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The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian
noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior
of the arbitrary correlation function of the noise, ranging from Dy =1 for Orstein-Uhlenbeck input
noise to any real number greater than 1 for fractional Brownian motions.

I. INTRODUCTION

In recent years a great deal of interest has been devoted
to the study of dynamical processes driven by Gaussian
colored noise.! The main reason for this interest lies in
the fact that colored noise is closer to physical reality
than white noise. Although many properties of Gaussian
colored noise are currently under intense research, there
is one important feature of these processes that, to our
knowledge, seems to go unnoticed, that is, the fractal
geometry of their trajectories.

Fractal objects have been known as mathematical cu-
riosities for a long time,? and only recently have been ap-
plied to natural phenomena.>* One meets such objects in
a variety of fields: Brownian motion,* ® fractional
Brownian motion,” quantum mechanics,® disordered
media, clusters and chaos,’ random walks,'°" 13 and
atomic and molecular motions,'* among many others.

In this paper we study the fractal dimension of free n-
dimensional processes driven by Gaussian colored noise.
We will find exact analytical expressions for the Haus-
dorff' (fractal) dimension Dy of their trajectories. Our
main conclusion is that Dy depends critically on the time
behavior of the correlation function, ranging from Dy =1
for Orstein-Uhlenbeck input noise to any real number
greater than 1 for fractional Brownian motions.

Let us consider an n-dimensional process X (¢) whose
dynamical evolution is governed by the equation

=1

N
mf{z X ()= X(t, -5 [t,—1, 4|
J

where the input noise F(#) is Gaussian with zero mean
and arbitrary (though isotropic) correlation function

(F (0)F, (1) =8,h(1,t") )

(u,v=1,2,...,n). Due to the linearity of Eq. (1) we see
that X(¢) is also Gaussian with (X(¢))=x, [x,=X(0)]
and correlation function'®

(X, (DX, (¢")) =8, k(1,1") (3)
where
'y — 4 [ ’ ’
k()= ['do ['do'h(o,0") . )

To define the length of a given trajectory X (¢)
(0=t =T) we take a partition

0=ty<t,<..<ty=T

of the time interval [0,7] such that |f;—¢;_,|<8

(j=1,2,...,N) for b arbitrary and positive. We then
evaluate the length of the polygonal:
N
S, IX(tJ)-X(tjAl)I (5)
j=1

and we take the limit §—0. If this limit is finite the
curve X(t) is said to be rectifiable. If the limit is infinite a
possible solution to the problem of measuring the curve
consists in replacing the length by the so-called Hausdorff’
measure of dimension s:*
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and then choosing the exponent s so that L [X(z)] is
finite and nonvanishing. This particular value of the ex-
ponent is called the fractal (or Hausdorff) dimension of
the curve X(¢). Note that for rectifiable curves, s =1. In
fact, for these curves the fractal dimension and topologi-
cal dimension are equal. But, in general, the fractal di-
menaion is greater than or equal to the topological dimen-
sion.

Therefore the fractal dimension of a given trajectory is
the special value of the exponent s, say, Dy, such that
LDx[X(t)]¢0 and finite, that is,

O, s >Dx
LX(D]=1, <Dy (7
(0=<t=T). In our case L,[X(#)] and Dy are both ran-

dom quantities depending functionally on a given realiza-
tions of the process; thus we will have different values of
L and Dy for different realizations (or trajectories) of the
process. Let {L,[X(¢)]) be the average of the Hausdorff
measure over all trajectories and let D ,, be the least
upper bound (with probability 1) of all values of Dy. If
s <D .. there will be trajectories with fractal dimension
Dy >s, and for these trajectories the Hausdorff measure
will be infinite and therefore (L [X(¢)])=c. On the

J

<§ X(t;)

=1
After some algebra we obtain'®
)

I'(s/2)

< [x(6)-x0,
j=1

=2ty Fam 3, W) o
where
W(t,t')= flfdof[fdo’h(a,a') . (11)
J
T'((n+s5)/2) .
(L,[X()])= 23/2°—— lim |inf Wt _,t
[(n/2) 50 ]21 il

We now suppose an equal time behavior of the func-
tion W(¢,¢') in the form

W(t,t+e)=A(1)e*+0(e*T) (15)

where a2 0 and A4 (z) (0=<¢=T) is an arbitrary function
bounded by some positive constant M. Then

)% e —t T/N

inf 2 W(t;_ 1 il S

ji=1

f(MTa)S/ZNl-Sa/Z . (16)

—X(t;_)) } >=(z7r)—"/2(det1<)“"/2falx1 e
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other hand, if s>D_,,, then necessarily Dy <s (with
probability 1) and L [X(#)]=0 for almost all trajectories,
hence (L,[X(¢)])=0.

