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The problem of spectral filtering of quantized light fields is studied, based on the recently
developed quantum-optical theory of the action of passive, lossless optical systems [L. Knoll, W.
Vogel, and D.-G. Welsch, Phys. Rev. A 36, 3803 (1987)]. Expressions for the operator of the elec-
tric field strength of the light and the normally and time-ordered field-correlation functions are de-
rived for the case of a Fabry-Pérot interferometer being present. Various kinds of field decomposi-
tion that are usually considered in classical optics are studied. The results are compared with the
Fourier approach to spectral properties of light. It is shown that, dependent on the experimental
scheme used, new quantum effects appear, which may prevent the observation of the Fourier struc-
ture of the light as predicted from classical optics. Quantitatively this is demonstrated for the exam-
ple of spectral squeezing in resonance fluorescence, where significant discrepancies between the

measured and the full Fourier spectrum are found.

I. INTRODUCTION

In classical as well as in quantum optics the spectral
properties of light play an important role. Whereas in
classical optics the situation is rather transparent, in
quantum optics some problems may arise in cases when
other than second-order spectral properties are studied.

Mathematically, intrinsic spectral properties may be
defined by means of a Fourier analysis of the light field
under study.!? Practically, spectral measurements are
performed by inserting frequency-sensitive devices in
front of the points of observation. For this reason, in
their approach to the second-order physical spectrum
Eberly and Wodkiewicz® and other authors®® started
from Glauber’s theory of photodetection.®” As is usually
done in classical optics, the spectrally filtered field detect-
ed by photocounting measurements is expressed by a con-
volution of the unfiltered field with the transmission
response function of the spectral apparatus.’~° In his re-
view on the theory of the (second-order) spectrum of the
quantized light field Cresser® pointed out that in quantum
optics this point needs more careful consideration. Nev-
ertheless, this classical approach to the physical spectrum
was transferred to quantum optics by various au-
thors. %9715

In this way, in their work on the frequency-resolved in-
tensity correlation of the resonance fluorescence light
from a single atom Kn&ll, Weber, and Schifer'* found
time-delayed commutator contributions to the spectrally
filtered intensity correlation function. Adopting the
quantum-optical concept of the description of the action
of a spectral filter, as was developed by Knoll, Vogel, and
Welsch and briefly reported in Refs. 16 and 17, Knoll
and Weber!® showed that the intensity correlation func-
tion used in Ref. 14 cannot be observed and that in the
observable correlation function the time-delayed commu-
tator terms do not occur. It should be pointed out that
this result is fully confirmed by Cresser in a recently pub-
lished paper.'’
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Another illustrative example is the problem of spectral
squeezing in single-atom resonance fluorescence. Making
use of a Fourier transform approach and the theory of
Eberly and Wédkiewicz,® Collett, Walls, and Zoller'
found that time-delayed commutator contributions arise
in the normally ordered variance of the spectrally filtered
field. Note that in the explicit calculations they ignored
these terms. Similar to the case of the spectrally filtered
intensity correlation function, these terms occur, because
the pyramidal time ordering of the operators in the corre-
sponding convolution integrals is violated, as was shown
by Knoll, Vogel, and Welsch.!” The normally ordered
variance derived from a consistent quantum-theoretical
treatment of the action of the spectral apparatus
preserves the pyramidal time ordering and therefore does
not give rise to time-delayed contributions.!’

From a more general point of view the question is
raised of how to describe the action of passive filter sys-
tems in quantum optics and to calculate filtered correla-
tion properties of light. Some attempts have been made
to solve this problem. For instance, in Refs. 20-24 the
well-known quantum-mechanical noise theories are gen-
eralized and relations between the output field and the
internal and/or the input field are derived.

An alternative approach to the problem of the
quantum-mechanical description of the action of passive
optical systems was developed by Knoll, Vogel, and
Welsch!®17:2> on the basis of the concepts of quantum
field theory. The purpose of the present paper is to apply
this theory to the problem of spectral measurements in
quantum optics and to study the action of spectral filters
on quantum light fields. In this context, we will give a
detailed analysis of some results briefly reported and dis-
cussed in our earlier papers (Refs. 16 and 17). To illus-
trate the method we will study the action of a spectral
filter of the Fabry-Pérot type. For the sake of clearness
and to avoid rather lengthy derivations and formulas we
will restrict the explicit calculations to the simplest mod-
el of a Fabry-Pérot interferometer, namely, a dielectric
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layer. We note that this model is sufficient to demon-
strate the characteristic quantum features in the action of
a spectral apparatus.

In Sec. II the Fourier transform approach to spectral
properties of quantum light is discussed. In Sec. IIT an
observational approach to spectral properties is given and
expressions are derived for the field operators in the pres-
ence of a spectral filter. The resulting quantum-
theoretical filter equation is analyzed in Sec. IV. Observ-
able correlation functions of spectrally filtered light are
studied in Sec. V, and in Sec. VI different kinds of field
decompositions and their applicability in quantum optics
are discussed. Section VII deals with the application of
the general results to the problem of spectral squeezing in
resonance fluorescence. A summary and some con-
clusions are given in Sec. VIII.

II. FOURIER TRANSFORM APPROACH
TO SPECTRAL PROPERTIES IN QUANTUM OPTICS

In analogy to the method by which spectral properties
are usually defined in classical optics we may start from
the Fourier representation of the operator of the electric
field strength (operators are marked by a caret)

=8 +8E ),

where &%) and {g\(_’, respectively, are the positive and
negative frequency parts. We therefore may write

(2.1

EPW=2m " [doe E o), 2.2)
7 =0m " [doeE Nw), (2.3)
where & H(0)=0=& (a0 if & <0.

By using Egs. (2.2) and (2.3) the normally ordered
correlation functions
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This concept was first used by Metha and Wolf! in order
to define the second-order spectral correlation function.

In particular, they showed that in the case of stationary
light fields the second-order spectral correlation function
can be written as follows

N Yw,e)=2780—o")\W(w) , 2.7)

where W(w) is the quantum-theoretical analog of the
classical Wiener-Khinthchine spectrum:2%2

= [dte T"1(1,0) .

The above-mentioned approach, which is based on the
Fourier representation of the operator of the electric field
strength, and hence on the Fourier analysis of the field
correlation functions '™, is a formal, mathematical
one. We denote the spectral properties found in this way
as intrinsic spectral properties of the field under con-
sideration.

As it will be shown in the following, these intrinsic
spectral properties cannot be expected, in general, to be
measurable field properties. The problem consists of the
following. By using Eqgs. (2.2)-(2.6) Fourier inversion

(2.8)

gives
F (g, _’wm+n):fdtle‘”"1’1
xfdtm+n m+n{m+n
XTMm(t ot n) -
(2.9)

On the other hand, from the quantum theory of measure-
ment in the time domain?® only time-ordered correlation
functions Tz, ... ,t,, +,) are expected to be observ-

able,
F(Tm’"’<t1,.-.,rm+n>=( T_11 3“%:,-)1
i=1
m-+n
x|T, I & )>
j=m+1

(2.10)

where T, (T_) is the positive (negative) time-ordering
operator. However, the time integrations in Eq. (2.9) are
not restricted in any way and consequently T ™" also
contains contributions of I''™" from time domains
violating the time ordering.

In practice, spectral measurements are performed by
inserting frequency-sensitive devices in front of photo-
detectors. Since the counts in the photodetectors are
functions of the setting frequencies of the spectral filters,
““spectral” properties are observed. From the results de-
rived in the following it will be seen that these observable
spectral properties are indeed closely related to the
Fourier transform of the time-ordered correlation func-
tions T ™",

III. OBSERVATIONAL APPROACH TO SPECTRAL
PROPERTIES IN QUANTUM OPTICS

The problem of observable (second-order) spectral
properties was studied by Eberly and Wédkiewicz.® They
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assumed that at the point of observation not the entire
light field '’ under study is seen, but a filtered version
of it,

EC0= [dr'T,(t —t)6 M), (3.1
where T,(¢) is the transmission response function of the
filter. As a suitable example for a spectral filter they con-
sidered a lossless and highly reflective Fabry-Pérot inter-
ferometer. Making use of the Airy formula® they de-
rived the following expression for the transmission
response function T'/(¢):

l"f-wa

TH(1)=6(1)T e " (3.2)

where o, and T/, respectively, are the setting frequency
and passband width of the Fabry-Pérot interferometer.
Note that the unit step function ©(t) reflects the causality
of the filter. However, Eq. (3.1) cannot be valid in the
sense of an operator equation. For example, Eq. (3.1) es-
tablishes that in the case when the spectral filter is closed
(t— — o and/or I' , —0) the operator of the electric field
strength identically vanishes at any point of observation
(behind the filter). Clearly, this result violates fundamen-
tal rules of quantum mechanics.

A. Quantum theoretical approach: general case

We treat the action of a spectral apparatus in the sense
of a linear, lossless filter, which may be modeled by a
dielectric  with  space-dependent refractive index
n(r)=Ve(r). Now the problem is to find expressions for
the field operators in the presence of such a filter. Using
the concept developed in Ref. 25 (which is referred to as
paper I) we arrive at the following results.

The Hamiltonian is [see paper I, Eq. (2.57)]

A=A,+H+8,, , (3.3)

where ﬁ, is the radiation field Hamiltonian in the pres-
ence of the filter, viz.,

—(VX A)?

