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It is shown that the motion of an individual test electron in a low-density relativistic electron
beam propagating through a realizable planar wiggler magnetic field is nonintegrable and can be-

come chaotic. The presence of chaos, which is induced by the transverse spatial inhomogeneities
in the wiggler field, poses limits on the wiggler field amplitude and the beam size for beam propa-
gation and free-electron-laser operation. An approximate condition that determines the onset of
chaos-induced beam degradation is derived analytically and found to be in good qualitative agree-
ment with the numerical simulations using the Poincare map.

The free-electron laser' (FEL) has been an active area
of research since the classic experiments by Deacon et al.
At present, the basic physics of the FEL interaction is well
understood for an ideal (constant-amplitude) wiggler
field, and coherent radiation has been generated from the
visible, to the infrared, to the microwave wavelength
range. Free-electron-laser operation often requires
sufficiently large gain (growth rate), which increases when
the beam current and/or the wiggler field amplitude are
increased. In the high-current (high-density) regime and
the intense wiggler field regime, the electron motion can
be altered significantly by the equilibrium self-field
effects5 associated with the beam space charge and
current and by the transverse spatial inhomogeneities in
the applied wiggler field. This raises important questions
regarding beam transport and the viability of the FEL in-
teraction process in these regimes.

In this Rapid Communication, we show that the motion
of an individual test electron in a low-density relativistic
electron beam propagating through a realizable planar
wiggler magnetic field (including transverse spatial inho-
mogeneities) is nonintegrable, and exhibts chaotic behav-
ior when the wiggler amplitude is sufficiently large. Here,
chaos refers to the phenomenon in which particle trajec-
tories are sensitive to the initial conditions. In the regime
where chaos occurs, it is found that the electrons move
back and forth relative to the direction of beam propaga-
tion in an unpredictable manner. In addition, it is shown
that the threshold value of the wiggler field amplitude for
the onset of chaos decreases monotonically as the ampli-
tude of the betatron oscillations in the test electron orbit
increases. Therefore, the existence of chaos in the elec-
tron orbits poses limits on the wiggler field strength and
the beam size for beam propagation and FEL operation.

H = [(cP+eA„) +m c ] ' ymc (2)

Here, c is the speed of light in vacuo, —e, m, and y are
the electron charge, rest mass, and relativistic mass factor,
respectively; the canonical momentum P is related to the
mechanical momentum p by P =p —(e/c)A„(x); and

NlC
A (x)= (3)cosh(k x )sin(k z )er

is the vector potential for the wiggler magnetic field
B (x) =VxA„(x). In Eq. (3), a„=e8 /mc k„=const
is the usual dimensionless wiggler amplitude. It is readily
shown from Eq. (3) that the wiggler magnetic field
satisfies the vacuum Maxwell equation Vx8 (x) =0. Be-
cause the Hamiltonian in Eq. (2) is independent of time t

We consider a tenuous electron beam propagating in

the z direction with average axial velocity V,i, =P,bc
through the externally applied magnetic-field config-
uration

B (x) —8 [e„cosh(k„x)cos(k z)
—e, sinh(k„x)sin(k„z)],

where 8 const and k„=2tr/X„are the amplitude and
wave number, respectively, of the realizable wiggler field.
The present analysis assumes that the average cross sec-
tion of the electron beam extends from x —xb to x =xi,
in the x direction, and that the system is uniform in the y
direction. Because the electron density and current are
assumed to be low, the equilibrium self-electric and self-
magnetic fields produced by the beam space charge and
current are treated as negligibly small. Therefore, the
motion of a typical test electron within the electron beam
can be described by the relativistic Hamiltonian
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and coordinate y, it follows that the total electron energy, H ymc, and the y component of canonical momentum,

P» -p» —eA»„(x,z)/c, are exact constants of the motion in the limit of a tenuous electron beam. Substituting Eq. (3)
into Eq. (2) and assuming that P» 0 readily yields

H=lc P„+c P, +a„m c cosh (k„x)sin (k„z)+m c ]'~ -const. (4)

The Hamiltonian in Eq. (4) describes the electron motion
in the three-dimensional phase space (z,P„P,) because x
can be determined from the condition H-const. In addi-
tion, the phase space is periodic in z with the periodicity
Ir/k„k„/2, and invariant under the canonical transfor-
mations (x,P„) ( —x, —P„) and (y, P» ) ( —y,

P»).—In Eq. (4), the x and z components of mechanical
momenta are p„P„and p, =P, .

