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The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian
noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior
of the arbitrary correlation function of the noise, ranging from Dx =1 for Orstein-Uhlenbeck input
noise to any real number greater than 1 for fractional Brownian motions.

I. INTRODUCTION

In recent years a great deal of interest has been devoted
to the study of dynamical processes driven by Gaussian
colored noise. ' The main reason for this interest lies in
the fact that colored noise is closer to physical reality
than white noise. Although many properties of Gaussian
colored noise are currently under intense research, there
is one important feature of these processes that, to our
knowledge, seems to go unnoticed, that is, the fractal
geometry of their trajectories.

Fractal objects have been known as mathematical cu-
riosities for a long time, and only recently have been ap-
plied to natural phenomena. ' One meets such objects in
a variety of fields: Brownian motion, fractional
Brownian motion, quantum mechanics, disordered
media, clusters and chaos, random walks, ' ' and
atomic and molecular motions, ' among many others.

In this paper we study the fractal dimension of free n-
dimensional processes driven by Gaussian colored noise.
We will find exact analytical expressions for the Haus-
dor6' (fractal) dimension D~ of their trajectories. Our
main conclusion is that D~ depends critically on the time
behavior of the correlation function, ranging from D~ = 1

for Orstein-Uhlenbeck input noise to any real number
greater than 1 for fractional Brownian motions.

Let us consider an n-dimensional process X(t) whose
dynamical evolution is governed by the equation

X(t)=F{t),

where the input noise F(t) is Gaussian with zero mean
and arbitrary (though isotropic) correlation function

(F„(t)F„(t')) =5„,h (t, t') (2)

(p, v=1,2, . . . , n). Due to the linearity of Eq. (1) we see
that X(t) is also Gaussian with (X(t)) =xo [xo=X(0)]
and correlation function'

(X„(t)X„(t'))=5„„k(t,t'),
where

(3)

g ~X(t, )
—X(t, , )~

j=l

and we take the limit 6~0. If this limit is finite the
curve X(t) is said to be rectifiable. If the limit is infinite a
possible solution to the problem of measuring the curve
consists in replacing the length by the so-called Hausdor+
measure of dimension s:

k(t, t')= f do f do'h(o, cr') .
0 0

To define the length of a given trajectory X ( t)
(0 & t & T) we take a partition

O=t0 &t] &.. &t~=T

of the time interval [0, T] such that
~ t) t), ~

&5—
(j =1,2, . . . , X) for 5 arbitrary and positive. We then
evaluate the length of the polygonal:

N

L, [X(t)]=lim inf g ~X(t )
—X(t, )~', t —t &~ &5

6 0
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and then choosing the exponent s so that L, [X(t}] is
finite and nonvanishing. This particular value of the ex-
ponent is called the fractal (or Hausdorfg dimension of
the curve X(t) N. ote that for rectifiable curves, s =1. In
fact, for these curves the fractal dimension and topologi-
cal dimension are equal. But, in general, the fractal di-
mension is greater than or equal to the topological dimen-
sion.

Therefore the fractal dimension of a given trajectory is
the special value of the exponent s, say, Dx, such that
LD [X(t)]%0and finite, that is,

X

0, s)DX
L, [X(t)]= '

(7)

(0~t ~ T). In our case L, [X(t)] and Dx are both ran-
dom quantities depending functionally on a given realiza-
tions of the process; thus we will have different values of
L, and Dx for different realizations (or trajectories) of the
process. Let (L, [X(t)]) be the average of the Hausdorff
measure over all trajectories and let D,„be the least
upper bound (with probability 1) of all values of Dx. If
s &D,„ there will be trajectories with fractal dimension
D„)s, and for these trajectories the Hausdorff measure
will be infinite and therefore (L,[X(t)])=~. On the

other hand, if s & D,„, then necessarily Dx & s (with
probability 1) and L, [X(t)]=0 for almost all trajectories,
hence (L,[X(t)]) =0.

Therefore, the last upper bound D,„ for the fractal di-
mension of the trajectories of the process is the special
value of the exponent s, such that

0, s)D
(L,[X(t)])= '

(D
In order to identify the bound D,„our next step will

be to evaluate (L,[X(t)]). From the Gaussian nature of
X(t) it follows that the probability density function for a
given trajectory to pass through the points x,. at times t
(j =0, 1, . . . , N) is' '
p[X(ti ) =x/' , j =0, 1, . . . , N]

N

=(2n) "/ (detK) "/ exp —
—,
' g K;1 'x; xt

i, l =1

(9)

where E;& is the inverse of the correlation matrix
K;t =k(t;, t1 ) and x; xt is the Euclidean scalar product.
Then

(
N s N N

X(t, )
—X(t, , ) =(2m. )

" (detK) " fdx, f dxN exp —
—,
' g K,t 'x; xt g ~x/

—
x/

j=1 i, 1=1 j=1

After some algebra we obtain'

Xt —Xt
j=1

(10)
P(t, t') = k (t, t) k(t', t') —2k—(t, t'), (12)

The function %(t, t') can be written in terms of the
correlation function k(t, t') of the process X(t) in the
form

where

0'(t, t')= f der f do'h(o, o') .

and in the stationary case it reads

%(t —t')=2[k(0) —k(t —t')] .

