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Enlarged basin of attraction in neural networks with persistent stimuli
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The basins of attraction of extremely diluted neural-network models in the presence of external
neural stimuli parallel to the starting configuration are calculated analytically. For moderate values

of the storage capacity a, the basins of attraction can be enlarged significantly. For larger values of
a, the patterns are still locally stable but become dynamically blocked by the external stimuli so that
the effective storage capacity decreases. The performance can be improved further by allowing for
time-dependent stimuli.

I. INTRODUCTION

Models of attractor neural networks as studied by sta-
tistical physicists are systems of N binary formal neurons
S;=+I (i =1, . . . , N) interconnected via synaptic cou-
plings J;, i' which show nontrivial emergent proper-
ties for information processing in the thermodynamic
limit N~ ~. In particular they can function as an asso-
ciative memory by relaxing to one of p =aN stored pat-
terns IP) (i = I, . . . , N, @=1, . . . ,p) if a noisy version

IS; I of this pattern has been presented to them as input.
The central quantities of interest are the storage capacity
a„ i.e., the threshold value for a above which the
cooperative behavior breaks down, and the basin of at-
traction quantifying the maximally tolerable amount of
noise in the stimulus ( S; ).

Using specific learning rules J;~ =J;~( (PI ) the storage
capacity has been calculated for different statistics of the
patterns I PI using concepts of the statistical mechanics
of spin glasses. ' The only approximation involved here
is that of replica symmetry which can be shown to be
rather accurate. On the other hand the analytical deter-
mination of the basin of attraction involves usually less
controllable approximations ' calling for comparison
with numerical simulations. ' ' A notable exception is

the extremely diluted model introduced by Derrida,
Gardner, and Zippelius' which allows for an exact solu-
tion of the dynamics.

A major breakthrough in the field was achieved by
Gardner, ' who succeeded in calculating the maximal
storage capacity a, as a function of the statistical proper-
ties of the patterns alone without reference to a particular
learning rule. This allowed her to study the properties of
networks which are optimized with respect to their
storage capacity. In particular for the extremely diluted
model introduced previously by Derrida, Gardner, and
Zippelius one can calculate the basin of attraction analyt-
ically. ' The result shows that although the maximal
storage capacity a, is equal to 2, already for a & 0.42 the

basin of attraction becomes very small and therefore the
ability of the network for correcting noisy inputs is al-
ready severely limited. It is hence necessary to look for
possibilities to optimize neural networks with respect to
their typical basin of attraction or to find mechanisms
that enlarge the basins of attraction for a given network.

In the present paper we show that a persistence of the
stimuli enforcing the initial condition at reduced strength
is a very simple but efticient mechanism to improve the
typical basin of attraction of different neural network
models. An associative memory always uses the informa-
tion present in the stimulus (the initial condition resem-
bling one of the stored patterns) as well as that contained
in the network structure (the synaptic matrix J, ). In
neural network models discussed so far both types of in-
formation are combined by enforcing the stimulus by a
large external field and then switching of the field com-
pletely to allow for the relaxation process, then solely
determined by the synaptic matrix. Here we investigate
the dynamics of networks resulting from the interplay of
the internal structure of the network and a small but per-
sistent external field parallel to the input configuration

It has already been shown that external fields of this
type improve the static properties of symmetric neural
networks. ' In particular they allow for high quality
retrieval even if the network without fields is already in
the state of confusion. Early numerical work of Kinzel
suggests that also the basin of attraction may improve.

In order to study the dynamic behavior analytically we
have to confine our investigations to the extremely dilut-
ed model of Derrida, Gardner, and Zippelius. This mod-
el lacks the rather high connectivity of biological neural
networks and is characterized by a lesser degree of inter-
nal feedback. Nevertheless it reproduces several proper-
ties of highly connected models rather accurately and
might therefore serve as a first, interesting example for
the usefulness of the proposed method.

The paper is organized as follows. In Sec. II we recall
the determination of the basin of attraction for the ex-
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tremely diluted model and show that the mathematical
simplifications that allow a determination of the dynam-
ics still hold when an external field is present. In Sec. III
we show how the basin of attraction can be enlarged by
an external field parallel to the initial configuration {S,).
Section IV deals with a further improvement due to
time-dependent external fields and reviews proposals to
enlarge the basin of attraction by introducing diagonal
couplings. ' Finally, Sec. V contains our conclusions.

The remaining synaptic couplings J, are chosen such
that a given set of patterns [PJ (i =1, . . . , N,
p= i, . . . ,p} are stable fixed points of the dynamics (2.4)
with h; =0 for all i. We will consider only the case of un-
biased patterns where the P=+1 with equal probability.

