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The perturbative-variational method is used with a nonorthogonal basis set whose elements are
combinations of two harmonic-oscillator functions symmetrically shifted around the origin in order
to approximate the eigenvalues and eigenfunctions of the two-well anharmonic-oscillator potential
[V(x)=—Z%>+x* with Z2>0]. This basis set is rather adequate for this potential and allows one
to calculate not only the ground-state energy but also the energy of the excited states with very high

precision.

I. INTRODUCTION

The practical application of nondegenerate perturba-
tion theory to the approximation of the eigenvalues and
eigenfunctions of the one-dimensional Schrodinger equa-
tion has always been difficult to accomplish if we try to
achieve high precision. The main reasons are the slow
convergence of the perturbative results, the asymptotic
character of the expansion in some cases, and, for the
quartic anharmonic oscillator, the nonconvergence of the
expansion.! The inclusion of one or more free parameters
in the auxiliary basis set in which we perform the pertur-
bative expansion corrects for these deficiencies, by con-
trolling and accelerating the convergence of the expan-
sions not only for the eigenvalues, but also for the eigen-
vectors,”3 and high-precision results are attained for
several kinds of potentials.*>

Although this procedure can be applied to any kind of
potential, it must be pointed that there are strong restric-
tions for its practical application. The origin of these re-
strictions is the high order of the perturbation series,
which are necessary if high precision is required. This re-
sults in the disposal of some algorithms that allow a fast
and accurate calculation of the expectation values that
appear in the perturbation series. Therefore the use of
perturbation theory has been reduced to potentials and
basis sets that allow an analytical calculation of their ex-
pectation values; i.e., in previous works, the harmonic-
oscillator basis set and polynomial®? or a ratio of polyno-
mial potentials have been used.>® It is obvious that in
this case the choice of adequate free parameters is rather
limited, and only the strength of the harmonic oscillator
has been used in this sense. This restriction is especially
important for some potentials, such as the two-well
anharmonic oscillator [V(x)=—Z%x*+x* with Z?>0].
The double-well structure of this potential causes its
eigenfunctions to be approximated badly by harmonic-
oscillator functions centered in x =0 for values of Z2> 5,
when the depth of the wells is important.

For this potential, the natural choice for an auxiliary
basis set of functions is a sum of two harmonic-oscillator
functions symmetrically shifted from the origin of the
coordinates. With this basis set, the shifted distance may
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be incorporated as another free parameter that can be
added to the strength of the oscillator. The nonortho-
gonality of this set basically has limited its use. However,
within the perturbative-variational approximation the
nonorthogonality does not impose a limitation to the
method. Our aim is to show that the main limitation of
this kind of procedure is the calculation of the matrix ele-
ments that appear in the perturbation series and that the
nonorthogonality of the basis only implies the additional
calculation of the overlaps between the basis functions.

We have not yet discussed the criteria that can be used
to fix the free parameters that appear in the auxiliary
basis set; for the case mentioned above, there are two:
the oscillator strength and the displacement from the ori-
gin of the oscillator functions. The most widely used cri-
terion,>®’ with N, the maximum order of perturbation,
fixed, is to impose that the perturbative estimate of the ei-
genvalue in this order is stationary with respect to the
variation of the free parameters. This may be considered
the most natural form within the perturbation scheme.
Another similar criterion, although it is not equivalent to
the first one, is to make the norm of the N-order pertur-
bation contribution to the eigenfunction stationary. A
different and very interesting criterion consists in taking
the approximations to the successive perturbative orders
as a family of trial wave functions and then applying the
Rayleigh-Ritz variational criterion. We will call this
working within the perturbative-variational approxima-
tion. This last criterion has been recently studied® for the
quartic anharmonic oscillator, and a close parallelism has
been seen with the perturbative criterion with respect to
the norm of the wave function. We must mention that,
although the variational method provides strict upper
bounds only for the ground state, the high precision of
the calculations given by the perturbative-variational
method allows one to apply it with similar effectiveness to
the excited states. The loss of precision is only important
for highly excited states.

Here we shall try to apply the perturbative-variational
approximation to the two-well anharmonic oscillator
with a nonorthogonal auxiliary basis set. We shall first
review the perturbation method for the nonorthogonal
basis set. After this, we shall describe the basis that we
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shall used in our study. We shall discuss the obtained re-
sults, and finally, we shall comment on the conclusions.