=—fdr coe(r) A2+ -
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A

[see paper I, Egs. (2.33) and (2.58)] and the vector poten-
tial A is given by
A=A+ A A=

A

(ATHT (3.5)

where

r,t)= 2 A,(r)a,(e) . (3.6)

In Egs. (3.5) and (3.6) the positive (negative) frequency
part At ( A'7)) is assumed to arise from the operators
a, (61) The mode functions A,(r) satisfy the equations

2

VXX A,(1)—e(r) 2 A,(r)=0, (3.7)
4

V-e(r) A;(r)=0, (3.8)

A 6
ZEOQ)A hA

[dren ALn A, (n)= (3.9)

[see paper I, Egs. (2.36), (2.38), and (2.53)] and the equal-

time commutators of the photon creation and destruction
operators a'and a, respectively, are

[3,,8]1=8,, [ay,a,]1=0=[a},a]].

Note that the presence of the filter is taken into account
via the mode functions A,(r). ﬁ: is the Hamiltonian of
the atomic sources. The interaction of the field with the
atomic sources is described by

(3.10)

A== [drGTAT+ AT (3.11)
The atomic source operator T defined by Eq. (3.1) in pa-
per Lis, in general, Hermitian. In the particular case of
the rotating-wave approximation the operator J only
represents its non-Hermitian positive frequency part.
Following paper I, the formal solution of the Heisenberg
equations of motion for the vector components of the
operator of the electric field strength £ o(T,1)
—E(+’ (r,2) +E‘"’ (r,t) can be decomposed into a free-
field and a source-field part (see paper I, Sec. III),

ENn,0=E () +E ) (r,0) (3.12)
where
Ei:fr)ee(r’t):izkaak(r)aA,free(t) ’ (3.13)
A

E )= [dr [dr'©( —1)K 4o (r,6;0,0")T 4 (2',1')
(3.14)

the temporal evolution of @, .. is due to the Hamiltoni-
an ﬁ, of the free-radiation field, viz.,

—iw,(t—1")

2 frec(D)=e " reelt) (3.15)
The kernel K in Eq. (3.14) is defined by
Kop(n,t;r,t')= —% S 0y A (1) AL, (rhe T
A
(3.16)
Obviously, it fulfills the symmetry relation
K (r,t;0,0)=K . (r',t';1,t) . (3.17)

Clearly, Eqgs. (3.12)-(3.16) have to be supplemented by
the Heisenberg equations of motion for the source opera-
tors: i#i(d /dt)J=[J,A]. Combining Egs. (3.12) and
(3.14) we obtain the result

E P (r,n=E'". (r,1)

a,free
X [dr' [dr'e(t —1")K 4 (r,1;¢,1")

XJ  (r't") . (3.18)
This equation may be regarded as basic equation for
describing the action of a spectral filter in quantum op-
tics. Since it is simply the general solution of the inho-
mogeneous Maxwell equations it is clear that Eq. (3.18)
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formally looks like the equation known for the case
without filtering. The difference between the two cases
consists of the mode functions A,(r) to be chosen, which
determine the free field part [Eq. (3.13)] and via the ker-
nel K the source field [Egs. (3.14) and (3.16)].

B. Quantum theoretical approach: One-dimensional
Fabry-Pérot filter

In analogy to the model of a spectral filter used by
Eberly and Woédkiewicz,> we now consider the lossless
Fabry-Pérot filter modeled by a dielectric layer of refrac-
tive index n f=\/ €, and thickness d in the x direction.
Assuming the Fabry-Pérot filter is surrounded by vacuum
the refractive index n as a function of x may be written as
follows:

(3.19)

For simplicity, we restrict ourselves to the study of two
typical cases of quasi-one-dimensional light propagation.
Let us first consider the case when the propagation of
light is perpendicular to the Fabry-Pérot filter [cf. Fig.
1(a)], so that Eq. (3.7) may be written as [see also paper I,
Eq. (2.39)]

d*4,
dx?

[¥)

+nlkl4, =0, k=2
c

(3.20)

where n =n(x) is given by Eq. (3.19). The mode func-
tions A4, (x) (labeled by the continuous mode index k) are
determined from the solution of Eq. (3.20) together with
the usual boundary conditions and Eq. (3.9), which now
reads as

[ Tdx n2x) AF ) A= =T—8(k —k') . (3.21)
— o 260({)
The mode functions outside the dielectric layer

(|x|>d /2) may be written as follows:

_ _ . d
e™+R (w)e ™ x<—=
172 sl X )

k>0

_ ) d
T thx x> =
r(w)e x 3

FIG. 1. Scheme of the geometrical arrangements considered
(S, atomic light sources; D, photodetectors). (a) Perpendicular
incidence of light. (b) Inclined incidence of light.

d
xX<—=,

T ikx’
12 f( w )e 2

eikx_i_ﬁf(w)e—ikx ,

x>§, k<0. (3.23)

Tf(a)) and R s(@), respectively, are the spectral transmis-
sion and reflection response functions of the Fabry-Pérot
interferometer, which in agreement with the Airy formu-
las?® read as

= s (n,—1)Nw/c)d
Tow)=Tpwe " ",

=2 (3.24)
T - =
Tylw)= | p2plingw/ed
Ef(w)=ﬁf(w)e_i(“/0)d . (3 25)
~ _ 21'nf(a)/c)d~ -
Ry(w)=—r+re T(w),
2

n,—1
= (3.26)

f

The spectral response functions T,(w) and R (w) are
easily shown to satisfy the conditions

T/ () +|R (0)*=1,
T/ (o)R $(w)+T $w)R (0)=0 .

(3.27
(3.28)

In the important case of a highly reflective filter (r =1),
in the vicinity of a given resonance frequency w, of the
Fabry-Pérot filter Eq. (3.24) can be simplified as

-~ r,
Tiw)= (3.29)

where the resonance frequency o, and the passband
width I, are given by

_ . mC
wf fnfd >
. c L e(1=r?) (3.30)
=5 lhrie————
2n,d 2n,d

f being an integer. It is easily seen that for sufficiently
small values of I'; the spectral transmission function be-
comes effective in discriminating against values of w not
equal to the resonance frequency w -

In the one-dimensional model the kernel K =K r
[defined according to Eq. (3.16)] reads as

Ky(x,t;x"1")= ~%f_+:dk ® Ay (x) A (x")e et 1)

(3.31)

In the case when x >d /2 and x’' < —d /2 we find from
substituting Eqs. (3.22) and (3.23) in Eq. (3.31) and by
making use of Eq. (3.28) the following result:
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1
47ce

Kf(x,t;x',t')=—

To calculate the integrals in Eq. (3.32) we note that in
practical applications the spectral transmission function
Tf(w) can be assumed to take on significant nonzero
values only in the neighborhood of the setting frequency
@y of the spectral filter [cf. Eqs. (3.29) and (3.30)]. We
therefore may approximately extend the integrations in
Eq. (3.32) to minus infinity. Writing the spectral
transmission function T;(®) in the form as given in Eq.
(3.24) we finally arrive at [cf. Eq. (A18)]

1

Ks(x,t;x",t")=— [Tf(t—t’—lf/c)

2ce,
+Tr(t'—t—1./c)], (3.33)
where
—_ 1 +°°d 'T —iwt 4
Tf(t)—z—ﬂ: W w f((l))e (33)
and
lf=l+(nf—1)d . (3.35)

In particular, substituting Eq. (3.29) in Eq. (3.34) we easi-
ly find

—(iwf+I‘f)t ‘

T, (t)=0O(1)I re (3.36)

In order to calculate the kernel # for the case when no
spectral apparatus is present we have to substitute for the
mode functions in Eq. (3.31) plane waves,

1 f+°°dke—iw(t—t’)+ik(x—-x’)

Hix,t;x',t')=—
47T60 —©

(3.37)

Equation (3.37) may be rewritten in the form of Eq.
(3.32) with Tf=1. The kernel #(x,t;x’,t') is needed
in order to calculate integrals of the form
fdx’fdt’?{(x,t;x’,t’)f(x’,t’), where the operator J is
oscillating close by an optical frequency, so that we may
again extend the frequency integration to minus infinity
with the result

1
2ce

Hix,t;x',t')=— [8(t —t'"—1/c)+86(t'—t—1/c)].

(3.38)

Clearly, Eq. (3.38) may be understood to describe the lim-
iting case of a spectral filter the passband width ', of
which goes to infinity (" y— o).

Comparing Eq. (3.33) with (3.38) the following relation
between K and # is seen to be valid:

Ot —t")H p(x,t5x",t")= fdt”Tf(t —t"—At)O(t"—1t")

XFH(x,t";x't") , (3.39)

® T —iolt—t'=1/c) °°d T* io(t’—1—1/c) , I=x—x".
|/ "do Tya J7doT jae

(3.22)

[
where the time retardation

Ar=(n,— 1) (3.40)

c
reflects the fact that the geometrical path through the
Fabry-Pérot filter is different from the optical one. We
note that Fabry-Pérot filters in quantum optics has also
been studied by Cresser!® and Ley and Loudon.*

From an inspection of Egs. (3.22) and (3.23) we see that
two kinds of mode functions have to be considered,
which describe incoming waves from the left and right,
each of which being partly reflected and transmitted. It
should be pointed out that in the case under study [cf.
Fig. 1(a)] the reflected part of a light signal arising from
the sources is fully directed into the sources. From the
point of view of classical optics one already expects that
due to this reaction of the spectral apparatus on the
sources the dynamics of the sources is, more or less,
changed. In the following sections we show that in quan-
tum optics there are additional source-quantity commu-
tator effects, which may be of drastic consequence to ob-
servable field quantities.

