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Exact solution of the one-dimensional immobile trapping problem with and without sources
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We consider the one-dimensional trapping problem A+S~S when the traps S as well as the
reactants A are immobile. The trapping rate k(r) depends on the distance r between the reactant
and the trap, and is characterized by an "effective reaction radius" ro, which is a measure of the first

moment of k(r). We find that the decay of an initial density of A particles is exponential in time at
short times and an inverse power law at long times. In the presence of sources, we find that a steady
state exists only if the effective reaction radius is larger than half of the average distance between

sinks, and we find an inverse-power-law approach to the steady state. If this condition is not met,
then there is an unbounded accumulation of A particles in regions that can not be effectively deplet-
ed by the reaction. The growth of the density in this case is of power-law form.

I. INTRODUCTION

Diffusion-controlled annihilation reactions of the form
A + A ~ A (Ref. I) or A + A ~0 or A +8~0 (Refs. 2
and 3) and diffusion-controlled trapping of the form
A +S~S (Refs. 4 and 5) have been of considerable in-
terest because of the "anomalous" kinetic laws that
govern the evolution of these reactions in low-
dimensional systems. The kinetics are viewed as anoma-
lous because they do not follow the mean-field "classical"
textbook form. The reasons for these anomalies are fair-
ly clear and are related to the spatial distributions of
reactants. In the case of a single reactant species A, the
distribution of nearest-neighbor distances in low dimen-
sions differs from the Hertz form that underlies the clas-
sical rate laws. As the reaction proceeds, near neighbors
are depleted and diffusion is not effective in replacing
them as quickly as they react. Therefore, nearest neigh-
bors tend to be farther apart in lower dimensions in an
arrangement that is almost latticelike. The reaction is
then slower than predicted by mean-field theories. In the
trapping problem the anomalies arise from the distribu-
tion of reactants A around the traps S: depleted regions
around the latter are not replenished by diffusion as
effectively in low dimensions as they are in higher dimen-
sions. In the two-species case, anomalies occur in
suSciently low dimensions due to the spontaneous forma-
tion of macroscopic aggregates of like particles that are
not effectively mixed by diffusion. As a result, reaction
only takes place at aggregate interfaces rather than in the
entire volume. As a consequence, the time evolution of
the densities is slower than predicted by the usual kinetic
laws.

A related problem that has been investigated recently
via numerical simulations and approximate analytic ap-
proaches involves the A +B~0 reaction in one dimen-
sion in the absence of diffusion. The particles react via
an exchange interaction (i.e., exponential in the distance
between them). Here, too, the authors find spontaneous
segregation of species and the associated "anomalous" ki-
netic laws. This system provides a particularly stringent

test of approximate theories since "...possible deviations
of the theory from the computer experiments are not ob-
scured by diffusion effects. ..."

Another problem related to those posed above is that
of trapping, A+SOS, when both the traps S and the
reactants A are immobile. The trapping occurs via a
long-range interaction that is most conveniently taken to
be of the exchange form. In this paper we explore the ki-
netic behavior of this system in one dimension in the ab-
sence (Sec. II) and in the presence (Sec. III) of reactant
sources. Our conclusions are summarized in Sec. IV.

II. EVOLUTION IN THE ABSENCE GF SOURCES

Consider the immobile trapping problem A +S~S in
an infinite one-dimensional system. The rate coe%cient
for trapping, k(r)=wtt(rlro), depends only on the dis-
tance r between the reactant and the sink, ro is a distance
scaling parameter which can be interpreted as an
"effective reaction distance, " and tc(u) is a dimensionless
function whose integral over all space is ro. The total
trapping rate of each A particle is wro. For instance, if
the trapping rate is assumed to be of the exchange form,
then it depends exponentially on the distance between A

and S.

k(r)=toe

The reactants A and the traps S are initially deposited at
random 1ocations with density p, and no, respectively.