II. DESCRIPTION OF THE METHOD

We shall represent our nonorthogonal basis set for
{|®, )} =0, where we have introduced one or more free
parameters that, by now, are not necessary to write in an
explicit way. Let H be our problem Hamiltonian, and let
us write [, ) and E, for the eigenvectors and eigenval-
ues of the corresponding eigenvalue equation:

H|Y,)=E,l4,) . (D

The approximation of these eigenvalues and eigenfunc-
tions is the proposal of our study.

In order to generate the perturbative approximation,
we shall expand the exact eigenfunctions in terms of the
vectors of our nonorthogonal basis:

¥,)=3 C,il®:) . )
k=0

After this, we substitute (2) in the eigenvalue equation (1)
and project over the state |®,, ). When we do this, we
obtain a set of equations for the coefficients C, ,:

2 Cn,k(Hmk—EnAmk)zo’ m=0,1,..., (3)
k=0

where H,,, =(®, |H|®,) and 4,,=(D,|®,) is the
overlap matrix. At this point, we have not made any
kind of approximation and the corresponding solutions
involve a generalized eigenvalue problem. This can be
drastically simplified using the perturbation approxima-
tion. As the first approximation for the nth level, all the
coefficients in (2) will be zero unless they correspond to
k =n, and they will be equal to 1, that is, C,(,,l,l =0, with
the superindex (1) meaning the approximation of first or-
der. This leads to E\""!=H,, / A4,, as the perturbative ap-
proximation of first order for the eigenvalue E,. The ap-
proximations for the successive orders are obtained by
applying (3), keeping the condition C'”=1 for every I.
Thus we can obtain the coefficients corresponding to the
(I +1)th order in a recursive way from the coefficients of
the /th order. Explicitly,

. _ V3
2 (Hmkcm,k AmkEn )
k(D#m (1)
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These formulas are the starting point of the Brillouin-
Wigner perturbation formula.’ It is important to note
the role of the perturbation approximation that trans-
forms a generalized eigenvalue problem in a simple recur-
sive problem and that the structure of the coefficients is
completely determined by the perturbative hypothesis.

The validity of the perturbation approximation for a
particular problem depends essentially on how well the
vector of the basis set to which we shall apply the pertur-
bation approximates the exact eigenfunction. We try to
satisfy this basic requirement by introducing free parame-
ters in the functions and by using an appropriate fitting of
the elements of the basis to our problem.

In general, we must note that for any Hamiltonian, and
even for the second order perturbation approximation, all
the coefficients in the expansion of the eigenvectors are
nonzero. However, if the basis set is suitably chosen and
its free parameters are fixed with their optimal values, the
absolute values of the coeflicients will decrease quickly
around the coefficient k =n, which is equal to 1 for every
order. This behavior ensures that the necessary cut in
the number of the states of the basis set when we perform
a practical calculation will not affect the precision in the
results. Obviously, this cut must be done for a state with
K max >>n. Keeping this practical restriction in mind, we
can write the /th-order perturbation approximation for
the exact eigenvalue n as

kmax
=3 clile,), 1=1.2,... (6)
k=0

Note that C.', and |®,) depend on free parameters.
Therefore, l\l/f,“) for any order / can be seen as a set of
trial wave functions, and we can use the variational cri-
terion in order to fix the free parameters. In this way, we
have used the perturbation approximation for generating
trial wave functions for the variational method. The
variational criterion ensures that the expectation values
of our Hamiltonian between any of the functions |¥!")
are upper bounds to the ground-state energy. However,
as we shall see, the eigenvalues of the excited states are
approximated with high precision when we use the corre-
sponding value of n and for perturbation orders in which
we obtain stability.

It is very important to point out that in many cases the
direct iterative process for generating the successive per-
turbative approximations, shown in Egs. (4) and (5), is
not stable and leads to bad results. A procedure that
does not have this kind of problems and that increases
the speed of the convergence is the Gauss-Seidel
method, ' which uses the coefficients that we have calcu-
lated in the / +1 iteration to obtain the coefficients in the
same iteration for a larger m. That is, we replace Eq. (4)

Cylah= m¥#n  (4)
’ [ ’
i C(1k+1)H
n,
EU+D = k=0 (5)
n ©
S Gl Au
k=0 for
J
S [HauCltV= A EP1+ 3 [Hp C — Ak EX]
C([+1)= k(<m) k(>m)
n,m
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In a certain sense, the Gauss-Seidel method breaks down
the basic structure of the perturbation theory, because it
mixes the orders / and /+1 for determining the order
I +1, but it must be noted that in the zone where the per-
turbative corrections are small, Egs. (4) and (7) are almost
equivalent and the functions associated with these
coefficients are the best variational estimators as we shall
see in the cases that we shall analyze now.

