (14) and (15) the POVM (17) turns out
to represent a joint nonideal measurement of the interfer-
ence and path observables, the nonideality matrices being

found as convex combinations A, =vA,,(a=1)
+(1—v)A,,,(a =0) and an analogous expression for u,,,
yielding
1 v
)= 1o 1—0 (20)
and
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(14+v) (1—v)
, 2 2
Wn)= 1 (1=0)  (1+0) @1)
2 2
Then the amounts (4b) of nonideality are
€=V, €,=1—v. (22)

Comparing (22) with (16), we indeed see that this experi-
ment is slightly worse than the stochastic absorption ex-
periment in the sense that it is more distant from the
point €;;,=¢€(,,=0 than the latter experiment [cf. Fig.
3(b)]. This is also expressed in Fig. 3(a) by a §(;,—9d
curve.

(@)

(NON)TRIVIALITY OF JOINT MEASUREMENTS

The interference experiment with deterministic absorp-
tion is obviously not a joint measurement in the strict
sense of the word, since path and interference are at no
time detected jointly. In fact, it can be seen as a realiza-
tion of a proposal by Abu-Zeid.!> Such “joint” experi-
ments may be called either/or measurements, to distin-
guish them from real joint measurements. They are not
very interesting as joint measurements. Weaker than the
notion of an “‘either/or measurement,” is the notion of
trivial joint measurement. We shall call a joint nonideal
measurement, described by the bivariate POVM {R,, |, a
trivial joint measurement of the two observables {M, |
and {N,} if it does not yield more information, i.e., if
Vm » Trl(p—p')R,,,]1=0 for all density operators p and
p’ for which V, ; Tr[(p—p" )M, ]=Tr[(p—p" )N, ]= =0. It
is straightforward to prove that the neutron-interference
experiments, both with stochastic and with deterministic
absorption, are trivial joint measurements of the interfer-
ence and path observables. This can, for stochastic ab-
sorption, most easily be seen from (14) and (15), which
demonstrate that Tr(pM;) are determined completely by
Tr(pP ;) and Tr(pP 4)- For deterministic absorption this
is a direct consequence of the either/or nature of the ex-
periment.

One reason for trying to measure two observables joint-
ly instead of separately would be the possibility of es-
timating correlation between the observables, because in-
formation about this correlation would not seem to be
present in the separate measurements. It is easy to see
that the values of Tr(pP ) and Tr(pP ,) do not deter-
mine the density operator p completely. Hence we might
presume that the correlation between interference and
path observables could be left undetermined by the
separate measurements. If this is the case, however, then
the interference measurements with absorption do not
seem to perform better in this respect. From the algebra-
ic structure of the equations giving the relation between
the POVM’s {R,,,} on the one hand, and {M, } and {N,}
on the other, it seems necessary that, in order to have a
nontrivial joint measurement, it must be described by a
POVM {R,,,} consisting of at least four positive opera-
tors, which are independent apart from the condition (1).
One possibility to achieve this is by inserting a second ab-
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sorber into the interferometer, yielding also a probability
for the neutron to be absorbed if it takes the other path.
Unfortunately this scheme does not work. Although this
experiment also is a joint nonideal measurement of path
and interference, it is a trivial one due to the mutual
dependence of the two absorption probabilities.

In order to implement a true four-operator POVM, we
consider a setup (Fig. 4) inspired by Ref. 2 (see also Ref.
11). Here we assume the input beams to be polarized.

J
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After the first beamsplitter and the phase shifter, an rf
spin-rotating device is inserted, which is intended to ro-
tate the neutron’s spin by 27. The idea is that the spin
rotation is accompanied by a backaction on the elec-
tromagnetic (em) field, e.g., by an exchange of one or
more photons. If a measurement of photon number is
made on the em field, one may hope to detect whether or
not such a rotation has taken place. If we start with one
input beam, the transformation is schematically given by

ILY®|E)—>LV2GIL )Y+ |R )@ &) — LV 2[I|L ) +explix)|R ) 1®15)
— LiV2[IILY® &) —explix)|R)®|E)]
—Li[(—=[L)Y+ilR )& &) —explix(IL)+ilR ))& |E)] . (23)

Here |£) and |£) indicate the states of the em field before
and after a spin rotation, respectively. We measure joint-
ly on the space of final neutron states the PVM corre-
sponding to detectors D, and Dg, and on the photon
space a POVM {N,,N_}. This can be seen (for fixed
|£)) as a joint measurement on the initial neutron state.
The joint POVM with respect to the neutron input state
a|L ) +b|R ) reads

1 —i
MA;t:%<§|Ht|§> li 1 }

+1(¢INL|E)expliy)