In practical spectral measurements such back actions
are of course tried to be avoided. We therefore consider
also the case of inclined incidence of light [cf. Fig. 1(b)],
that is, we assume the reflected part of light does not
strike the sources (which may experimentally be realized
by means of diaphragms). In this case we have to consid-
er four types of mode functions describing incoming
waves from the left and right on both the x and the y
axis. Analogously to Egs. (3.22) and (3.23) we may
represent the mode functions at the points P on the x or y
axis as follows:

: d
ikx =
e x< >
_ . d
5 12 Tf(w)e’k", x> —2—
A (P)= v X d (3.41)
o 0, y<——
D)
R (w)e™, y>=
d
0, x< >
_ . d
; 12 Rf(a))e’k", x>3
Ay (P)= (3.42)
4meyw iky _d
, ¥ < 2
Tiw)e™, y> %

where k >0, and
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1/2 e 2

12 0, x>—

Ay (P)

(3.44)

4meqw

where k <0. The spectral transmission and reflection
response functions may be taken from Egs. (3.24) and
(3.25), where d must now be understood as an effective
thickness.

The kernel K (P,t;P’,t') reads as

K(P,t;P',1") =—— 2 f

i=1

dk (l)A,k(P)AJ((PI)

xe—iw(tél') . (3.45)

In particular in the case when the points P and P’, re-
spectively, correspond to points x and x' on the x axis
with x >d /2 and x' <d /2 we may write

K (P,t;P',t") (3.46)

where K ;(x,2;x',1") is given in Eq. (3.23) [cf. Eq. (A18)].

=K, (x,t;x",1'),

IV. QUANTUM-THEORETICAL FILTER EQUATION

For the further discussion of the quantum theoretical
basic equation (3.18) let us first consider the simple one-
dimensional case with perpendicular incidence. Accord-
ing to Fig. 1(a) we assume that the sources are on the left
of the filter (x’'< —d/2) and the points of observation
are on the right of it (x >d /2). Furthermore, we define
appropriate operators

E M (x,0)=— Fix't—1/c), 4.1)
g(—f,)free(x t)_6(+free [l _%
1/2
= [ “dk - :
Jaki ke |15 | (42)
6( +free( 1)= 6( +free t+ ;z_
172
0 #iw ~ x
::f_oc k 2—0] ak’free t+? (4.3)

Clearly, Egs. (4.2) and (4.3) define free-field operators for
the fields traveling to the right and left, respectively.
They completely agree with the free-field operators in the
absence of the spectral filter. Formally, the source field
&, &+ Y(x,1) defined in Eq. (4.1) has the same structure as in
the absence of the filter. However, the source operator
f(x',t-—l /c) must be calculated from the Heisenberg
equations of motion which, in general, take into account
the back action of the spectral filter on the sources. To-
gether with Egs. (3.13)-(3.15), (3.22)-(3.25), (3.34),
(3.38)-(3.40), and (4.1)-(4.3) we may rewrite the basic
equation (3.18) for the field behind the filter (x >d /2) as
follows:

EM,n=E ) (x,n+E T (x,1), 4.4)
where
EN 0= [dr T/t —1'—AnE P ix,1) 4.5)
e, 0= [dt'T (t —t'=ADET ) |t '—f
X
6(+free +:
, x—d
+ [dr'Rp(t =18 ) |1 — — |, @6

where the reflection response function of the Fabry-Pérot
filter R ;(¢) reads as

Ry (0=2m 7" [do R (w)e "

= —r8(t)+rTf 4.7)

z—2At—2i
c

Clearly in the absence of the filter [T (z —At)—5(1),
R;(1)—0] Egs. (4.5) and (4.6) read as

ENx,00=6x,1), (4.8)
E) =8 x,1)
=& hee |t f +EH ) t+§ 4.9)

In classical optics any light field may be thought to be
attributed to sources and hence, free-field terms may be
omitted. Consequently, in classical optics any light field
may be identified with a source field:

E'N(x,)=E! " (x,1),

M Nx,0)=6"""(x,1) . (4.10)

In this sense and if we take no account of the influence of
the filter on the source dynamics, we can combine Egs.
(4.5), (4.8), and (4.10) which yields

EDx,0= [di'T (1 —t'+A06 P (x,1'),  (@4.11)
which [apart from the time correction At disregarded in
Eq. (3.1)] formally agrees with the classical filter equation
(3.1).
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In quantum optics, however, the situation changes
drastically. The operator of the electric field strength
cannot be related, in principle, to the operator of the elec-
tric field strength of a source field alone, but it must also
be related to a free-field operator, which is obviously
needed for the correct description of the effects of quan-
tum noise. From a more general point of view, the free-
field operator, which, in general, does not commute with
the source-field operator, ensures the quantum-
mechanical consistency of the theory.

Combining Egs. (4.4) and (4.5) yields

EPx,n=Ex,0+ [dr T/t —t'—AnE M x,1') .

(4.12)

The structure of the free-field operator Ef-)(x,1) of

course depends on the properties of the spectral filter. As
can be seen from Eq. (4.6) the free-field is not only deter-
mined by the transmission of the spectral filter but also
by its reflection. This can be easily understood from the
argument that the filter is a symmetric equipment with
respect to the free field. As expected, £ t+) consists of the
incident free field from the right [second term in Eq.
(4.6)], that part of it which is reflected by the Fabry-Pérot
filter (third term) and that part of the incident free-field
from the left which is transmitted by the filter (first term).
In particular, in the case when the filter is closed
[Tf(t)—0, R;(t)— —&(1)], from Egs. (4.4)-(4.6) we ar-
rive at

x —d
c

_(’53(+)

A
E(+)(x’t)=6£:tzree «,free

t—

Y
1+=
Cc

(4.13)

The minus sign obviously results from the phase shift due
to total reflection. Equation (4.13) reflects the fact that
also in the case when the filter is closed and the free field
is in the vacuum state, at any point of observation
(behind the filter) the full vacuum fluctuations are of
course present.

At this point we note that it may be useful to introduce
two other decompositions of the operator of the electric
field strength E(x,1) behind the filter. As it is easily seen
we can rewrite Eqs. (4.4)-(4.6) as follows:

EN,n=E) (x,n+E{(x,0), (4.14)
E = [dr'T;(t —r' =AD& (x,1) (4.15)
where
Bl =800 |1+
A —d
+ [dt'R (1 =108 ) | == ; ] ,
(4.16)
&N, )=6" L |t=Z | +8 x,0) 4.17)
’ c

Here, 6 {r)(x,1) may be interpreted as the operator of the
transmitted field, which is the convolution of the filter
transmission response function with the total incoming
field from the left, and E {;’(x,?) describes that part of
the free field which is related to the free field coming
from the right and the reflected part of it. Clearly, in
classical optics the second term in Eq. (4.14) can be omit-
ted because it reflects (for the case under study) a pure
vacuum effect. The only relevant field which is affected
by the spectral filter is the real incoming field
6§,,J§’(x,t)=6’(+’(x,t), so that we again arrive at Eq.
(4.11). Furthermore, we see that any kind of decomposi-
tion of &t (x,t) (outside the light source) into source-
field and free-field contributions is merely a question of
appropriateness in the description of the light.

From Egs. (4.14)-(4.17) that part of E'H(x,t) which
describes the field traveling to the right is readily seen to
be

E(x,0)=E\" (x,1)

, (x—d)

+ [drR, (1 —1)E ), |1 ;

(4.18)

We therefore may decompose E(H(x,t) in the following
way:

EP0x0=E (x,n)+E M (x,1), (4.19)
where
EP(x,0=6").. t+% (4.20)

represents the (free) field traveling to the left.

Let us now consider the case with inclined incidence
[cf. Fig. 1(b)]. Using the notation @, =a,; and b, =2,
for the photon destruction operators we define & (S“(x,t),

6’(:,},ee(x,t), and é’\(:,f),ee(x,t) according to Egs.
(4.1)-(4.3), and additionally
6(;),free(y’ )= 6(;),free t= {T
172
= (“akil e | 3 _X
S aki| > B free ‘z ; l ,
(4.21)

which represents the free-field operator for the field trav-
eling to the left in the y direction. It can easily be proved
that with the replacement

JarR; =98] |1 —

i
«,free ¢

(x —d) J

(x —d)
c

— [dt'Rp(t =1 ¢ |t — (4.22)

Egs. (4.4)-(4.6), (4.14)-(4.17), and (4.18)-(4.20) also
remain valid in the case of inclined incidence.
As mentioned above, the main difference between clas-
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sical and quantum optics consists of the fact that in quan-
tum optics source-field and free-field terms are, in gen-
eral, noncommutable quantities. To clarify the resulting
consequences and the usefulness of the above-mentioned
decompositions for practical spectral measurements we
now turn to the problem of studying time-ordered field
correlation functions.

