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Stability of cellular patterns in directional solidification
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Ideas from the theory of constitutional supercooling, as well as an approximate linear stability
analysis for small wavelength perturbations, lead to a simple stability criterion for the periodic
cellular patterns seen in the directional solidification of alloys with small partition coefficient.
There is good qualitative agreement with the limited experimental data available in the cellular
regime. This criterion suggests that solutions found by using the analogy between directional
solidification and Saffman-Taylor fingers may be unstable.
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Recent analytical and numerical work has shown that
the equations describing the directional solidification'
(DS) of a binary mixture admit a continuous family of
periodic steady-state cellular solutions with varying wave-
lengths k. However, a steady-state analysis alone can
give no information about the stability of these solutions,
and hence their relevance for real experiments. In this pa-
per we present an approximate stability analysis that in

many cases will allow one to determine whether a given
steady-state solution is likely to be stable. The simplest
prediction is based on ideas from the theory of constitu-
tional supercooling, 's and we refer to it as the local con-
stitutional supercooling (LCS) criterion. The LCS cri-
terion relates the positions of the tips of stable periodic
cellular arrays in the experimental cell to the pulling ve-
locity V, and its predictions can easily be checked experi-
mentally. A more general, but still approximate, linear
stability analysis for arrays of cellular patterns suggests
that in many cases corrections to the LCS criterion should
be small.

Equations similar to the LCS criterion have in fact been
used before, particularly in the dendritic regime found at
still higher pulling velocity, or smaller temperature gra-
dient. However, the earlier derivations relied on some-
what ad hoc matching arguments, and they attempted to
predict a unique pattern spacing for a given set of experi-
mental conditions, rather than determine which members
of a family of solutions might be stable. To our
knowledge, the derivation and interpretation of the LCS
criterion and its corrections in terms of stability concepts,
and its particular relevance in the cellular regime has not
been realized before.

We consider the standard one-sided solutal model, '

where solidification is assumed to occur as matter in a thin
cell is pulled through a fixed linear temperature gradient,
and impurity diffusion in the solid is ignored. The steady-
state equations for DS in two dimensions in a frame mov-

ing at velocity Vcan be written as'
1 Bu

az

where, using Eq. (3),

au; —= u; —u,'=1 —(1 —k)(z;/&T+do~) . (4)

which denotes the boundary of the stable single-phase re-
gion in a modified phase diagram where the abscissa is the
reduced concentration field u and the ordinate is the posi-
tion z in the cell (by assumption linearly related to the
temperature T).

We note that in almost all cases, the curvature at the
tips of experimentally relevant cellular patterns is small
enough that the term dux in (3) represents only a very
small correction. '" (This will be discussed more quanti-
tatively later. ) This suggests that we can think of the re-
gion near the tips as locally planar, and use some of the
same stability ideas there that are used to examine the
stability of the initial planar interface. The simplest ap-
proximation leads directly to the LCS criterion.

Here do is the chemical capillary length, lT the thermal
length, /D =D/ V a diffusion length, a' the interface curva-
ture, and 8 the angle between the interface normal n and
the growth direction, taken parallel to the z axis. ' A sub-
script i denotes a quantity evaluated at the interface, and
the superscript s denotes the solid phase. The dimension-
less field u =—(e —c )/hen measures the impurity concen-
tration c in the liquid relative to that far ahead of the in-
terface c . It is normalized by the width of the planar
two-phase region, hco =—co —co =co(1 —k), with k the
partition coefficient and co the concentration at the planar
steady-state interface. Global conservation of impurities
then fixes the location of the steady-state planar interface
in the cell such that c =kco, or equivalently,
uu duo 1. This defines the origin z =0 of our coordi-
nate system.

Equation (2) expresses local conservation of impurities
as the interface advances, with hu; in (4) the "impurity
surplus" rejected at the interface. For materials with
small partition coefficient k, we see that h, u; has a
significant dependence on the position z; in the cell. This
will play an important role in what follows.