III. TWO-WELL ANHARMONIC OSCILLATOR

There is no doubt that the two-well anharmonic oscil-
lator is an optimal example for the application of the pro-
posed method. On the one hand, its Hamiltonian in the
coordinate representation can be written as

d2
H=—d—2——22x2+x4. (8)
X

It has a quite simple structure, and if the vectors of the
basis set are simple combinations of oscillator functions,
the matrix elements required by the approximation can
be calculated analytically. On the other hand, the struc-
ture of the double well for any value of Z?, i.e., different
depth, allows one to think that a first reasonable approxi-
mation for the different eigenstates will be a combination
of two oscillator functions with the same number of
quanta centered around the two minima of the potential,
shifted to the right and left a distance a approximately
equal to the position of the minima.

This set of functions is adequate to be used as a
nonorthogonal basis in which we can expand the
perturbative-variational trial wave functions |¥{"). That
is, we shall work with the set of nonorthogonal basis
defined as

' P(x;a,a)=¢,(alx+a))+(—1)"¢, (alx —a)) ,

n=0,1,... (9
@ (x;a,0)=¢,(alx+a))—(—1)"¢,(alx —a)),
n=0,1,... (10)

where ¢,(az) is the harmonic-oscillator function corre-
sponding to the nth level:
172

H, (az)exp

(az)?

2

_a
Vr2"n!

o, laz)= (11

H, is the Hermite polynomial of order n. The super-
scripts (+) and (—) are the corresponding parity of the
basis functions. This nonorthogonal set {®{ "), ®{ )} >_,
obviously form a nonorthogonal basis of the set of all
square integrable functions on the real line (L*[R]).

We have chosen our basis set of functions with well-
defined parity, because the Hamiltonian associated with
the two-well anharmonic oscillator (8) commutes with the
parity. This implies that when we construct the func-
tions |W'") for the different orders, taking as initial func-
tion one of the !tb(,,”)) (mw=+,—), both states will have
the same parity. This will allow us to write |¥!")*) or
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|W") =) depending on whether we have initially used
|®' ")) or |®! '), respectively. The different eigenvalues
of the problem Hamiltonian are approximated by the ex-
pectation values of this Hamiltonian. Therefore we must
note that in the corresponding perturbative-variational
states |W!)(™ strict upper bounds will be obtained not
only for the ground state, but also for the first excited
state, because they have opposite parity and are mutually
orthogonal. Obviously, as we have already mentioned in
the Introduction, for the rest of the excited states
W)™ p=£0, the variational method does not provide
upper bounds to the corresponding eigenvalues. Howev-
er, the characteristic of the method allows that, for
sufficiently large values of (/) that make the coefficients
stable in (6), the functions obtained are almost orthogonal
to the lower-energy states, and the estimations of the en-
ergy are excellent approximations to the exact eigenval-
ues. Since there is a difference of the results provided by
the method for the ground state (and the first excited
state) and the rest of the excited states, we provide
separate discussions for these cases.

IV. GROUND AND FIRST EXCITED STATES

The minimum upper bounds obtained for these first
two states for different values of Z? are shown in Table 1.
In all cases, we have used the Gauss-Seidel method. The
corresponding number in the k., column is the
minimum number of states of the basis set necessary for
obtaining stable results; i.e., if we use a value greater than
k max> We get the same result, but is we use a value smaller
than k_,,, although there is stability, the value of the
bound is higher than the one obtained in the other cases.
In all the cases shown in Table I, our results concide with
the ones of Balsa et al.!! who use a high-precision tech-
nique, based on the solution of the Hill determinant, with
a harmonic-oscillator basis with free strength. It is also
very interesting to compare the results of Fernandez,
Meson, and Castro,® who use the perturbation approxi-
mation with a standard harmonic oscillator basis set with
free strength. They fix this parameter using the first cri-
terion mentioned in the Introduction. Our results coin-
cides with theirs, although it must be noted that they
need a higher perturbation order to obtain stability for
1<Z%<10. Also, they cannot calculate for Z2> 10 be-
cause there are serious problems of stability. This last
fact justifies the use of this nonorthogonal basis for this
problem.