V. SPECTRALLY RESOLVED CORRELATION
FUNCTIONS

Time-ordered correlation functions of spectrally
filtered light represent measurable spectral properties of
the field. Since in many cases of practical interest the
operators are subjected also to normal ordering we study
correlation functions of the following type:

T_ HE (r;,¢;)

i=1

r. M B, )’}

j=m+I1

(m,n) —
Gy <

X (5.1

For example, from Glauber’s theory of light detection®’
the photocount distribution function is determined by the
correlation functions G{™™. Correlation functions with
n7*m may be observed in photo-detection experiments
after homodyne mixing the light under study with a
reference beam. The homodyne detection scheme for ob-
serving squeezed light is an example.’! In this case corre-
lation functions G{*° and G{>? also contribute to the
detection signal.

Since the £, E'*) are the field operators in the presence of
the spectral ﬁlter, G("‘ ") describes measurable spectral
properties of the quantum light field. As shown in paper

G}m,n)—<
i=1

= [dr) [dri0(1,—1 K2 g (rptirth) -

der’m+n fdtr'n+ne(tm +n—tr;r+n)K

T_ 11 j\;(r;’ti’)

i=1

s

Equation (5.5) establishes that in the calculation of corre-
lation functions of the type defined in Eq. (5.1), takmg
into account Eq. (5.4), the total field operators E " and
E, E), respectively, may formally be replaced by the
source-field operators E\}’ and E) defined in Eaq.
(3.14), and the positive and negatlve time ordering origi-
nally concerning the operators E ' and E (=) respective-
ly, being transferred to the correspondmg atomlc source
operators J and J .2 The time ordering becomes
superfluous only in the case of the second-order correla-
tion function G{'!’ and hence in the case of the usual
second-order spectrum.

f || 35 25000

’
A +n%m +n

I [see Eq. (5.7) of paper I], Eq. (5.1) can be rewritten in
the form

i Si—)
IT £

i=1

G‘T’"'”’=<O (r;,1;)

j=m+1

m[[ E‘“(r z)] ]>

(5.2)

The ordering symbol O introduced in paper I acts on
products of the operators E ) (r,1) as follows
(i) Order the free-field operators EY q f,ee (r;,t;) to the

right of the source-field operators E'" (r t)

(ii) Substituting for £/ (r;,t;) Eq (3. 14) and perform-
ing T, time ordermg of the resulting products of source
quantity operator J (rj,t;) before integrating with

l

respect to ¢;. e

Accordmgly, the action of O on products of
the operators E

)(r,, t;) in Eq. (5.2) is

e,

i=1

o (r;,¢;)

;
HE et )H . (53)

i=1

In practical measurements spectral properties that are
closely related to source fields are often desired to be ob-
served. We therefore assume that at the points of obser-
vation the following conditions are fulfilled:

( o ix_';'r)ee) 0= (Ea free (5.4)
These conditions enable us to eliminate the free-field
operators in Eq. (5.1) and to express the correlation func-
tions GY™" in terms of source correlation functions
alone. From Eq. (5.2) together with Eq. (5.4) the result is
(cf. paper I)

. gl ’
(rm +n’tm +n3Tm +n’tm +n)

(5.5)
j=m+1

m+n
T, I 7T, >

As known from Sec. III, the properties of the spectral
filters used are contained in the kernel K defined in Eq.
(3.16). Even in the simplest case when only one filter is
used the calculation of the kernel K may be, in general,
rather difficult. This problem becomes still more difficult
in such cases when more than one filter is used in the ob-
servation scheme. Let us assume that the filters are of the
Fabry-Pérot filter type as considered in the preceding sec-
tions. Furthermore, let us suppose that the filters are sit-
uated in the far-field region of the source field under
study. In this case the one-dimensional approach is ex-
pected to yield a sufficiently good approximation for
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describing the actual situation. If the field observed at
point r; (behind the filters) is related to the sources (in
front of the filters) via the ith spectral filter we therefore
may write

K, o (rtirit)=K

(Tt (5.6)

fial

where [cf. Eq. (3.39)]

dt! T (t,—t]— A6 (x,, 1))
fl ]

i=1

Introducing the correlation function

rgmr=(o [ e e || T & tj)”>,
i=1 j=m+1
(5.9)
we may rewrite Eq. (5.8) as follows
G ™ (E Lt o Tt nsbman)
= [de\T} (1, =t —At)) -
det;nﬂTfm“(tmﬂ b n — Bl )
XTY ",y T amstinsn) - (5.10)

Substituting in Egs. (3.13), (3.14), and (3.16) for the
mode functions A4, (r) those parts of them which (at the
points of observation) describe the free-space field struc-
ture, we define, according to Eq. (3.12), the field operator

&N, =8, + 8 (1) . (5.11)

From this definition it is obvious that & £+ looks like the
positive frequency part of the operator of the electric field
strength in the case when the spectral filter is absent.
Note that this equivalence is only a formal one, because
the correct source-field dynamics must, of course, be cal-
culated by taking into account the presence of the filter.
Making use of Eq. (5.11) together with Eq. (5.4) and
remembering the definitions of the O ordering, we may
rewrite Eq. (5.9) as follows:

ré)myn)(rl’tl"'*’rm+n’tm+n)
< 2o || T 8 e t)) >
i=1 j=m+1
(5.12)
j
GY™ X1ty eyt )= [(dETE (8=t = Aty) -
detr’n+anm+n(lm +n

or, expressing ['7™" by its Fourier transform T ™",

m-+n

M fagr

j=m+l1

—tr AL, T e,

511
e(ti_ti’)Kf,a’ (r,,t,,r,,t)
= fdt,»"Tf‘(ti —t/'— A0t —1t])
XK  Ar,t'1,t]) . (5.7
a.a

i

Inserting Eqgs. (5.6) and (5.7) into Eq. (5.5), remembering
the definition of # in Eq. (3.38), and using Eq. (4.5) we
may write Eq. (5.5) as follows:

' 2(+) ’
t]-At])gajs(rJ’t-’)l )> .

(5.8)

Applying the method given in paper I, in Eq. (5.12) we
now return to time-ordered operator products:

| PSCLAC SV S SR
=Tty o T st 4
Sty e T s tman)) (5.13)
where
| LS DU SR S
m+n
< CHE [T T 8 ) ).
i=1 j=m+1
(5.14)
and 8™" is expressed in terms of commutators of the

atomlc source quantity operators. The simplest example

is §'22), an explicit expression of which the reader finds
in the Appendix [Eq. (A53) together with Eq. (AS51)].
This example already shows that the appearance of the
commutator term 8 mn) s closely related to the back ac-
tion of the Fabry- Perot filter to the sources. That is, in
an experimental setup outlined in Fig. 1(a) this back ac-
tion not only gives rise to a more or less pronounced
modification of the source dynamics via the interaction of
the reflected light with the sources (as already expected
from the point of view of classical optics) but it prevents,
on principle, that the observable correlation functions
Gy™™" can be related to the correlation functions I'{7™
[see Egs. (5.10) and (5.13)].

If the back action is suppressed [inclined incidence of
light according to Fl% (b)] the quantum-mechanical
commutator term 87" vanishes, so that from Egs. (5.10)
and (5.13) we find

(5.15)

’
’rm+n’tm +n)
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1 o (1, —Af,) ~
G;"m’n)(rl,tl,...,rm+n,tm+n)=fdw15'7;'e i ! T;‘l(w‘)
1 m n(tm n Atm n)~
demer,,—é-;e * * + Tfm+n( m+n)

It should be pointed out that Eq. (5.12) remains valid
when the field operators 6’ ) are replaced by their in-
coming parts (S"L“mc [accordmg to the definition in Eq.
(4.17)]. The calculation yields [cf. the example in the Ap-
pendix, Eq. (A55)]

(m,n)
LIRS SPLIPININ SR S

— 1(m,n)
ch (rl7tl’ e 7rm+n7tm +n)

8ty T sty ) (5.17)

instead of Eq. (5.13), where

(m,n)
ch (rl’tl’ RS +n’tm +n)

mﬁ (';3 ne(T; t)b

j=m+1
(5.18)

Note that in Eq. (5.18) there is no need for time ordering.
Provided that the back action of the filter to the sources
can be suppressed (inclined incidence), so that §™" =0 is
valid, in Egs. (5.15) and (5.16) we may substitute for
™" and T ", respectively, the correlation functions
of the incoming field T{™" and T {™". Remembering
the definition of the transmitted field [Eq. (4.15)] we
therefore may write

Gy™™M(ry,ty, ...

g

’rm+n’tm+n)

E(+

a; trans(rj’tj)

).

(5.19)

H Eiz_trans(rhti) ] l H

i=1 j=m+1

(see also Sec. VI). This equation closely corresponds to
the result of classical optics.

We point out that the results given above are also valid
in the case, when the free-field part of the incoming field
is not in the vacuum state.

The results show that measurable spectral properties
expressed in terms of correlation functions Gy™" can be
related to the Fourier transforms of both the time-

J

G(Tm’n)(x],tly (O 7xm+n1tm+n)=fdtllT;(tl

(5.16)

ordered correlation functions I'y" of the full field and
the correlation functions of the incoming field T'{"™>", pro-
vided that the back action of the spectral apparatus to
the sources can be suppressed (inclined incidence of
light). In particular, they cannot be related to the
Fourier transforms of the correlation functions ‘™"
representing the full Fourier structure of the field, with
the exception of the case when the field under study may
be approximated by a free-field alone. Moreover, in this
case O and time orderings do not play a role, independent
of the angle of incidence of the light.