We use the many-point density approach of Kuzovkov
and Kotomin and define the many-point function
p, (r', r, , rz, . . . , r;t) as the probability density that
one A particle is located at r' and that m S sinks are at
r, , r 2, . . . , r at time t. The reactivity of a particular A
is independent of the number and locations of the other
A' s. Therefore, only one A need be considered in the
definition and construction of the many-point densities.
Furthermore, the p, depend only on the relative dis-
tances between the A particle and the sinks. Without
loss of generality, we set r'—:0.
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Following Kuzovkov and Kotomin, it is convenient
to introduce the many-point correlation function

g (r, , r2, . . . , r;t) via the relation

of order m with that of order m +1. The hierarchy be-
gins with the density n (t). Its first member is the evolu-
tion equation for n ( t):

pi =p n (t)g (ri, r2, . . . , r;t) (2) d—lnn (t) = —2p, J dr, k(r, }gi(r,;t),
where n (t) is the density of A at time t. Due to the ini-
tially random (uncorrelated) distribution of particles and
sinks, g (ri, r2, . . . , r;0)=1. Using standard manipu-
lations it is possible to construct a hierarchy of integro-
differential equations connecting the correlation function

I

where the factor of 2 reAects the location of sinks on ei-
ther side of A. The subsequent members of the hierarchy
give the correlation dynamics [Kuzovkov and Kotomin,
Ref. 2, p. 1507, Eqs. (3.7) and (3.8)]

Bg (ri, r2, . . . , r;t)
k(r )g (r„rz, . . . , r;t)

j=1

00 gm+i(ri, r2, ' ' &rm, rm+i', t)—pg (r, ,r». . . , r;t) dr +ik(r +i) —gi(r +»t)
0 g (ri, r2, . . . , r;t)

(4)

Infinite hierarchies of nonlinear equations connecting
correlation functions of ever higher orders can in general
not be solved analytically, and neither would it be possi-
ble to do so in the trapping problem if the reactants could
diffuse. However, in the present case of immobile reac-
tants the hierarchy can be solved exactly with the multi-
plicative solution:

In particular, the hierarchy (4) reduces to the single equa-
tion

F(t)=wt+O(t ), (10)

which for early times yields an exponential decay for the
density,

—2p rowt
n (t)=noe

If we further expand the exponent we find an initial decay
that is linear in time, which is to be contrasted with the
short-time behavior of the density in the diffusion-limited
trapping problem; in that case, the initial decay is pro-
portional to &Dt, where D is the diffusion coefficient of
the A particles:

4p, &Dt
nD(t) =no 1 — +41n2p,'Dt (12)

—2p, roF(t)
n (t)=noe (7)

which can be integrated trivially. When the result is in-
serted into (3) and the latter is integrated, we find for the
density n (t) the expression

The long-time behavior depends on the specific form of
the trapping rate function. For an exponential trapping
rate we use (9) and observe that the exponential integral
can be neglected in comparison with the other two terms.
Equation (9) in (7) then gives

where

F ( t ) = w t 1 du u ~'( u )e—
0

n(t)=
2pp t 0n0e

(13)

and the prime denotes a derivative with respect to the ar-
gument. If the trapping rate is of the exchange form (1),
then it is convenient to first carry out the spatial integra-
tion and then the time integration to obtain for F(t) an
expression involving the familiar exponential integral

F(t)= J dr
0

Ll=y+lnwt+ du
rut u

(9)

where y=0. 5772. . . is the Euler-Mascheroni constant.
Equation (8) or Eq. (9) can easily be evaluated numerical-
ly. We have thus reduced the problem to quadrature.

Although in general F(t) cannot be expressed in terms
of simple analytic functions for all time, the long-time
and short-time behavior of n(t) can be found explicitly.
At short times we can expand F(t) in (8) in a power series
of the form

The density thus decays as a power law with the power
2p, r0, the number of sinks within the reaction radius.
This inverse-power-law behavior should be contrasted
with the stretched exponential long-time decay of the
density in the diffusion-limited trapping problem:

n (t) = n (Bt)' e
32 I /3

D (3 3)1/2 0 (14)

with 8 =m p, D/4. Note that, whereas (14) cannot be ex-
pressed in terms of a rate law with a constant rate
coefficient [i.e., riD(t) cannot be expressed in terms of a
power of nD(t) with a constant coefficient], such a rate
law is possible for (13). Finally, we also note that Eq. (13)
is only valid when r0 is finite. To consider the case
r0~ ~ it is necessary to return to the beginning of the
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problem and to take this limit at the outset in Eq. (3).
The resulting decay law for the density of A particles is
exponential in time. The difference arises from the order
in which the infinite limits of ro and of the size of the sys-
tern are taken.