In the practical application of the method proposed
here for these states and for the rest of the excited states,
it must be emphasized that for a wide range of values of
the variational parameters a and a the method converges
quickly and to the same expectation value, although the
perturbation order needed to obtain stability depends on
the values of the free parameters. For example, for
Z?=1 and working with a =0, a=1.58, and in order 16,
we get a similar result to the one shown in Table I. This
behavior allows us to use for the calculation the values of
the free parameters a and @ that minimize the energy
when we use the unperturbed function corresponding to
I=1 (i.e, the values that minimize E\’). We have
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TABLE 1. Ground- and the first-excited-state energies (in units #/2m = 1) for different values of Z2.
The values of the variational parameters a and a are also given. N is the order of the perturbation ex-
pansion with which we obtain convergence, and k,,, is the number of the maximum states of the basis
set used in the calculation. The parity of state is given by p.

z? a a N p E K max
+ 1.060 362090484 183
0 1.20 0.00 30 - 3.799 673029 801 394 50
+ 0.657 653005 180715
1 1.54 0.58 11 - 2.834 536202 119 305 60
+ —3.410142761239 826
5 1.81 1.42 19 - —3.250675 362289234 100
+ —20.633 57670294770
10 2.13 2.16 35 — 20.633 546 884 39975 100
+ —50.841387284 38190
15 2.35 2.69 51 — —50.841 387284 18584 150
+ —149.219456 1421913
25 2.67 3.51 39 - —149.219456 1421910 50
+ —615.020090902 757 6
50 3.16 4.98 9 - —615.020090902 757 6 20
+ —2845.867 880342076
100 3.76 7.06 8 — —2845.867 880 342076 20

worked with the values summarized in Table I. This cri-
terion is very simple and provides practically the same re-
sults as when we use the optimal values of the parame-
ters.

It is interesting to study the dependence of the conver-
gence of the method with the parameter of the potential,
Z%. This can be seen by comparing the values of the
number of the states considered in the basis (k_,,) and
the perturbation order shown in Table I. Note that the
values of these parameters increase for 1<Z?<25 and
are very small out of this range. The facts that the num-
ber of states needed to obtain convergence decreases and
that the speed of convergence increases for Z2> 50 are
explained by the adequacy of the basis set we use for the
cases in which the double-well almost degenerates into
two separated wells. The difficulty noted for intermediate
values of Z? is explained as follows: For these values the
zone between the two wells has important effects on the
wave functions, which are difficult to obtain with our
basis set. It is therefore necessary to use a large number
of states to reproduce the appropriate behavior in this
zone. Finally, we must note that if Z? is small, Z2<1;
then the harmonic oscillator basis set gives results very
similar to those given by our basis set, and they may be
even better than ours, as we shall see when we discuss the
excited states.

V. EXCITED STATES

As we have already mentioned, our method cannot be
applied to the rest of the excited states, at least in the

same way as that for the ground state. However, the ex-
cellent results obtained for the energies of the ground and
first excited state for every value of Z? show that the
perturbative-variational method of constructing the wave
function gives us an excellent, almost exact, approxima-
tion for the eigenfunctions of these states. The mecha-
nism of constructing these perturbative-variational wave
functions for the rest of excited states is identical to the
one used for the ground state, with a change of the state
we use as the first-order approximation. It may be hoped
that the right choice of the values of the variational pa-
rameters will allow us to get also good approximations to
the eigenfunctions corresponding to those excited states.
The variational criterion will be strictly applicable to a
set of trial wave functions for an excited state if we know
exactly the eigenfunctions of all states with less energy

TABLE II. Overlap among the best approximation for
different states obtained using the perturbative-variational
method for different values of Z2.