It is worth noting that in the case of back action of the
spectral apparatus being present it may be suitable to
represent the correlation function G{™" in a somewhat
different form as given above. For this purpose let us
consider the (quasi)linear model with perpendicular in-
cidence of light. From a careful inspection of Eq. (A50)
we see that even in the case when a=1 is valid (perpen-
dicular incidence of light), this equation may be rewritten
as

A

TPE ) x,,1)6  (xy,15))
=0(6(x )6 (5.20)

where x; 2d /2 and x, >d /2. Here and in the following
the notation T (T'") indicates positive (negative) time
ordering with respect to the retarded time arguments
t —x /c. Furthermore, from the derivation of Eq. (A50)
it is clear that this equation may also be applied to 6::;)
(instead of &'*") if the term proportional 7 is disregard-
ed. Since in the case of the condition given in Eq. (6.1a)

being fulﬁlled the expectatlon value of the O-ordered

(xz,tz)) ’

product of 6" xy,t 1)6’( '(x,,t,) is equal to the expec-
tation value of the O-ordered product of
éfnt’(xl, )Gmc (x,,t,), we also may write

(TP x,,t, )3};’<x2,z2>)>
=(0(6'V(x 1,106 (x,,1,))) ,  (5.21)

where x|, >2d /2 and x,>2d /2. Clearly, Egs. (5.20) and
(5.21) are also valid for higher-order operator products.
Hence, combining Eqgs. (5.10), (5.12), and (5.21) yields

’ fdtr"i+an(tm+n_tr’r|+n—At)

T{r) H gmc )(xi’til )

i=1

m-+n
T? I &4x; z)b

j=m+1

“

(5.22)

Remember that fnz)(x t) is a function of the retarded time argument ¢t —x /c.

Let us now consider E

£)(x,) between the source represented by J(x',t') and the filter which means x’ <x < —d /2,
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where x' represents all pomts where the source is present. Analogous to Eq. (4.19) we decompose EFx,1) for
x'<x < —d /2 into a part £'*’ traveling to the right and a part E'* traveling to the left. Calculations similar to those

resulting in Eqgs. (4.18)-(4.20) show that

EP(x,0)=62)x,1) forx'<x<—d/2.

(5.23)

Combining Egs. (5.22) and (5.23), after a transformation of integration variables we arrive at the remarkable result

(m,n) — o ,_X11d/2
G (xl,tl,...,xmﬂ,zmﬂ)—fdtle t,—t) —
v, td/2
X fdt,',,+an tm+,,—t,',,+,,————c~————— tT (8, stpan) s (5.24)
[
where the situation may be quite different and a more careful
consideration is needed.
L., Imtn) In many cases of typical scattering problems, when the
m d properties of the field scattered by atomic sources are
=< T_ H E (_:) —=,t| sought and the dynamics of the sources is known the
i=1 2 decomposition of the field into free field and source field
mtn d may be useful [cf. Egs. (4.4)-(4.6)]. However, in contrast
X|T,y ] E - —2—,tjf > . (5.25)  to classical optics, in quantum optics the observable field
j=m+1 correlation functions cannot be expressed, in general, in

This result shows that G™" may be represented by con-
volutions of the transmission functions with the correla-
tion function I'_, which represents the time-ordered
product of the field operators traveling to the right and
taken at the input port of the filter located at x = —d /2.
The result expresses the physical point of view that the
information about the field on the right-hand side of the
filter (remember ( - é‘"+ﬁee> 0=(6'"L..)) is con-
tained in correlation functions of field operators traveling
to the right at the input port of the filter which have to be
time ordered since they do not commute at different
times. In case of inclined incidence we arrive at similar
results but now the field operators E H(—d /2,t) com-
mute for different times.

Note that an alternative approach to study spectral
properties of quantum light fields is to measure the
(unfiltered) field by a photodetector and to perform a
spectral analysis of the classical (stochastic) photo-
current.!® Clearly, the spectral properties of the classical
current can be related to its full Fourier structure. It can
be shown that the spectral correlation functions of the
photocurrent are also related to the Fourier transform of
normally and time-ordered field correlation func-
tions.3>3% Thus the spectral filtering of a light field fol-
lowed by photodetection yields the same spectral infor-
mation on the field under study as the postdetection
filtering of the photocurrent. However, our approach al-
lows to use the spectrally filtered light in further applica-
tions, whereas the other one is only to determine the
spectral properties via annihilation of the field.

V1. DISCUSSION OF THE FIELD DECOMPOSITIONS

It is obvious that in classical optics there is no essential
difference between the field decompositions presented in
Sec. IV. All of them can be used for expressing the ob-
servable field correlation functions in terms of correlation
functions of the resulting field parts. In quantum optics

terms of correlation functions of the source field. As
shown in Sec. V the way must be to express the field
correlation functions in terms of (time-ordered) correla-
tion functions of the atomic source operators [cf. Eq.
(5.5)].

Now let us consider the decomposition of the field into
the field transmitted by the spectral apparatus and the re-
sidual free-field part [Egs. (4.14)-(4.17) for the case of
perpendicular incidence according to Fig. 1(a), and Egs.
(4.14)—(4.17) together with Egs. (4.21) and (4.22) for the
case of inclined incidence according to Fig. 1(b)]. For
practical spectral measurements we may assume that this
free-field part only gives rise to vacuum effects (the used
output port of the spectral apparatus is not used as input
port), so that we may write

< 6(+free> 0= (6 free”. ) ’
<” (;)free> 0= <6=free.“>'

(6.1a)
(6.1b)

Hence, decomposing in Eq. (5.2) the field operators in the
way described and remembering the definition of the or-
dering symbol O we easily see that Eq. (5.2) may be
rewritten as follows:

G;m’")=<0

i=1

(=)
trans(xi’ti) ]

X

T £,

j=m+1

,) .62

Clearly, in classical optics the ordering symbol O is
meaningless, so that the field correlation functions detect-
ed are simply given by the correlation functions of the
transmitted field, which for its part is the convolution of
the incoming field with the transmission response func-
tion of the spectral apparatus [cf. Egs. (4.15) and (4.17)].
Moreover, from Sec. V [Eq. (5.19)] we already know that
in quantum optics the ordering symbol O is also meaning-
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less, provided that the back action of the spectral ap-
paratus to the sources can be suppressed [inclined in-
cidence of light according to Fig. 1(b), see also Eq. (A38)].

If back action must be taken into account [perpendicu-
lar incidence of light according to Fig. 1(a)] the situation
changes drastically. In this case, the resemblance of Eq.
(6.2) with the classical result is a purely formal one, be-
cause the O-ordering prescription now prevents that ob-
servable field correlation functions can be attributed to
correlation functions of the transmitted field (an excep-
tion is of course the usual second-order spectrum). In
other words, the transmitted field hardly has importance
in higher (than second-) order spectral measurements. To
clarify this point in more detail let us assume perpendicu-
lar incidence [according to Fig. 1(a)] and consider the
correlation function

GPOV=(T_ E " P(x,,t))E Px,,t,))
=(O{E ) (x,,t)E Fl(x,,0)) (6.3)

which, for example, is of interest for spectral squeezing.
J

1 (—1)

2€qc

KT(xlitl;-xZ’IZ): F}

Xexp{—iwg[t;+t;—t/—t;—

Xexp[ —T (1] =t/ +|t/+2slc — /] NI TDT

where the indices i/ and j are determined from the re-
quirements ¢t; =max(t,,t,) and ¢; =min(¢,,,), and

vy =ty (xy, +Sf)/C ’ (6.6)
Xp=Xiptlny,—1d/2, 6.7)
sp=s+(n,—1)d/2. (6.8)

From an inspection of Eq. (6.5) it is clearly seen that in
general the mean value (A ) cannot be expected to be
vanishing. In particular in the case, when the inequality
t/+2s;/c >1t] is valid, we find (A) xexpl —2T ;s /c),
Wthh shows that (in this case) neglect of the term (A) in
Eq. (6.4) may be justified if the sources are sufficiently far
away from the spectral apparatus: s, >>c /2l ;. Clearly,
for high spectral resolution this requirement becomes
crucial. Furthermore, in the case when the value of ¢/ be-
comes smaller than the value of tj’ (t,’<tj’ ), the allowed
values of ¢/ can exceed the value of ¢/ and, therefore, the
causality is not ensured. On the other hand, from the
meaning of the ordering symbol O in the second line of

g. (6.3) it is clear that in any case G{*? is built up only
by causally determined contributions. Equation (6.4)
therefore shows that the (time-ordered) correlation func-
tion of the transmitted field may contain unphysical, non-
causal contributions, which are needed for compensating
the corresponding terms in (A ).