Equation (3) takes account of surface-tension effects
and imposes local equilibrium at the interface. For planar
interfaces with ~ 0, it describes the liquidus line

(5)
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To begin the analysis, let us review the theory of consti-
tutional supercooling (CS) for the planar interface. '
The basic idea is that in the steady state we can apply the
concept of local thermodynamic equilibrium to the melt

just in front of the moving planar interface. The interface
is supposed to remain stable as long as the impurity con-
centration in the melt just in front lies in the stable
single-phase region as determined from the phase dia-
gram. Since we assume local equilibrium at the interface
from (3), the CS stability criterion reduces to the follow-
ing requirement. The (dynamical) gradient ~du/dz ~;

d u;/lp determined from the boundary condition (2)
must not exceed the liquidus slope ~duL/dz

~
I/lr in (5).

This criterion can be reexpressed as

veau; ~1,
where we define the standard dimensionless control pa-
rameter ' v = ir/lD. Note that v is directly proportional to
the velocity V.

The usual CS prediction vc 1 for the stability limit
of the plane' follows from (6) where we note that global
conservation requirements force the plane to be located at
z; 0, where hu; 1. This criterion is surprisingly accu-
rate, given the simplicity of the CS argument. For ma-
terials with small k, a linear stability analysis (see below)
predicts only small changes in the critical value of v, i.e.,
~c= 1.

However, the arguments leading to (6) seem nearly as
plausible as before when applied locally to the melt in
front of the tips of certain (nonplanar) patterns, provided
that the curvature corrections in Eq. (3) are small, and
that k is reasonably small, e.g., k 50.2. In particular, we
need to use only the boundary conditions (2) and (3) and
the local symmetry in the tip region (nearly planar, with
8, 0) to arrive at (6), with hu; h,u„ the impurity
surplus at the tip. When curvature corrections to du& from
(4) are small, Eq. (6) can be reexpressed as

g, = (v —1)—(1 —k)z, /iD ~ 0 .

Equation (7) predicts that the tip position z, of stable pat-
terns with v & 1 must move up in the cell, relative to the
planar position at z 0, until the smaller impurity surplus
hu, allows (6) or (7) to hold true. It is natural to conjec-
ture that the operating point in real experiments should be
close to the one that requires the least forward motion,
i.e., the re~ion where g, =0. We refer to this as the LCS
criterion. '

Of course, this argument is only suggestive. The CS
condition (6) is not exact, even for the plane at z =0. It is
easy to see that corrections to the LCS picture must surely
be taken into account at large v & 1/k (usually in the den-
dritic regime), since (7) would then predict an unphysical
"concentration deficit" at the tip with u, & 0.

To determine the nature of the corrections to LCS, we
extend the usual planar stability analysis' to the case
where the wavelength of interface perturbations is small
compared to A, , the wavelength of the (steady-state)
profile z; (x). Representing the perturbed interface by

zf(x, t) z;(x)+zz exp(iqx+tot),

(8'u/8x '),
co —p2 +

ur

p (pv/p
—I+k)(veau, —1 —(v —l)crq ]

Qt
(8)

Here p=A, /2lD is the Peclet number, which relates the
scale of the pattern to the diffusion length, pv satisfies

pv(pv p) q 2, and

ks 4 vdplD
0

g 9
k (v 1)

where X, is the (lower) neutral stability wavelength for
the plane in the limit as k 0. cr provides a measure of
the importance of surface-tension corrections due to the
curvature of the interface. Experimental values for a are
usually very small. ""3We note that (8) reduces to the
standard result for the plane, ' where hu, duo 1, and
(r1 u/8x ), 0. The expression in (9) for A,, then follows
from (8) if we set k 0 and solve for the associated wave
vector q, giving co 0.