For the electrons at the beam center (x =0), the factor
cosh (k„x) in Eq. (4) is equal to unity, and the x com-
ponent of canonical momentum, P, p„, is a constant of
the motion. Therefore, for P„O, the Hamiltonian in Eq.
(4) reduces to a pendulumlike Hamiltonian of the form

H(z, P, ) lc P +a m c"sin (k~z)+m c )'

which is integrable. As far as free-electon laser applica-
tions are concerned, we are interested here in the un-

trapped orbits, which correspond to constant-energy con-
tours with energy H & (I+a ) '~ mc in the phase space
(z,P, ). Electrons displaced from the beam center under-

go the so-called betatron oscillations in addition to the
wiggle motion induced by the transverse wiggler field. It
is well known for a„« yb that the motion of an individual
electron is regular and can be described by a superposition
of the (fast) wiggle motion and the (slow) betatron oscil-
lations induced by the transverse spatial inhomogeneities
in the wiggler field. That is, ~lie electron wiggles in the y
direction at frequency ck„p,b and oscillates in the x direc-
tion at the betatron frequency rIIp ck„a /%2yb, while
traveling axially with average axial velocity p,bc. Here
p, b

= V,b/c [I —(1+a /2)/y$j '~ is the average normal-
ized axial velocity of a typical test electron, and ybmc is
the electron energy. For FEL operation with a cold, thin
(k xb «1) electron beam, the orbit of an individual beam
electron corresponds to an untrapped orbit with energy
H ~ ybmc & (1+a ) ' mc .

The transverse field inhomogeneities in Eq. (4) can play
an important role in altering the electron motion when the
wiggler field amplitude a„and/or the normalized trans-
verse displacement k x become sufficiently large. We find
that the electron motion undergoes a transition from regu-
lar motion to chaos, as a and/or the betatron oscillation
amplitude are increased. In essence, the chaotic behavior
originates from the coupling between the wiggle motion
and the betatron oscillations, which is enhanced by in-
creasing a and/or the betatron oscillation amplitude.
Figure 1 show the Poincare surface-of-section plot in the
phase plane (z,P, ) at P„=O for beam energy yb =3.0 and
wiggler amplitude a 2.0 In Fig. 1, the orbits corre-
sponding to the untrapped orbits in the integrable limit
(k„x=0) are obtained by integrating numerically the
equations of motion derived from the Hamiltonian in Eq.
(4) with the initial conditions P„o 0, k„zo x/2, and
eleven choices of P 0 distributed uniformly in the range
from P, p mc to P,o 2mc. The condition H(xo, zp,

I

P o,P p) - ybmc' or cosh(k xp) (y$ P o/m c
—1)'~ /a„determines the initial normalized transverse
displacement k ~xo~, which increases monotonically from
0 to 0.783 as P,o decreases from P,o (yg —

1
—a ) '~ mc

2mc to P,o mc It. is evident in Fig. 1(a) that the
phase plane contains chaotic orbits as well as regular or-
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FIG. 1. Poincare surface-of-section plots in the (z,P, ) plane
generated from the Hamiltonian in Eq. (4) for yb -3.0, a =2.0,
and P„O. Plots corresponding to (a) the entire phase plane
with k z modIz, and (b) a closeup of (a) showing the vicinity of
regular orbits with P.- & mc.
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bits [Kolmogorov-Arnold-Moser (KAM) tori ]. The
chaotic orbits exhibit a sensitive dependence on the initial

conditions and have positive Liapunov exponents. In Fig.
1(a), the main chaotic sea occupies a region of phase
space with positive and negative axial momentum. That
is, the axial velocity of a chaotic orbit can become nega-
tive even though the initial axial velocity is large and posi-
tive. Typically, the reversal of the axial momentum in the
chaotic orbits is found to occur within a few betatron os-
cillation periods. Moreover, the chaotic orbits exhibit ir-
regular betatron oscillations with a maximum transverse
displacement greater than the initial transverse displace-
ment xp. By contrast, the regular orbits undergo periodic
or quasiperiodic betatron oscillations with the oscillation
amplitude x xp ~ 0. Figure 1(b) shows a close-up of
Fig. 1(a) in the vicinity of the regular orbits with P, )mc.
In Fig. 1(b), the orbits with P, p in the range 1.6mc
~ P,p~ 2.0mc are regular, corresponding to a normal-
ized betatron oscillation amplitude in the range 0 ~ k xp
~0.57. On the other hand, all of the orbits with

~P, ~
& 1.6mc or ~k~x~ &0.57 are chaotic. In other words,

for given yb and a, there exists a unique critical value of
transverse displacement beyond which the electron orbits
become chaotic. Therefore we identify the onset of beam
degradation due to chaotic effects to coincide with the on-

set of chaos in the electron orbits at the edge of the beam.
With this definition, the parameter space (ys, a„,k xb)
can be divided into regular and chaotic regions for beam
propagation. In the remainder of this article, we obtain
an analytical estimate of the boundary between the regu-
lar and chaotic regions and compare the results with nu-

merical simulations.
To determine the regular and chaotic regions, we ex-

pand Eq. (4) to order a„/yp, where a„/yp & 1 is assumed.
This yields

H =Hp+Hp+H, ,

where

a
H =,2P2+ 1+'- m2, 4

2

H- (P'+ym tpx )1

2 yam

.
i/2

= $07P1C
2

(5)

(6)

mN
H, = [cosh(2k x)+1]cos(2k„z), (8)