Finally, let us study the decomposition of the field
behind the filter into the field traveling to the right and

J i [ ajouj—eet e

Substituting in the first row of Eq. (6.3) for the operators
E ") Eq. (4.14) and rearranging the resulting operator
products in such a way that the operators £ [’ are on
the right of the operators E 1), by making use of the
method given in paper I for calculating the commutator
relations needed, we may rewrite Eq. (6.3) as follows (cf.
Appendix):

G;'O’Z)z ( T+E irans xl’tl )E ir:r!s(xth))

=(Bplxp,t15%,15)) (6.4)
where the operator ET [given in Eq. (A29) for a=1] is
closely related to commutators of the atomic source
operators J. In general, these commutators (and their
mean values) do not vanish, which clearly shows that the
correlation function G{>? cannot be expressed in terms
of the correlation function of the transmitted field alone.
In particular, let us consider a pointlike atomic source lo-
cated at —s (s >d /2). As shown in the Appendix [Egs.
(A31)-(A34)] we obtain the result

,'—t,-’—ZSf/C)—e(tir'i'Zsf/C —_ti‘)]

(xf,_+xf}_)/c]}

(6.5)

the field traveling to the left [cf. Eqs. (4.18)—(4.20) for the
case of perpendicular incidence of light according to Fig.
1(a), and Egs. (4.18)-(4.20) together with Egs. (4.21),
(4.22) for the case of inclined incidence of light according
to Fig. 1(b). From Egs. (A22) and (A25) in the Appendix
we find

[E T x,,00),E T Ax,5,8,)]=0 ift,>1,, (6.9)
[E Fx,,t0),E Tx,,1,)]=0 . (6.10)

Substituting in Eq. (5.2) for the field operators the decom-
position given in Eq. (4.20) and making use of Egs. (6.9)
and (6.10) together with Eq. (6.1) we arrive at the result

m m-+n
G‘va">=< T2 xt) ] I

i=1 j=m+1

E(j:)(x],t]) ]) »

(6.11)

which is valid for both perpendicular and inclined in-
cidence.

We see that the correlation functions detected are sim-
ply given by the corresponding correlation functions of
that part of the light field, which behind the spectral ap-
paratus travels to the right into the photodetectors
Since the operators E'?) (and the operators E (7)) are
commuting quantities, tlme orderings are needless. We
therefore may regard this kind of field decomposition as a
quasi-free-field decomposition, because it shows features
similar to the free-field case. The difference between the



two cases becomes apparent if one tries to eliminate in
Eq. (6.11) that part of £ ‘*) which describes the free field
reflected at the right (unused input) port of the spectral
apparatus. Clearly, in the free-field case this (reflected)
part can simply be omitted, so that the correlation func-
tions detected are given by the corresponding correlation
functions of the remaining transmitted field. However, in
cases when the light field under study is attributed to
sources the replacement of £ ) by £ {Z) in Eq. (6.11) is
only allowed if back actions of the spectral apparatus to
the sources can be suppressed [inclined incidence of light,
see Eq. (A37)].

VII. SPECTRAL SQUEEZING IN RESONANCE
FLUORESCENCE

To demonstrate the difference between intrinsically
spectral properties and observable ones let us study the
problem of spectral squeezing in resonance fluorescence
(inclined incidence).

Squeezing may be defined by the requirement that
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(188 )y = (:8 (1,1, Eylr,1):) <0, (7.1)
where
Bt )=118 e, e T+ HLC. ], (7.2)

which for =0 and ¢ =w/2 coincides with the in-phase
and out-of-phase component of the electric field, respec-
tively. In Eq. (7.1), the symbol : : means normal ordering,
and ( 4,B)=(AB)—(4)(B).

Clearly, in the case when the light under study is
filtered before homodyning, the normally ordered vari-

ance (:(AE,)%) is observed,
((AE %)= CE 4y(1,1),E gy (1,1):) (7.3)
where E; is defined in Eq. (7.2) with £ instead of

&), For simplicity we consider the case when the spec-
tral filter (Fabry-Pérot filter type) is tuned to the frequen-
Cy oy =w;. Making use of the general result given in Eq.
(5.8) and representing the T, as Fourier integrals we may
rewrite Eq. (7.3) as follows:

|
2
—ilw,to =~
GAE )= |== | [do, [daye 7" A”Tf(mL+w1>Tf(wL+w2)s¢ (r,01,0,) , (7.4)
where ¢ ,=¢+ Atw; and
Syrop,0)=1 [dt, [diye” " T O (18 P ir, e T 4 He 118 (Pin e H T 4 He ]} (7.5)
S, may be expressed by " 7" in the following way:
§¢(r,ﬂ)1,w2)=jl‘-[’r(]!’”((DL—CL)],(J)L +a)2)+f‘(7!’”(w[‘ T Wy, Wy +(01)
+T 20, + 0,0, +0,)e?+T 20w, —w,,0;, —w,)e "2¢] . (7.6)

In steady state we have

S4(1,0,0,) =80, +0,)7 41,0, (7.7)
and we find
F2
(AE )y =-- [92 T 5 r0) 71.8)

270 Y 27w r}+w2

It is seen that the normally ordered variance measured
behind the spectral apparatus is closely related to
T 4(r,0). In particular, if the resolution of the spectral
apparatus is sufficiently low (I" ; — o ), the total normally
ordered variance is obtained by frequency integration of
04

lim ((AE, %) =([AG 4 (r,0]%)

f<>oo

=1 rdos o
2rd 27 0T
In the opposite limiting case of extremely high resolution

(T ;—0) we obtain

(7.9)

lim 2T ((AE, ) =541, 0=0) .
rfao Ff

(7.10)

.
On the other hand, by Fourier transform we can define a

quantity S,
)Zfdtlfdtzei(wlll-f-wzlz)
X{: é’a¢(rt ), a¢(r ),
(7.11)

S y(r, 0,0,

which is related to T ™" in the same functional form as
S,(r,01,0,) to T 7" [see Eq. (7.6)].
In steady state we derive

g;(r,w,,w2)=5(w1+w2)b‘ ;,(r (01) N

fdwaas(rw .

The intrinsic squeezing spectrum may now be defined
[based on the Fourier decomposition of the field &, o, 1)]
by & 4 in close analogy to the definition of the quantum
theoretical analogue of the Wiener-Khintchine spectrum
as introduced by Metha and Wolf' [cf. Egs. (2.7) and
(2.8)].

Clearly, the normally ordered variance (: [Aé’ r,t)]%)
of the (unfiltered) field represents a measurable quantity,

(7.12)

(;[A&,(r,n]z:)— (7.13)
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which gives the information on squeezing. It can be re- 7 4(r,0)=04r0)+A,r0), (7.14)
lated to the frequency integral of either the measurable h byiously the relati
spectrum &, or the intrinsic spectrum & 4, see Egs. (7.9) Wwhere obviously the relation
and (7.13). The relation between the measurable spectral f dol o(1,0)=0 (7.15)
quantity a4 r,o) and the intrinsic one & ;(r,a)) is given N
by is valid. The quantity A,(r,) is defined by
J
8w +0y)By(r,0)=1 [dt; [diye” "1 T2 (D (x5, 1) dexpli[g (1, +1,)+26])
+D}, (1, ty;r,t Jexp{ —i[w, (£, +1,)+24]}) (7.16)
where
a) (Tl T )= fdr,fdtlfdrzf dt;0(t,—15)0(ty —11)0(t] — ma,a’,(r!”l;r’l"’l)
XFH  (Tyty;Thth )<[i (r),2) ),ia (ryt5)]) (7.17)
%

represent so-called time-delayed contributions studied in Ref. 8 and paper 1.
We now consider the resonance fluorescencg from a single (two-level) atom located at r=0 and driven by a coherent,
monochromatic plane-wave field. As known, & . in the radiation zone may be written as**

32,?’(r,t)=fa(r)l? t—f exp | —iw; t—f , (7.18)

where b(1) is the slowly varying atomic lowering operator and f,(r) is the characteristic dipole-field functions. Equa-
tion (7.18) may be derived from Eq. (3.14) together with

H oo 0850, 8)0F o (F )= ot —1)[8(t —t'—|r—1'| /&) +8(2'—1 — [t —1'| /¢)]8(r )b (t)e 1" (7.19)
[also cf. Eq. (3.38)]. The second 6 function in the brackets in Eq. (7.19) of course does not contribute to the time in-
tegral in Eq. (3.14) but it is needed in order to ensure the validity of the symmetry relation given in Eq. (3.17). Inserting

Eq. (7.18) in Eq. (7.5) and Eq. (7.19) in Eq. (7.17) and considering the steady-state case, from Egs. (7.7), (7.16), and (7.14)

we arrive at

& ,(r,0)=27 Re ’f°°dmos<m)[|fa(r)|2<3*(o
0

F4(r,0)=04r,0)+7Re [fg(r)ez"w-m'/f’fo”dfe"“"f<[B(O),B(ﬂ])

In order to show that &, and &;, can substantially differ
from one another we confine ourselves to the case =0,
for which maximum spectral squeezing is attainable in
resonance fluorescence.'> The atomic correlation func-
tions in Egs. (7.20) and (7.21) may be calculated from
standard methods (atomic Bloch equations and quantum
regression theorem). Straightforward calculation yields

Qz 1—3
___2 Padadt 4 —
F4r,0)= [l 7’} 2
6 4
11Q Q
% 4|2t LL]
217 Y

2

tlel,1]e
+ 2 \y 4

Xcos[2(¢+a)Lr/c)]‘ , (7.22)

),6(1))+f2(r)e”

¢+w,_r/c)<

),b(0) >]] (7.20)
(7.21)
[
2 al” 117
FHr0=a,r,0+ “Zfi(r)| |= | +=
4 $ ” f ” >
4 2
<(Lje|l liae
2 |y 4 |y
Xcos(2¢) , (7.23)

where y is the radiative decay rate and ) the Rabi fre-
quency. In Egs. (7.22) and (7.23), f, is assumed to be real
because phases may be included in ¢.