In general, for small k, the first term on the right-hand
side of (8) is small, and important only in a small region
of v very near threshold. The quantity (8 u/8x )& ap-
pearing in the second term on the right in (8) is negative
(stabilizing) and numerical calculations indicate that it
too is often small in magnitude. '

We can then obtain the LCS criterion from (8) by
neglecting both these terms as well as all terms propor-
tional to o, ' requiring that a stable solution with to ~ 0
results. This derivation makes it clear that the LCS con-
dition g, =0 gives an upper bound to the distance that the
tips of patterns have to move to achieve stability, since all
terms omitted in (8) are negative (stabilizing). Correc-
tions due to the curvature of the interface are more impor-
tant at large v, since they are proportional to (v —1)~.
Indeed, for very large v in the dendritic regime, the tips
move up very close to the line z 1~. The stability is then
determined by curvature effects (solvability) and weak in-
terdendritic interactions. However, in the cellular re-
gime with v —1 of O(1), it appears that corrections to the
LCS condition for patterns with small o are indeed small.

There is some limited experimental support for this con-
clusion. The only data we found in the literature that al-
lowed us to test the LCS picture for cellular arrays are
those of Esaka and Kurz on cells in succinonitrile-
acetone mixtures with k 0.1. In Fig. 1 we plot the pre-
dictions of Eq. (7) for the tip position as a function of the
control parameter v, along with results obtained from the

we assume the perturbed impurity field takes the form

uv(x, z, t) u(x, z)+u~exp[iqx —pv(z —z, )+totj

where u(x, z) is the field associated with the solution
z;(x). In these and the equations that follow, we take the
half wavelength X/2 as the unit of length and A, /4D as the
unit of time. We make the usual quasistationary approxi-
mation, ' where we assume that Eqs. (1) and (3) still hold,
but use the correct (time-dependent) normal coinponent
of the interface velocity in Eq. (2). Substituting zf and uv

and linearizing, we find in the region near z, our basic re-
sult
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—1)ax. Here (; —= (v —1)—(1 —k)pz; is the LCS pa-
rameter (7) evaluated at a general (dimensionless) posi-
tion z;.

These equations are valid for any p, but we now take
the limit p~ 0 in the following natural way. ' We exam-
ine the region near the tips, allowing for the possibility
that pz& reaches a finite limit as p 0, but make the im-
portant assumption, to be verified later, that (, remains
greater than zero. In the fingertip region, of O(1) in our
units, we can then ignore the z variation of g;, replacing it
by g, . Then ignoring all other terms proportional to p, we
see the modified DS equations are identical in form to the
ST equations given above if we let p/(, p and

FIG. 1. Plot of the tip position z,/lr vs v. The LCS criterion
0 for k 0. 1 yields the dashed line. The solid line gives the

k 0 limit of the LCS criterion. The dotted lines denote the
predictions of (11) for k 0. 1 and various values of e. The solid
dot at v 4.2 and the square dot at v 8.7 represent two data
points of Esaka and Kurz (Ref. 7), the latter showing some den-
dritic features, while the data points for v 1.3 and 4.2 are ob-
tained from Ref. 8.

mapping onto the Saffman-Taylor finger as discussed
below, and compare with the experimental data. There is

good qualitative agreement between experiment and the
LCS criterion for data in the cellular regime. Clearly,
more experiments are called for, especially since wetting
or surface preparation effects involving the cell thickness
may be of importance. ''

If the LCS picture is accurate, it has important conse-
quences for the applicability to real experiments of the
often used analogy between Saffman-Taylor fingers and
DS at small Peclet number p. ' ' To see this, let us first
recall that the steady-state equations describing Saff-
man-Taylor (ST) fingering2 can be written as V2&sT 0,
with boundary conditions (n Vga ); cos8 and

o rc, where p
—b (P —Po)/(12pVa), and cr

b y/12@ Va z. Here b is the plate spacing, p the viscosi-

ty, V the finger velocity, P the pressure field, Po the pres-
sure inside the finger, y the surface tension, and a the cell
half width (taken as unit of length).