Z? 1 50 100

Overlap

|<0l4)| 1.30X 1071 3.26X107'8 1.33x 1071
1€{0]10)] 1.62Xx10 12 2.36X1071° 1.90x 1072
|(0]14)] 1.76 X101 5.68x 10" 1.04Xx 107"
|1(4]10)] 1.45%x 10" 3.48X107"° 1.44X 10718
|1(4]14)] 3.53x10° " 1.97x107° 1.16x 107"
1€10]14)] 1.03x10° " 4.58%x10°8 1.92x107°
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TABLE III. Energies obtained for different excited states (all with even parity) for the cases studied
in Table II. They agree with the results obtained by using the method of Balsa et al. (Ref. 11).

z? 1 50 100
State
4 14.372 406 504 677 87 —575.3857173515268 —2429.480313 186997
10 46.969968 159901 75 —516.880898 2868639 —2345.356 825499 766
14 73.209 480 637 650 87 —478.537 623 6849840 —2289.584 227 545 887

and we require the trial wave function to be orthogonal
to them. Obviously, the solutions of our approximation
are not the exact solutions of the two-well anharmonic
oscillator. However, it is interesting to note that the best
solutions provided by our method for different states,
without imposing orthogonality, are almost orthogonal to
each other at least for a wide range of values of Z? as is
shown in Table II. The values we obtain for the energy
are in very good agreement with those obtained using the
method of Balsa et al.!! for all the significant figures
shown in Table III. All these results permit us to affirm
that the approximation to the wave functions for these
excited states are rather adequate.

However, in the practical calculation of the excited
states, we find that there are great difficulties for values of
Z? between 10 and 25. In these cases, we are only able to
approximate the two first states, and if we increase the
number of the states in the basis set, there are problems
of convergence. As a matter of fact, the difficulties only
disappear for every excited state (n <25) if 100> Z?> 50.
These difficulties are explained if we look at Fig. 1. Here,
we see that the importance of the states of the basis does
not decrease quickly when we increase the value m of the

15
50 25
Nm
10 1
5
5
15
Y + —
0 25 50 75 o 100
FIG. 1. Variation of the coefficients of the normalized

ground state C, ,, for different values of Z?2 is shown. With N,,,
we have represented —log,,|Cy .| as a function of m; the num-
bers in the figure correspond to the values of Z2. We can see
that C, ,, decrease quickly when we increase m for both small
and big values of Z2. This behavior disappears for intermediate
values of Z2 (5<Z?%<25).

state for 10 < Z2<25. This problem disappears for other
values of Z2 and means that we must include a greater
number of states in order to obtain a reasonable approxi-
mation for the state. This indicates that the basis set we
use is not adequate for the range mentioned.

It is important to point out that for Z% <1 the best re-
sults are obtained with a =0, that is, for harmonic-
oscillator functions centered at the origin. The reason for
this result is that for small values of Z? the rupture of the
potential in two wells is not very important and can
therefore be taken into account with use of a harmonic-
oscillator basis set. However, the inclusion of the param-
eter a is necessary for large values of Z2 (Z?>25). So it
is better to use a =0 for small values of Z? (Z?< 1) and
a##0 for large values. For intermediate values of Z?2,
10 < Z2 <25, neither of the two possibilities provides ac-
ceptable results, and the perturbative-variational method
is not useful for the excited states.

VI. CONCLUSIONS

The main conclusion of this work is that the use of
nonorthogonal basis set does not pose an additional prob-
lem in the construction of the perturbative-variational
functions and in the application of the variational cri-
terion for obtaining the eigenvalues. The only difficulty is
the calculation of the matrix elements of the Hamiltoni-
an, but this is common for the cases of orthogonal basis
sets. The nonorthogonality of the basis set provides more
flexibility for choosing the basis and for including the free
parameters that we shall use for a specific problem.

The results obtained for the two-well anharmonic oscil-
lator when we use a basis set of shifted harmonic func-
tions is a good example of the advantages of working
with a basis set that is adequate for the characteristics of
the problem. A comparison with the results of Fernan-
dez, Meson, and Castro,® who use harmonic-oscillator
functions shows that with our basis set we can use any
value of Z? without problems and:obtain excellent results
with a faster convergence for the ground and first excited
states. For the other excited states, the method presents
great convergence difficulties for intermediate values of
Z?. For greater values of Z?, 100> Z?*> 50, the method
provides results with an accuracy comparable to those
obtained using Hill’s determinants,!' which have a high
precision.

Finally, we would like to emphasize that the
perturbative-variational method merges adequately the
perturbation theory and variational method. The pertur-
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bation theory allows one to generate an adequate set of
trial wave functions simply and systematically; moreover,
the variational approach provides the criterion for fixing
the free parameters and a very good estimation of the ei-
genvalues. In this sense, it is important to point out that
the perturbative-variational functions for different excit-
ed states are almost orthogonal to each other. This is re-
markable in view of the fact that our basis set is

nonorthogonal and that the orthogonality has never been
required.
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