III. EVOLUTION IN THE PRESENCE OF SOURCES

In addition to the initial random distribution of A par-
ticles, suppose that these particles are subsequently and
continually fed into the system at a rate R in units of den-
sity per unit time. We have shown elsewhere that the
density n, (t) in the presence of this source can be ex-
pressed in terms of the density n (t} calculated in Sec. II
as

function leads to a divergence of nss if p, ro —,', i.e., a
steady state with a finite concentration exists only if
p, ro )—,'. In other words, to inhibit the unbounded accu-
mulation of A particles it is necessary for the reaction ra-
dius to be greater than half of the average distance be-
tween sinks. Otherwise the accumulation of A can not be
counteracted sufficiently rapidly by the reaction, resulting
in a divergence of the density. A divergence of this type
would occur with any trapping rate function that has
finite moments; the unbounded growth would obviously
be limited by a finite size of the reactant particles.

Equation (15} describes the density of A at all times.
The time evolution near the steady state can be found
analytically using (13):

R
n, (t)=nss+n(t) — f de( r),

np t
(15)

P, "o
1

n (t)=nss
w(2p, ro 1)

(
t)~~' 0

(22)

where nss is the steady-state density of A, given by

nss= f dt n(t)=R f dt e
no o 0

(16)

ln(1+wt}«F(t) «y +1 n(1 +wt) . (17)

To establish the lower bound we must show [with the
form (9) for F ( t)] that

The steady-state density cannot be calculated analytically
(although it can be evaluated numerically). However,
useful bounds on the steady-state density can be estab-
lished by noting that F(t) in Eq. (16) is bounded. We
show these bounds to be given by

so that the approach to the steady state is of inverse-
power-law form and always occurs from below. This be-
havior is again to be contrasted with the diffusion-limited
case, where the approach to the steady state, although
also from below, is of the stretched exponential form

( t ) n g 1 /6t7/6e —3(Bt)32R 1/3
s D ss D

(3 3)]/P (23)

with 8 defined as before. In the absence of a steady state
it can easily be seen that the growth of the unbounded
density is of power-law form. Finally, if the sources of A

particles are time dependent, then (15) must be replaced
by the more general expression

where

dwX w ~0,
0

(18)

(19)

n, (t)=n(t)+ f dr S(r),n (t r)—
o no

where S (t) is the source density per unit time.

IV. CONCLUSIONS

(24)

In writing (18) and (19) we have expressed the logarithm
in the inequality (17) as an integral. Straightforward ma-
nipulations allow us to rewrite X(r) as

X(r)= —e '(e "—1), (20)

where Y(r)=r —ln(1+7) and therefore X(r) is positive
for all r if Y(r) ~0, which is indeed the case. Thus (18)
and consequently the lower bound in (17) are established.
The upper bound is easily established by noting that the
positivity of X(r) implies that F (t)—ln(1+ wt) is a mono-
tonically increasing function of t. Since the limit as
t~ ~ of F(t) is y+lnwt [cf. (9)], and in this limit
ln(1+wt) and lnwt are the same to O(t ), the upper in-
equality is established. The bounds (17) in the steady-
state density expression yield (provided 2p, r0 & 1)

We have calculated the density n (t) of /I particles as a
function of time for the trapping problem A +S~S
when the traps and the particles are immobile and trap-
ping occurs via a long-range trapping rate function k (r).
In the absence of sources other than the initial distribu-
tion we find that the short-time decay of n (t) is exponen-
tial (typical of a spatially random distribution), while at
long times the decay is of inverse-power-law form. This
latter slow decay reflects the depletion of reactant near
the sinks. In the presence of steady sources of A parti-
cles, we find that a steady state is established if the aver-
age distance between sinks is at most comparable to the
effective reaction radius, and that the approach to the
steady state is of inverse-power-law form. If the distance
between sinks is too large, then we find unbounded
power-law growth of the reactant density.

w (2p, r0 —1) w (2p, ra —1)
(21)
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