Dombre and Hakimz show that for "fat" fingers whose
width approaches the cell width 2a, cr as defined here'
approaches the maximum value 1.393, and they derive the
limiting behavior for small e of a (e), where e is the rel-
ative groove width at the base of the finger. Karma and
Pelce' give a convenient interpolation formula fitting nu-
merical results for larger e. One finds that viscous fin ers
with narrow grooves are associated with values of o of
order unity.

Returning now to the DS problem, the analogy to
viscous fingering can be seen most easily if we introduce a
modified field2' p by the equation u 1 —p(z+P)/v.
The field p measures the difference between the impurity
concentration field u and its dominant variation in the z
direction along a straight piece of the interface as dictated
by the phase diagram. By substituting p into Eqs.
(1)-(3), when written in dimensionless units, we find ex-
actly the modified DS equations V p+p8&/Bz —p, with

[(;—(1 —k)p(v —1)aa]cos8 (n Vp); and p; -(v

(v —1)o(p- 0)
g, (p- o)

(lo)

Karma and Pelce'6 and Mashaal et al. ' use conserva-
tion and matching arguments to arrive at an expression
for (,. Using also (10), their result can be expressed as

1

1+(1 —k) e/k

Different members of the family of solutions satisfying
(10) and (11) are parameterized by the relative groove
width e of the DS finger, now measured in the "matching
region, " a distance of O(1) behind z, . Equation (11)pre-
dicts that for small e & k, both g, /(v —1) and o are O(1).
This is consistent with a key assumption made in the map-
ping to the ST problem: g, remains finite as p 0.

Weeks and van Saarloos showed that if the partition
coefficient k is small, there is a natural extension of the
matching arguments leading to (10) and (11) to systems
with finite p of O(1). The resulting finite p corrections to
the right-hand side of (11)are relatively small, at least for
small e, and yield somewhat larger values for g, and o.

Unfortunately, this entire class of solutions appears to
be in qualitative disagreement with many experiments.
Equation (11) implies that the small e solutions are asso-
ciated with large values of ~. Note that solutions with
e& n have wavelengths A, (11,0 lying outside the planar
instability band. However, most experimental patterns
have narrow grooves, or small e, but with small cr values
such that X&A, "'i Small values of a can arise from
(11),but only for large c.

Moreover, these solutions are not consistent with the
LCS picture, where we expect g, =0. ' This is illustrated
in Fig. 1, where we note that the ST curves for narrow
grooves, say t. ~0.1, lie far below that of the LCS cri-
terion. Of course, this argument is not conclusive, espe-
cially since corrections to the LCS criterion are more im-
portant at large o and all these tend to increase the value
of (&. Still, it does suggest there could exist a different,
and more physically relevant, branch of steady-state solu-
tions where g, is small for small e. Note from (11) that for
small p this would also imply small values of cr as seen in

experiments.
This conclusion seems fully in accord with the work of

Brener, Geilikman, and Temkin on the related problem
of crystal growth in a channel (essentially the v ~ limit
of DS). When interface kinetics is taken into account,
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they find at least two branches of steady-state solutions.

Only one of these is related to ST fingers in the limit

p 0, but it exhibits several unphysical features. The
second branch properly described free dendritic behavior
as the channel width tends to infinity. %e believe a simi-
lar scenario may apply to DS.

These results point out the need for a systematic experi-
mental test of the LCS criterion, and its corrections, for
cellular arrays. If this turns out to be accurate, then there

are theoretical as well as practical implications. Many
theoretical steady-state patterns found in the literature
are predicted to be unstable by the LCS criterion. The
considerable body of work based on the mapping to the
ST finger should then be reexamined, and a more rigorous
and systematic stability analysis for arrays of cellular pat-
terns is called for. More generally, the question of
"branch selection" for this entire class of pattern forming
systems needs more study.
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