4k

and top =ck a /J2yp is the betatron oscillation frequen-
cy. In Eq. (5), the lowest-order Hamiltonain Hp describes
the average axial motion of the electron, the perturbation
Hp describes the betatron oscillations, and the perturba-
tion H, describes the wiggle motion and the coupling be-
tween the wiggle motion and the betatron oscillations. It
follows from Eq. (7) that the solutions for the betatron os-
cillations can be expressed as x(t) x cos(tppt+a) and

P„(t) = —ypmtppx sin(cppt+ a),
where x and a are the amplitude and phase of the oscil-
lations, respectively. Substituting x (t ) x cos(topt +a)
into Eq. (8) and making use of the generating function for
Bessel functions, it is readily shown that the condition for
resonance between the wiggle motion and the nth har-
monic of the betatron oscillations can be expressed as

ntpp„—ck P,„=O, n =0, ~ 1, + 2, . . . . (9)
Moreover, the width of the nth-order resonance W„ in P,
space is given by

2a y„rnc [1+Ip(2k x )] ' (n =0),
(2+a ) ' [I2„(2k x )] ' (n&0) . (10)

where N =P, /hP, = [2(yb —1)) 't /a is the highest-
order resonance in the range extending from P, = —P,
to P, =+P, . The function f defined in Eq. (11) is posi-
tive (negative) in the regular (chaotic) region of parame-
ter space. Figure 2 shows plots of the regular and chaotic
regions in the parameter space (k xb, a„) for yb =3 and
8. In Fig. 2, the dashed curves correspond to the analyti-
cal estimates obtained from Eq. (11),and the solid curves
represent the corresponding numerical results obtained by
generating Poincare surface-of-section plots similar to
Fig. 1. Despite the differences between the simulation re-
sults and analytical estimates of the boundary, the essen-
tial features are described well by our simple analytical
model. Similar results can also be obtained for a realiz-
able helical-wiggler field configuration.

The implications of these results can be applied (for
example) to the microwave FEL experiments by
Orzechowski etal. , which produce (with wiggler field
taper) 1 GW of microwave power at 34.6 GHz. In the ex-
perirnents, ' an electron beam with energy 3.5 MeV,
current 850 A, and beam width 2xb=1.0 cm is injected
into a planar wiggler field with wiggler amplitude

In Eqs. (9) and (10), p„cp=ck a /v 2y„, y, = [(n
+1)a2/2+1] 't2 & y„+~, and P,„=P,„/y„mc =[1—y,
x (1+a„/2)] 't is the betatron oscillation frequency, en-

ergy, and normalized axial velocity associated with the
resonance of order n, respectively. Here, I„(x) is the
modified Bessel function of the first kind of order n Ex-.
pressing Eq. (9) in the equivalent form P,„=y„P,„cm
=na mc/v 2, it follows that the momentum spacing be-
tween adjacent resonances is uniform and is given by

hP, =a„mc/J2. In the spirit of applying the Chirikov
resonance-overlap criterion, the electron orbits at the

edge of the beam become chaotic when the total width of
the resonances situated between P, = P, = —(yb—
—I)'t mc and P, =+P, is greater than 2P, . Here,
P, =(yb —1) ' mc is the maximum axial momentum of
a beam electron with energy H= ybmc . Therefore, an

approximate condition for the onset of chaos in beam
propagation is given by

f(yb, a, k «b)= QW„(y„a,k «—b) —2(yb —1)' 'mc
n —N

=0, (»)
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FIG. 2. Plots showing the regular and chaotic regions in the
parameter space (k xb, a ) for values of beam energy corre-
sponding to yb 3 and 8. The dashed lines are the analytical es-
timates obtained from Eq. (11), and the solid curves represent
the corresponding simulation results.

I.O

8„3.72 kG and wiggler period A, 9.8 cm. This corre-
sponds to beam energy yb~8 and dimensionless wiggler
amplitude a„eB„A,„/2trme 3.4. Therefore, it follows
from Fig. 2 that the normalized half-beam width k„xb
should not exceed unity in order to avoid chaos-induced
beam degradation. The measured value of k xb 2trxb/

k„=—0.32 certainly ensures regular beam propagation in
the experiments. As the wiggler field amplitude is in-
creased to 8„5kG (a =4.5), say, the critical value of
the normalized half-beam width k„xb for the onset of
chaos decreases to k„xb =—0.7.

To summarize, we have shown that the motion of an in-
dividual test electron in a low-density relativistic electron
beam propagating through a realizable planar wiggler
magnetic field is nonintegrable, and exhibits chaotic be-
havior when the wiggler amplitude is sufficiently large.
The existence of chaotic electron orbits places limits on
the wiggler field strength and the transverse beam dimen-
sion for beam propagation and free electron laser opera-
tion. An estimate of the boundary between the regular
and chaotic regions in the parameter space (yb, a„,k xb)
was derived analytically and found to be in good qualita-
tive agreement with the numerical simulations. As a final
remark, the chaotic motion discussed here occurs on a
time scale of one betatron oscillation period, correspond-
ing to beam transit time through a few wiggler periods.
This diN'ers from chaotic electron motion caused by Anite
signal and sideband radiation fields, "' which occurs on a
long time in the nonlinear regime of FEL operation.
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