Therefore, the last upper bound D, for the fractal di-
mension of the trajectories of the process is the special
value of the exponent s, such that

0, s>D
0, s<D

max

(LX(n)])= (8)

max *

In order to identify the bound D,, our next step will
be to evaluate { L,[X(¢)]). From the Gaussian nature of
X(#) it follows that the probability density function for a
given trajectory to pass through the points x; at times ¢;

(j=0,1,...,N)is!®V
plX(t))=x;;j=0,1,...,N]
N
=(2m)""X(detK) "?exp |—1 3 Kj'x;'x, |,
=1
9)
where K; ! is the inverse of the correlation matrix

K;=k(t;,t;) and x;-x; is the Euclidean scalar product.
Then

N
> ‘xj_xj—l :

j=1

N
1 ~1g .
T 3 Ki xi'x

=1

fde exp

The function W¥(t,¢t’) can be written in terms of the
correlation function k(z,t') of the process X(t) in the
form

W(t,t')=k(t,t)—k(t',t')—2k(t,t'), (12)
and in the stationary case it reads
W(t—t")=2[k (0 (t—1t"]. (13)
From Egs. (6) and (10) it follows that
7% Nt — J_1|<5} (14)

[

The limit 8—0 corresponds to T/N —0 with T fixed;
hence

<Ls[x(t)]> S(MT‘Z)S/z [ llm Nl*sa/Z

—

Therefore, if s >2/a, then {(L,[X(¢)])=0 and from Egq.
(7) we have

D.<*. 17
a

Finally, D ,, = Dy (with probability 1), whence



2
Dy=— (18)
X" a
for almost all trajectories of the process.
In order to find a lower bound for Dy we use a result
proven in Ref. 6, p. 79. For a given trajectory the so-
called s energy is the random quantity defined by’

T T dt dt’
I[X]= —_—
(X1 fo fo [X(t)—X(t")]*

As a consequence of corollary 6.6 of Ref. 6 we can
affirm that if I.[X] <« then s <Dy. Considering the
mean value, we have that (I,[X]) finite implies I,[X]
finite (with probability 1). Therefore, if (I,[X]) < e,
then

s<Dx . (19)

Now the average (I,[X]) can be easily evaluated as a
Gaussian path integral

1
IX(6)=X(t")]*
where DP[X] is the probability measure for the different
paths on the process and () is the set of all of these paths.

After a short manipulation we obtain [cf. Eq. (9), (Refs. 6
and 18)]

— AS/ZI“((n-—S)/Z) T T, ., N —s/2
(LIXD =270 0= [ [ e [n,e)| =7

(r(xp=[ oP(x][ "ar [ "ar (20)

(21

Assuming an equal-time expansion for W(z,z’) of the
form given by Eq. (15) we see that the convergence of the
integral (21) implies that s <2/a and from Eq. (19) fol-
lows

Dy =22/a . (22)
Combining Egs. (18) and (22) we achieve our main result:
Dx=2/a . (23)

Therefore, the fractal dimension of the trajectories of the
process X(¢) is (with probability 1) proportional to the in-
verse of the exponent that governs the equal-time behav-
ior (short-time behavior for the stationary case) of the
correlation function k(t,¢') of the process.”’ We finish
this Brief Report with a few applications of Eq. (23).

A. Brownian motion

If the input noise F(¢) is a Gaussian white noise then
X(t) is the Brownian motion (or Wiener) process. In this
case we have h (t,¢t')=8(¢ —t') and

Y(t,t +€)=e€, (24)
whence a =1 and we recover the well-known result*~°
Dy =2. (25)
B. Orstein-Uhlenbeck processes

We next study the fractal dimension of processes
driven by Orstein-Uhlenbeck noise, which is one of the
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most frequent cases of colored noise appearing in the
literature.?! If the input noise F(z) is an Orstein-
Uhlenbeck process, then

h(nﬂﬁ=%e_“_””, 26)

where 7 is the correlation time. The function W(t,¢ +¢€) is
now given by

wun+a=%8+ow%, 27

whence a=2 and the fractal dimension of the output pro-
cess X (1) is

Dx=1, (28)

which equals its topological dimension.?? Therefore, the
trajectories of free processes driven by Orstein-Uhlenbeck
noise present no fractal behavior.

C. Gaussian 1/ f noise

Many physical devices exhibit fluctuations whose
power spectrum is characterized by 1/f? (a >0). This is
the so-called 1/f noise?’ and appears in semiconductors
and metals®*?* and also in chemical and biological sys-
tems.”* In many situations 1/f noise is known to be
Gaussian;? in this case we can evaluate the fractal di-
mension.

Let the input noise F(z) be stationary Gaussian 1/f
noise with zero mean and power spectrum given by 1/f9,
where 0<a <1 (if a 21, some kind of cutoff must be in-
troduced®®~%). The inverse Fourier transform of the
power spectrum is the correlation function of the process

4

h(t,t')=————
|t___t:!170

>

where Cis a constant and 0<a <1. Now

— 2c 1+
W(t,t+ ——e "1
(Li+e) al+a) ¢ 29)
whence
2
Dy= ,
X~ 1+a (30)

and the fractal dimension is any real number between 1
and 2, depending on the exponent of the power spectrum.

