
PHYSICAL REVIEW A VOLUME 42, NUMBER 8 15 OCTOBER 1990

Non-Painleve reductions of nonlinear Schrodinger equations
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The nonlinear Schrodinger equation ig, +tsP=cPlflt with boundary conditions imposed on a

cylinder or on a sphere is reduced to an ordinary difFerential equation, namely, the Abel equation.
This can be used to investigate particular singular solutions in self-trapping and self-focusing
theories.

Two recent articles' were devoted to exact analytic
solutions of the three-dimensional Schrodinger equation
with a polynomial (cubic or quintic) nonlinearity. In par-
ticular, solutions were found corresponding to a cylindri-
cal' or a spherical geometry. Lie group theory was used
to reduce the original equation to a variety of different
ordinary differential equations. Those that have the Pain-
leve property ' (no movable singularities other than
poles) were identified and integrated in terms of elementa-
ry functions, Jacobi elliptic functions, or Painleve tran-
scendents. The procedure used picks out "well-behaved"
solutions and ignores those that may have essential singu-
larities or logarithmic branch points at finite real (and in
general complex) values of the independent variables, the
position of which depends on the initial, or boundary
conditions.

Solutions that have singularities at points, on lines, or
even on surfaces, have very important physical applica-
tions. In such situations there is no a priori reason to re-
quire the singularities to be poles, or to require that solu-
tions be single-valued singularity surfaces. Other types of
singularities are of equal interest and this provides the
motivation for the present Brief Report. Its purpose is to
apply group theory to obtain information about non-
Painleve type solutions of the equation

iq, +bq=cylkl' c,o cn
in cylindrical and spherical coordinates.

This equation is a basic evolution model for nonlinear
waves in various branches of physics. It is a generic
equation describing the slowly varying envelope wave
train in conservative dispersive systems. For c &0 and
Io &2/(D —2), D) 2;tT & ao, D &2j, where D is the
number of spatial dimensions, it has solitary wave solu-
tions that are stable for o & 2/D. For c )0 and o ~ 2/D,
solutions of Eq. (1) can have absolute value l1itl that
diverges at a finite time t. Solutions that do not diverge
or diffract are associated with the typical self-trapping
phenomenon, while others are associated with the self-
focusing one. In nonlinear optics, for instance, we

have ca=1 and the self-trapping solution is stable for
D= 1 (soliton solution of the cubic nonlinear Schrodinger
equation) but diverges for D=2. More information on
the physical origin, stability, and local structure of the
divergence can be found in Refs. 7 and 8.

Let us first consider a cylindrical geometry, i.e., bound-
ary conditions given on a cylinder. We put'

/=M(p)exp Ii [y(p)+a 8 bt ]j, — (2)

where x =p cos8, y =p sin8, a, b, M(p ),y(p ) E R. Equa-
tion (1) then reduces to

a=So f dp, +Xo,
1

pM

M+p M —S p 2M —a p M+bM —cM2a+ 0

(4)

'9= 4kp +po ~

where k, po, and g2 are constants and p( ) is the
Weierstrass elliptic function. ]

Similarly, in the case of a spherical geometry, we put

(6)

/=M(r)exp ji [g(r) bt ]j, —

wherer =x +y +z andobtain

1+=Sp f dr
~ ~ +gp,

r I
M+2r 'M —Sor M +bM —cM +'=0 . (9)

Equations (4) and (9) are invariant, whether of the
Painleve type or not, under a simultaneous dilation of the
dependent and independent variables if b =So=0. This
symmetry is generated by the differential operator

where So and yo are integration constants. [Note that in
addition to the cases analyzed in Ref. 1, Eq. (4) is also of
the Painleve type for Ia =

—,'„b =So =0, cr= —,
'

j which
provides the solution

M= —k'p '~'p(ri;0;g2),2 —2/5 (5)
e
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D =(ti~ —o 'Mt)M, (10)

—[2+(I—k)o jz + z, z=w1 —a
oy

(12a)

where g =p or g = r, respectively.
The restriction to b=0 leads to a particular subset of

stationary cylindrical and spherical wave solutions for g.
As such, their physical interpretation is more appropriate
within self-trapping models (for which i/i is independent
of r). Singularities of M(g) for g=p=po, or g=r=ro,
correspond to singularity surfaces for the solution g of
the original equation (1). In optics such singularities at
p0=0, for instance, are typical for filamentation process-
es (collapse into a line singularity). On the other hand,
one can use symmetries of Eq. (I) to generate other solu-
tions. For example, stationary waves can be transformed
into traveling ones by using Galilean symmetries of Eq.
(I). A conformal symmetry, which exists only for
o =2,/D, can be used to generate singular solutions at
some fixed time t =to that indeed correspond, when no
other singularities exist in p and r, to a typical self-
focusing phenomenon. '

Setting So =b =0 in both cases, we use this residual di-
lational symmetry in a standard manner" to reduce the
order of the equations. Indeed, we transform from
(g, M(g)), to (y, w(y)) given by

y =(M, w=tr 'In((),

and transform Eq. (4), or (9), for M(g) into an equation
for w(y), namely

z~=[1+o(1—k) —o a —o cy ]cryz

k=1 for (=p,
a =0, k=2 for g=r .

(12b)

Equation (12) is an Abel equation of the first kind. A
sizable literature exists on this equation; see Kamke' or
Murphy' for brief reviews and references to the original
literature. Being a first-order equation, Eq. (12) is con-
venient for qualitative studies of the behavior of solu-
tions. Once a solution z =z(y, C, ) is obtained,
w(y, C„C2) is calculated by a quadrature and M=M(g)
is found by solving an algebraic equation

w(M, C„C2)=o 'In(g), (13)

where C; are integration constants.
We use this opportunity to correct an oversight in Ref.

I, where an Abel equation equivalent to (9) was
misidentified as a Riccati equation and treated as such.
Solutions of Abel equations, as opposed to Riccati ones,
may have movable critical points, not only movable
poles, so the difference is an important one.
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