1 i
i —1
1 —i
—i —1

For the elements My, we get an analogous expression,
with an extra minus sign in the second and third term.
Then it can easily be shown that the marginals of the
POVM (24) are

MA++MB+

M, +Mp_
(EINLIE) (EINLIE)

A )= eIN_IE) (EIN_1E) |

+1(EINLIE)exp(—ix)

1
— (24)

FHENLIO |,

z(}\mk)

’

it
pP_

M, +M,_
Mg, +Mp_

P,
= (.unl )

o=

+1<¢5181

2
11
2 2

[T

(.u‘nl )= l

Here (£|€)=1|(¢|€)|exp(i@), and {P ,,Pp} is the PVM
corresponding to the interference observable with phase
x+6. From (25) it follows that the accuracy of the path

measurement is determined by the extent to which the
observable {N,,N_} distinguishes the states |{) and
[€). If |£) is a coherent state, then taking the photon
number as the observable would not be very effective in
this respect. A more effective observable can be found
by applying a criterion discussed by Uffink and Hil-
gevoord.!! Without loss of generality we may introduce

two orthogonal vectors |1) and |7*) such that

1§)=\/1—y|n)+\/? exp(i7)|n') ,
|€)=exp(iO)[Vy expliT)|n) +V1—y|n')]

(where 0=y <1). Then the PVM {N_,N_}, defined by

Phase shifter

Spin-flip device

FIG. 4. Interferometer with spin flip. Neutrons in the right
partial beam undergo a double spin flip. The influence of the
spin flip on the em field may be used to effect a QND detection
of the neutron’s passing.
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IN,=1—N_=|n){nl, optimally distinguishes |£) and
|€) in the sense of the mentioned criterion. Further-
more,

(¢£1€) =2Vy(1—y)cos(t)exp(if) 27)

and
CEINLIEY=1—y,..., (28)

enabling us to express the nonideality matrices of (25) in
terms of the parameters ¥ and 7. For the amounts (4b) of
nonideality we get

€n=2Y, €,=1—2Vy(1—y)cos(r) . (29)

In Fig. 3(b) (dotted line) this is plotted for =0, which is
the value of 7 for which the €,,—¢,, track is approach-
ing the value €,,=¢€(,)=0 most closely. In Fig. 3(a) §;,
versus §,,) is plotted. It is seen also here that this QND
scheme is in principle capable of approaching the quan-
tum limit more closely than either of the earlier methods.
Note that no interference pattern can be detected at all if

(&INLIE)=0.

WIGNER MEASURE

The information regarding the joint nonideal measure-
ment described by the bivariate POVM {R, 1 of (3) can,
alternatively, be stored in the operator-valued Wigner
measure defined by

Wu=3 A D™ R (30)

m,n

and satisfying

SWu=M,, I W,=N,. (31)
I k

For the POVM (13) and the stochastic matrices given in

5085
(14) and (15) we obtain
1 |17 2cos(y) —i+2sin(y)
Wu=7 |i+2sin(y) 1+2cos(y) |
1+2cos(y) —i—2sin(y)
W=+ - , (32)
4 |i—2sin(y) 1—2cos(y)
1|1
121:12222 —i 1l

It can easily be verified that the expectation values
Tr(pW;;) do not determine the density operator com-
pletely. This is due to the linear dependency
W, +W,,=2W,, satisfied by this Wigner measure. The
Wigner measure resulting from (24) does separate the
states [i.e, the POVM (24) is informationally com-
plete'>1%] if the photon observable {N,,N_} is taken
appropriately. Thus it can easily be seen that the choice
N, =|n){n| as defined by (26) yields informational com-
pleteness if 7-0. The example demonstrates that the
concept of a Wigner distribution may have a wider appli-
cation than the usual phase-space representation of quan-
tum mechanics. It is interesting to notice that the ob-
servable {N ,,N_} distinguishes maximally between the
state |£) and &) if 7=0. This demonstrates the fact that
a measurement that is optimal in one respect need not
yield maximal information.
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Phase shifter

FIG. 1. Basic interferometer setup. A neutron beam is sent
along one of the incoming paths, and then coherently split. One
of the partial beams undergoes a phase shift y. The beams are
then coherently mixed.



Phase shifter

FIG. 2. Extended setup. Neutrons are deleted (either sto-
chastically or deterministically) with probability 1—a or 1—v
from the right partial beam.



Phase shifter

Spin-flip device

FIG. 4. Interferometer with spin flip. Neutrons in the right
partial beam undergo a double spin flip. The influence of the
spin flip on the em field may be used to effect a QND detection
of the neutron’s passing.