D. Fractional Brownian motion

The fractional Brownian motion process B, (¢) is a gen-
eralization of the ordinary Brownian motion in which the
standard deviation of the increment |B,(t +7T)—B,(t)]
goes as T with O0<a<1. When a=1 the fractional
Brownian motion (FBM) reduces to an ordinary Browni-
an motion. One important feature of FBM processes is
that they show a strong interdependence between distant
samples. This asymptotic dependence is the reason for
their usefulness in modeling time series. Moreover, FBM
is known to be self-similar and fractal.’

A simplified definition of FBM processes is given by
the following moving average:®
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t+e
B (t)=———— [(t =g )12 , 3 Whrte)=—t do[(t —o)(t'—0)]* 12
A1) (a+1)f( o) 120 )d (31) FatD i) [« ]
where 0<a <1 and &(¢) is the n-dimensional Gaussian _ e (34)
white noise. Assuming that £(¢) is zero centered and iso- (1+2a) °
ti()plc we casily find that (B, ()Bo(t")) Therefore the Hausdorff dimension of the FBM is
—S#vk(t,t ), where
1
min(z,t") Dy=—. (35)
k(t,t')=—— do[(t —o)t'—0)]*" X
Fz(a+‘ J; [ ] ’

(32)

From the point of view of generalized functions we can
write B,(¢) to be the solution of the differential equation

B, ()=B,_,(1) . (33)

Hence the function W(t,t +¢€) defined in Eq. (11
[cf. Eq. (12)]

) reads

Since 0<a <1 then Dy is any real number greater
than 1.

ACKNOWLEDGMENTS

This work has been supported in part by the Comision
Interministerial de Ciencia y Tecnologia (CICYT) under
Contract No. PS87-0046 and by the Societat Catalana de
Fisica (Institut d’Estudis Catalans).

I Noise in Nonlinear Dynamical Systems, edited by F. Moss and
P. V. E. McClintock (Cambridge University Press, Cam-
bridge, 1989), and references therein.

2G. Peano, Math. Ann. 36, 157 (1890); F. Hausdorff, Math.
Ann. 79, 157 (1918); W. Hurewicz and H. Wellman, Dimen-
sion Theory (Princeton University Press, Princeton, NJ, 1941).

3L. F. Richardson (unpublished).

4B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman,
San Francisco, 1983).

3S. J. Taylor, Proc. Cambridge Philos. Soc. 48, 31 (1953).

K. J. Falconer, The Geometry of Fractal Sets (Cambridge Uni-
versity Press, Cambridge, 1985).

7B. B. Mandelbrot and J. W. Van Ness, SIAM Rev. 10, 422
(1968).

8L. F. Abbott and M. B. Weise, Am. J. Phys. 49, 37 (1981).

9Fractals in Physics, edited by L. Pietronero and E. Tosati
(North-Holland, Amsterdam, 1986).

101, Pietronero and A. P. Siebesma, Phys. Rev. Lett. 57, 1098
(1986).

1C, Evertsz and J. W. Lyklema, Phys. Rev. Lett. 58, 397 (1987).

12p, Argyrakis, Phys. Rev. Lett. 59, 1729 (1987).

13C. Van del Broeck, Phys. Rev. A 40, 7334 (1989).

143 G. Powles and N. Quirke, Phys. Rev. Lett. 52, 1571 (1984);
J. A. Padr6 and M. Canales, Molec. Phys. 68, 423 (1989).

15We note that neither F(¢) nor X(¢) is stationary.

16R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon and Breach, New York, 1963), Vol. 1.

17Since Eq. (1) does not explicitly depend on X, we may assume
without loss of generality that x,=X(0)=0.

18], Llosa and J. Masoliver (unpublished).

19Notice that for s =1 I,[X] is proportional to the Coulomb en-
ergy of an homogeneous charge distribution along X(¢).

20Equation (2) seems to imply an absurdity when o> 2. Indeed,
we should then have Dy <1, which contradicts the well-
known property that the Hausdorff dimension is never less
than the topological dimension. Nevertheless, we have shown
elsewhere (Ref. 18) that such a possibility (i.e., @>2) is pre-
cluded by the fact that the correlation function A (z,¢’) must
be positive definite.

2iSee, for instance R. F. Fox, Phys. Rep. 48, 179 (1978); P.
Hiénggi and H. Thomas, ibid. 88, 209 (1982); J. M. Sancho,
M. San Miguel, S. L. Katz, and J. D. Gunton, Phys. Rev. A
26, 1589 (1982); J. Masoliver, B. J. West, and K. Lindenberg,
ibid. 35, 3086 (1987).

22Equation (28) holds as far as €2/7 << 1. If 7 goes to zero at the
same rate as €, then W(¢,¢+€)=~¢, which corresponds to the
Brownian-motion case. We thus recover the well-known re-
sult that white noise is the limiting case of colored noise when
the correlation time goes to zero.

23A. Van der Ziel, Physica 26, 359 (1950).

24F. N. Hooge, Physica 83B, 14 (1976).

25M. Nelkin and A. M. S. Tremblay, J. Stat. Phys. 25, 253
(1981).

26See Ref. 7 for a general definition.