From Eqs. (6) and (10) it follows that

(13)

(L,[X(t)])=2' lim inf g (+(t 1, tJ)['/2; )tJ
—t., /2 I ((n +s)/2)

I n/2 s o 1=
(14)

We now suppose an equal time behavior of the func-
tion %(t, t') in the form

P(t, t+e)=A(t)e +O(e +'),
where a & 0 and 3 (t) (0 ~ t ~ T) is an arbitrary function
bounded by some positive constant M. Then

I

The limit 5~0 corresponds to T/X~O with T fixed;
hence

(L [X(t)]) ~ (MT )'/ lim N'
N~ oo

Therefore, if s & 2/a, then (L, [X(t)] ) =0 and from Eq.
(7) we have

N

inf g ~+(t. ..t, )~'/2; ~t, tJ, ~

~ T/N—
& (MTa }s/2N I —sa/2 (16)

2
Dmax- a

Finally, D,„&Dx (with probability 1), whence

(17}
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Dx ——2
CX

(18)

for almost all trajectories of the process.
In order to find a lower bound for Dx we use a result

proven in Ref. 6, p. 79. For a given trajectory the so-
called s energy is the random quantity defined by'

most frequent cases of colored noise appearing in the
literature. ' If the input noise F(t) is an Orstein-
Uhlenbeck process, then

(26)

where r is the correlation time. The function %(t, t+@) is
now given by

As a consequence of corollary 6.6 of Ref. 6 we can
affirm that if I,[X]&~ then s &Dx. Considering the
mean value, we have that (I,[X]) finite implies I, [X]
finite (with probability 1). Therefore, if (I,[X])& ~,
then

s&Dx . (19)

(21)

Assuming an equal-time expansion for 4I(t, t') of the
form given by Eq. (15) we see that the convergence of the
integral (21) implies that s &2/a and from Eq. (19) fol-
lows

Now the average (I,[X]) can be easily evaluated as a
Gaussian path integral

(I,[X])=f XlP[X]f dt f dt', (20)
~X(t) —X(t') ~'

where 2)P[X] is the probability measure for the different
paths on the process and 0 is the set of all of these paths.
After a short manipulation we obtain [cf. Eq. (9), (Refs. 6
and 18)]

(27)

whence a =2 and the fractal dimension of the output pro-
cess X(t) is

(28)

which equals its topological dimension. Therefore, the
trajectories of free processes driven by Orstein-Uhlenbeck
noise present no fractal behavior.

C. Gaussian 1/f noise

Many physical devices exhibit fluctuations whose
power spectrum is characterized by 1/f' (a )0). This is
the so-called 1/f noise and appears in semiconductors
and metals ' and also in chemical and biological sys-
tems. In many situations 1/f noise is known to be
Gaussi. an; in this case we can evaluate the fractal di-
mension.

Let the input noise F(t) be stationary Gaussian 1/f
noise with zero mean and power spectrum given by 1/f ',
where 0 & a & 1 (if a ~ 1, some kind of cutoff must be in-
troduced ). The inverse Fourier transform of the
power spectrum is the correlation function of the process

Dx ~2/a . (22)
where C is a constant and 0 & a & 1. Now

Dx =2/cz (23)

Combining Eqs. (18) and (22) we achieve our main result:
ql(r, r+e)= 2c

a (1+a) (29)

Therefore, the fractal dimension of the trajectories of the
process X(t) is (with probability 1) proportional to the in-
verse of the exponent that governs the equal-time behav-
ior (short-time behavior for the stationary case) of the
correlation function k(t, t') of the process. We finish
this Brief Report with a few applications of Eq. (23).

A. Brownian motion

whence

2Dx= 1+a (30)

D. Fractional Brownian motion

and the fractal dimension is any real number between 1

and 2, depending on the exponent of the power spectrum.

4(t, t +e)=e, (24)

whence ca =1 and we recover the well-known result

Dx=2 . (2&)

B. Orstein-Uhlenbeck processes

We next study the fractal dimension of processes
driven by Orstein-Uhlenbeck noise, which is one of the

If the input noise F(t) is a Gaussian white noise then
X(t) is the Brownian motion (or Wiener) process. In this
case we have h (t, t')=5(t —r') and

The fractional Brownian motion process B (t) is a gen-
eralization of the ordinary Brownian motion in which the
standard deviation of the increment ~B (t+T)—B (t)~
goes as T with 0&a &1. When a= —,

' the fractional
Brownian motion (FBM) reduces to an ordinary Browni-
an motion. One important feature of FBM processes is
that they show a strong interdependence between distant
samples. This asymptotic dependence is the reason for
their usefulness in modeling time series. Moreover, FBM
is known to be self-similar and fractal.

A simplified definition of FBM processes is given by
the following moving average:
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(31}

where 0&a & 1 and g(t) is the n-dimensional Gaussian
white noise. Assuming that g(t) is zero centered and iso-
tropic we easily find that (B „(t)B,(t') )
=5„k(t,t'), where

2a

r(1+2a)
Therefore the Hausdorff dimension of the FBM is

1
D X

(34)

(35)

(32)
Since 0&a&1 then Dx is any real number greater

than 1.

From the point of view of generalized functions we can
write B (t) to be the solution of the differential equation

(33)

Hence the function 4(t, t+e) defined in Eq. (11) reads
[cf. Eq. (12)]
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