In Fig. 2 the maximum values of the in-phase spectral
functions & ,(r, »=0) and & |(r, »=0) and the minimum
values of the out-of-phase spectral function &,(r, ®=0)
and & 5(r, ®=0) are shown in dependence on Q/y. The
maximum intrinsically spectral squeezing attainable at
»=0 is seen to be & 5(r, ©=0)/(2m/y)f%=—0.235. In
contrast to this the maximum spectral squeezing effect
that might be observable is substantially smaller:
F,(r, w=0)/(2mw/y)f%=—0.070.
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0.8} .
61lw=0)

_06f 6i(w=0)
o
S 0t &lw=0)
s

0.2t 62(w=0)

0
-0.2t

Qly

FIG. 2. Maximum values of the normalized in-phase spectral
functions &,(w=0) and & {(0=0) and minimum values of the
normalized out-of-phase spectral functions &,(w=0) and
o 5(w=0) versus Q/y (Q, Rabi frequency; y, radiative damping
constant).

VIII. SUMMARY AND CONCLUSIONS

Based on the recently developed theory of the action of
passive, lossless optical systems in quantum optics (cf.
Ref. 25) we have studied the problem of spectral filtering
of quantized light fields. The spectral filter (Fabry-Pérot
filter type) is modeled by a macroscopic dielectric. For-
mulas have been derived for the field operators and the
time- and normally ordered correlation functions of the
filtered light in the presence of atomic sources.

We have shown, that, apart from the second-order
(Wiener-Khintchine) spectrum, measurable, spectral
properties of nonclassical light fields differ, in principle,
from intrinsic, spectral characteristics derived from a full
Fourier analysis of the field under study, and hence from
a Fourier analysis of field correlation functions which are
not ordered in time. This difference reflects the fact that
in the presence of sources the full-field commutation rules
become different from the free-field commutation rules.

We have studied two different situations, namely, in-
clined incidence of light as an example without back ac-
tion of the spectral apparatus to the source, and perpen-
dicular incidence as an example for back action.

In the first case, observable spectral properties (ex-
pressed in terms of normally and time-ordered correla-
tion functions) can be related (similar as in classical op-
tics) to the Fourier transforms of (normally ordered)
correlation functions of the incoming part of the com-
plete field under study, without need of time ordering.
However, with respect to the complete field (which differs
from the incoming field in vacuum field contributions),
they can only be related to the Fourier transforms of
(normally and) time-ordered correlation functions.

In the second case the situation changes drastically. In
this case, the back action of the spectral apparatus to the
sources gives rise to source-quantity commutator effects
and time ordering with respect to the retarded time argu-
ments of the incoming field becomes reasonable. In par-

ticular, the transmitted light field (that is the convolution
of the incoming field with the transmission response func-
tion of the spectral apparatus) does not therefore
represent the field relevant for photodetection.

As an example of application we have discussed the
problem of spectral squeezing of resonance fluorescence
radiation originating from a two-level atom for the case
without back action of the spectral apparatus to the radi-
ating atom. We have shown that in this case the measur-
able, spectral squeezing may substantially differ from the
intrinsic one defined by Fourier transformation of the
complete fluorescence radiation field. In particular, in
the case when the spectral filter is tuned to the frequency
of maximum observable squeezing, the observed squeez-
ing effect is substantially lower than the intrinsic one. In
other spectral ranges the situation must be inverse, be-
cause the two squeezing spectra integrated over the
whole frequency range yield equal total squeezing. The
difference between the two spectra illustrates the fact that
in the case of sources being present the vacuum fluctua-
tions may play a substantial role even for normally or-
dered correlation functions.

APPENDIX: DERIVATION OF COMMUTATION
RELATIONS AND RELATIONS BETWEEN O
AND T-ORDERED OPERATOR PRODUCTS

Starting from Eq. (3.13) and making use of Egs. (3.22),
(3.23), and Eqgs. (3.41)-(3.44), respectively, for the cases
of perpendicular and inclined incidence of light [cf. Figs.
1(a) and 1(b)] we define

172
fiw

4me,

E{™(x)=i

X[ O()6(—kx)e™ ™ +0(m )e(kx)T_"f(w)e”"‘

+0(n)0(—kx)R ;(w)e ~**] (Ala)
1/2
0
X[ O6(1)8,;,0(—kx)e*
+0(m)8,0(kx)T ;(w)e'*
+6(n)8,0(kx)R ;(w)e ™ ] , (A1b)
0= [T dk Em 0, el ) (A2a)
2 o
oan=3 [ dk B o0fy, el o) | (A2b)

=1 ®

where the values of /, m, and n are +1 or —1. Compar-
ing these definitions (for x >d /2) with the field decom-
positions given in Sec. IV, we see that for perpendicular
incidence of light [Eqgs. (Ala) and (A2a)] (1,+1,)1,
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E -1 E{™ .~ and E 1 _1,1» respectively, are the  the right.

full free field, the transmitted free field, the free field in- Using the results given in paper I [cf. Eq. (4.13) in pa-
cident from the right, and its reflected part. In the case  per I and its derivation] we may represent the commuta-
of inclined incidence [Eqgs. (A1b) and (A2b)] the meaning  tors for the various free-field parts and the source-field
of Elmn’ is analogous. Note that E 7, —1 _1,1 is now the  partin the following form:

reflected part of the free field incident on the y axis from

J

[E i)y, t),E Py, t)]=— [dxy [dr [dx) [dey@e,—15)0(t5 =t K ™ (x50 ,17)
XK (x,,t0;x5,t )T (x ), 00, T (x5,t5)], (A3)

Klmn(x,t;x,’tl)z_#f+°CdkE’£mn(x)Akt(xr)e-—iw(r—l’)

1 * T —to[t—t'"—(x—x"}/c T —ioft—t"+(x —x")/c]
—~47T€0f dk[O(m)T (@)e Helt =~ 1+0(0T Hwe el
(m)Tf( E ( Ye —iw[lv1'~(x+x')/c]+e(n)§f(w)'f;(w)e~1w[1~1'7(x+x')/c]] ,
(Ada)
Klmn(x t: x t 2 f+°°dk Elmn( YA ( r)e~ia)(t—1')
P 1 *® T —ioft—t'"—(x —x')/ - —io[t—t'+(x—x")/c
= ey fo dk[8(m)T (w)e ~ieli 1 T+0(IT Hw)e ey (A4b)

In Egs. (A4), the functions 4, (x) and A, (x), respectively, have been taken from Egs. (3.22), (3.23), and (3.41)—(3.44).
Note that x >d /2 and x’' <d /2.

In order to treat Eqs. (A4a) and (A4b) in an uniform manner it is convenient to introduce the parameter a defined by
the relation a =1 for the case of perpendicular incidence of light [Eq. (A4a)], and a =0 for the case of inclined incidence
[Eq. (A4b)]. Making use of Egs. (3.24), (3.25), and (3.28), from Egs. (A4a) and (A4b) we derive

1_r2 e*m)«S+ -iw&_
K Imn ,tx', ') =— *d l)————+86 —_—
(x x ) 47T€0C fO @ e( ) 1_r2e—law (m) 1— 2e10w
, e—iwD+ e—iwD_
+a[O(m)—O6(n) — — - , (AS)
[ ] 1472 | 1—r2e 700 [ —plgiow
where

d.=t—tv'tl /c, (A6)
D,=D*o0/2, (A7)
D=t—t'—(x+x")/c, (A8)
o=2n,d/c, (A9)

I being given in Eq. (3.35).

Since we are dealing with optical frequencies we may (approximately) extend the integral in Eq. (A5) to minus
infinity. Making use of the relation

fj:dw]_:;% =21ré0r2fa(zijo> (A10)
and remembering the relation

e 7=y2 (A11)
[cf. Eq. (3.30) together with Eq. (A9)] we therefore obtain the result

1—r2

2eqc =0

Kmn(x,t;x',t')=— 9(1)erf6+6(j0+8+)+6(m)e7rfa’8(jcr—6ﬁ

r

+a[e<m)—e(n>]ﬁ[erf”*s(ja+p+)—e“rf”-a(ja—u-)] , (A12)
r
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which, after some simple manipulation, may be rewritten as follows:

1_ 2 + o

K'™(x,5x', ) ==——— 3 o' 7> 0(—8 )8(jo+6,)+6(me > O(5_)8jo—5_)
o€ j=—c
1 r,p . -r,D )
+a[6(m)-6(n)]1+ sle 7"O(—=D)d(jo+D,)—e O(D)é(jo—D _)]
r
(A13)
Making use of the identity
+ o0 . + o
3 o!2mjz/0) = o S 8(jo—z) (A14)
j=— j=— o
and taking into account that the relation exp(T" ;0 /2)=r ~!is valid we arrive at
1— 2 —tw - _ —iw 6 _
K™, 10 =—2—— 3 (a(he P 0(=5,)e "> +0(me /P05 e
2epco0
(=1) —r,Ipl~ie,D
+a[0(m)—6(n)] e fe(—-b)y—ew)] |, (A15)
1+r
where
0,=j2Z (A16)
o

are the resonance frequencies of the Fabry-Pérot filter [cf. Eq. (3.30) together with Eq. (A9)]. Note that in Eq. (A15) the
sum over j may be restricted to positive (optical) frequencies w;. The (off-resonant) negative-frequency terms formally
appear in consequence of the extension of the original frequency integral to minus infinity.

In particular, in the case, when the bandwidth of the (source) light studied is small compared with the difference of
neighboring resonance frequencies Aw,=2m /0 we may restrict ourselves to a single resonance frequency w,=f2m/o.
Furthermore, assuming a highly reflective filter (» =~ 1) we may simplify Eq. (A15) as follows:

1
2€,c

K" (x,t5x, 1) = — ONTHt' —t =1 /e)+O(m)T,(t —t'—1/c)

1/
+a[6(m)—©6(n)]

("2 [Tt —t +(x +x")/c) =Tt —t'—(x +x) /)] | , (A17)
where T /(1) is given in Eq. (3.36).

Remembering the relation Kf(x,t;x’,t’)=K”'(x,t;x',t') [cf. Egs. (3.31), (3.46), (A4), and (A1)], from Eq. (A17) we
easily obtain

K, (x,t5x'1)= — loc [T/t —t'—1, /e)+ T}t =1 —1, /)] . (A18)

2e
Combining Egs. (A3) and (A17) and taking into account Eq. (3.36) we derive

2
[axi[ar; [dx} [ drye;—1})

X{OWTF(ty—1,— 1" /e)+O(m)T (1, — 1] —1;"/c)

—_1\
+a[e<m>—e(n>1%[T;u; —t,+(x, +x)/c)

a ~ 1
E{ ) (x,t),E T (x,,0,)]=— | =—
[ Imn 1251 s ( 2 2)] 2600

—Tp(t,—t)—(x;+x7)/c)]}
X Tty =ty =12 /T (x1,17),T(xh,15)], (A19)
where
l}”=x, —x;+(n,—1)d >0 . (A20)
From Eq. (A19) together with Eq. (3.36) it is readily seen that the relation
[E{7) ey, E (PAxy,15)1=0, 1> 1, (A21)
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is valid. Remembering that according to Egs. (A2) and (4.20) the relations £ e K1 =& heelty +x, /) =E ) (x,,t,)

are valid and taking into account that the free-field part of £*'(x,,,) and &'
(A21) we obtain

() ee(t; +x, /c) commute, from Eq.

LE Px,,1),E Hxy,1,)]=0, t,>1, . (A22)
Combining Egs. (A2) and (4.18), (4.22), (4.15), (4.17) we may write

A

[E T, t00,E Dixy,0)]=[E D0y, 1), E V0, e D]FHIE ) (xy,00),E U i(xy,25)]

—[E 1 R xz,t;,_),l/f )] (A23)

Making use of Egs. (3.14), (A18), and (A19), from Eq. (A23) we derive

[E[:)(xl: E(+)(x2,t2)]

fdxlfdtlfdx [ s =t =10 /)T (1, =1y =12 /) Tixy,01), T (x5, 15)]

2€0c
X[1=O(t;—t])—O6(t]—1t;)] . (A24)

’

Taking into account the relation ©(t; —¢})+©O(t| —t;)=1, we arrive at the result

[E T Ax,,t),E Tix,,1,)]=0. (A25)
Combining Eqs. (A2), (4.15), and (4.17) we may write
E N x,0=E Px,nH+E )| _i(x,0) (A26)
and hence

B x tDE x, 1) = E {7 1 DE (P, 1) +E ) (1 DE Y (xg,05)
o e o
+E Vx,0)E (flfx,—l(xzﬂz)'*'ﬁ(sﬂ(xz’tz)E UVl ty)
HES) e t0,E (x,10)] (A27)

Substituting in the first term on the right-hand side of Eq. (A27) for the source-term operators £ \ ™ Eq. (3.14) together
with Eq. (A18) and Eq. (3.36), substituting for the commutator Eq. (A19), and remembering the definition of the order-
ing symbol O we derive after some algebra

Eirans(xl’tl)ﬁ(tr:rzs(xz’tZ =0(E [0 (x 1 )E L (x0,6,)) = Alx 1 15%,,1,) (A28)
where
Brtxptirnt=a |= [ Tavs [a [dx) [ deo—o[Tri—1,+(x, +x;
T\ X 1,11:X9,0; a 260C 2 X t; xj t_[ tj ti [ f(tl t; (x, X; )/c)
=T (t; =t/ —(x,+x/)/c)]
X T (t;—t/ =1 /e)[T(x/ 1)), T (x],t])] . (A29)

Here, the indices i/ and j are determined from the requirements ¢, =max(t,,¢,) and ¢; =min(z,,1,).
In particular, in the case of a pointlike source located at —s (s >d /2) we may write

T, )=8(x +s)J (1) . (A30)
Combining Egs. (A29), (A30), (A20) and (3.36) we arrive at the following result:

~

AT(xl,tl;xZ,tz):ar}

2“ [ dije—thew; —i ) e — 1/ —2s, /c)— Ot/ +2s, /c —t])]

Xexp[— T (t/—1 +|tr+28f/c—t DT}, (J)], (A31)
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where
iy =t~ (xpgtse)/e, (A32)
Xp=Xiytn,—1d/2, (A33)
sp=s+(n,—1)d/2 . (A34)

We note that in the case a =0 (inclined incidence) from
Eq. (A19)

Em(x)=8;,61M(x) (A39b)
3(,“(x,t)=f+xdk EM(X)A ¢ el D) (A40a)
Giien=3 [ "k G0 D), (A40D)

i=1

where the values of / and m are again +1 or —1. Apply-
ing Eq. (5.11) to the field propagating in the x direction

o _ [6 . r,t)—& *)(x,0)] and making use of Egs. (A39)
[E) (x50, (M (x,,15)]1=0 (A35)  and (A40) yields (x >d /2)
is seen to be valid. Remembering that 5 +)(x,¢) =(§ fm(x’t)+§ (S+)(x,t) , (A41)
E' Dx,n=E ) (x,0+E ") _| |(x,0), (A36) L here
and taking into account that E[—l,vl,l is a free-field N x ~ x
operator which commutes with the free-field part of & fee(X,1)= E e [t =2 |46 T hee t+? , (A42)
E 1), from Eq. (A25) together with Egs. (A35) and (A36)
we therefore derive for the case when a =0, - o+
& =X =60 (x, 1), (A43)
[E tans(x 1,110, E {hni(x2,15)]1=0 @3 e e b
so that Eq. (1128) can be simplified as follows: e (:f)m .2 j (x0) (A44)
E x 1, 1)E Gix,15) ¢
oy o (
0B (ki )E ) (x000)) . (A38)  Ghex=611x0), (445)
We now define and, according to Egs. (3.14) and (3.38),
172 , 6N x,n= [dx' [dt'O(t —t"FH(x,t;x",t)T(x",t") .
Emx)=i |22 | [ @()e(—kxle™ Jax]
4meg (A46)
+6(m)0(kx)e™ ], (A39) Ip complete analogy to Eq. (A3) we may write
[65(x,,8,0,6 T (xy,t5)]= fdxlfdtlfdxzfdt ot Oty — 1K™ (x ,t;x,17)
X FH (x5, t25% 5, 0T (x1,85),T(x5,t5)], (A47)

where now [in analogy to the calculations leading to Eq. (A17)]

K™x,t;x",t")=

Combining Eqs. (A41) and (A45) we may write

& Fix 1 t)6 Fixy,ty)= 6 x )6 T
+

Making use of Egs. (A46), (3.38), (A47), and (A48) (I =
O, from Eq. (A49) we derive

(x5, 0)+6 {x,0)6 Y

s
& x,1)6 P (x,y,0)+6 (i x,y,1)6 () (xy,8))
3

m)d(t —t'—(x —x")/c)+OUT}(t'—t —l;/c)+aOm)RF(t —t'—(x +x"+d)/c)] .

(A48)

A~

(x2,t2)

HFLE K x1,10),8 Pxyt5)] . (A49)

=1), and remembering the definition of the ordering symbol

& xy, )6 gy 1) = 0086 Fxp,1)8 x5, 10))— 802 xy,115x,,15)
+2—€0;fdx’1fdt’lfdx’2f dtyO(t, —15)0(ty — ) FH (x4, t5;x5,th)
XTH, —t, =11 /)T (x5, 60, T (x3,15)] (A50)
where
8OV (x,,t,3x0,15)= fdxlfdtlfdxzfdt O(1,—13)0(ty —t Rt —t,+(x;+x| +d)/c)
X[T(xq,e5),T(x5,t5)] . (A51)
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Since Tf(t)=0 if t <0, we easily see that
T (6 (x,1)6 T xy,1,)=0(6 Fix,, 106 Fix
where

(02)(x1,t1,x2,t2) 5(02(x,~,t,~‘,xj,tj),

21 ))—8 Dxit3x08,), (AS2)

(AS3)

the indices i and j being determined from the requirements #; =max(¢,,?,) and ¢, =min(¢,,t,).

J

Clearly, in the case when a=0 is valid (inclined incidence), Eq. (A52) simply reads as

T (6 xp,t)6 Txy, 1)) =0(8 Tx,,t

)(x2yt2)) .

(A54)

From the derivation of Eq. (A50) it is seen that the term proportional to T} arises from & - tec in Eq. (A42) [cf. Egs.
(A44) and (A48)]. That is, performing the calculations given above for the case of &+ inc [deﬁned in Eq. (4.17)] instead of
& ), we arrive at Eq. (A50), however, without the term proportional to T}:

& (ot 1,88 () 0xp, 1) =008 () (x 1,106 (Dixy 8

2))—5(0’2)(x1,t1;x2,t2) .

(AS5)

In particular, in the case when a=0 is valid (inclined incidence) we simply obtain

G (x 1,16 i (x,,1)=0(6 ([ (x1,11)6 1 (x,,15)) .

(A56)
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