The generic initial condition (S, ) of an association

problem is assumed to have a nonzero overlap mo with
one of the patterns, for example, the first, and to be un-
correlated with all the other ones. Hence we take

II. THE MODEL SO —(150 (2.6)

J,=c (2.1)

where the c; are independent random variables with dis-
tribution

P(c )= 1 —"—5(c )+—5(c —1) .
C C

N
(2.2)

We consider a set of N formal neurons 5; =+1 which
are connected by synaptic couplings T; and dilute the
couplings randomly. The remaining nonbroken cou-
plings are denoted as J;, . We have

where the 5; are independent random variables with dis-
tribution

1+mo 1 —moP(5;)= 5(5, —1)+ 5(5;+1) . (2.7)

Having described the model we now turn to the analysis
of the network dynamics. It is easy to calculate the over-
lap m(t =1) of the configuration S;(t=1) resulting after
one time step using the statistical independence of the
i);.' ' To do so we determine the fraction of sites for
which the quantity

Hence on the average each neuron is connected in an
asymmetric way with C other neurons. We will be in-
terested in the limits C~ ~, N~ ~ with C &(N. The
remaining synapses are assumed to be normalized such
that for every neuron i = 1, . . . , N

g J)S +AS;
C J(&i )

(2.8)

is positive. Using the independence of the 5; we find for
large C

g J; =C.
j(wi )

(2.3}
Prob(A, , )0)=f dA, ;[2m(1 —mo)]

The dynamics of the network is defined by parallel updat-
ing according to X exp

(A, ,
—A5; —mob, ;)
2(1 —mo)

S,(t+l)=sgn g J,,S,(t)+A, (t)
1

j(&i )

(2.4)

where we have introduced the stabilities

(2.9)

A, =AS; . (2.5)
I

where h; denotes the negative threshold of neuron i and
using the analogy with spin systems will be referred to as
external field. In Sec. III this field will be assumed to be
parallel to the initial configuration ( S, )

= (S,(t =0) ),

1
gi g J gi

C
(2.10)

For C (&N the stabilities at different sites are only weak-
ly correlated and we find

1 moh;+h5;
m(t =1)=—g ErfN, . +2(1—m o )

(2.11)

Ef moh+h5

+2(1—m 0)
(2.12)

= fdbP(h)
1+mo

Erf
moh+h

+2(1—m0)

1 —mo mom —h
Erf

2 +2(1—mo)
(2.13)

where Erf(x) denotes the standard error function and the
distribution P(b, ) is to be determined via (2.10) using the
statistics of the patterns ( g].

We could iterate (2.13) if the spin variables S, (t =1) at

different sites were again independent random variables.
This is however, usually not the case since different
S, (t= 1) could depend on the same tS; ). In fact these
correlations are the reason why the dynamics of fully
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connected networks could not be calculated analytically
beyond the first few time steps.

On the other hand the S;(t) become independent ran-
dom variables if the network is extremely diluted, as ob-
served by Derrida, Gardner, and Zippelius. ' lf the
synaptic couplings are chosen according to (2.1) and (2.2)
the state S; (t) of neuron i at time t depends on a random
tree of ancestors with t+1 levels and average branching
ratio C. The independence of the S;(t) for all t is ensured
in the absence of a field if the sites at any given level of
this tree are different. In the presence of the fields al/
sites of the tree have to be different. Only in this case all
S~(t —1) determining S;(t) depend on a different subset

I

lnN
for N~~ .

lnC
(2.14)

As a simple example one might think of C-lnN satisfy-
ing on the one hand (2.14) and allowing on the other
hand C~ ~ for N ~ ~. For such an extremely diluted
network we can therefore repeat the deviation (2.6) to
(2.13) for any time step and get as basic equation

I Sl, ) not containing S; and are therefore independent of
each other and independent of S; . The independence of
S, is essential since S, determines the external field at site
i for all time steps t. For large C the conditions with and
without field give rise to the same bound on C, namely,

(1+1)=f db, P(b, ) E f m(t)A+h + 0Erf m(t)h —h

+2[1—m(t) ] 2 +2[1—m(t) ]
(2.15)

The basin of attraction can be determined from the fixed
point structure of this dynamical law.

We will consider two different types of networks
characterized by two different distributions P(b, ) in de-
tail. The first is a network with constant stabilities for
which P(b ) is a 5 function. This is motivated by the fact
that for fully connected networks with constant stabilities
the basin of attraction near saturation can be determined
approximately' and the result is the same as for the ex-
tremely diluted system (without external field). Hence
our results on the improvement of the attraction basin by
an external field for an extremely diluted system with
constant stabilities may serve as a first hint on the
efficiency of the method for a fully connected model
designed, e.g. , by the projection rule. The second case is
the optimized network of Gardner which allows for a
maximal value of the storage capacity a, .' '

The probability distributions for these two cases can be
determined using the methods developed by Gardner'
yielding the well known results"' '

In (2.16) and (2.17) a gives the ratio of the number of
stored patterns p to the average number C of synapses per
neuron.

We note finally that the behavior of a fully connected
network designed by some learning rule and then diluted
according to (2.2) and (2.14) is rather different from what
we are interested in here. In this case P(b, ) is always
Gaussian as in the Hopfield model and the full retrieval
fixed point m*=1 at a=O decreases continuously when
a increases until it merges with the m *=0 solution at a,
in a second-order transition. The effect of persistent
stimuli in this case is just a smoothing of the second-
order transition giving rise to a nonzero (but rather small)
value of the fixed point m' also for a) a, (Ref. 29) as
suggested by linear response theory. In particular no un-
stable fixed point of the recursion relation and hence no
nontrivial behavior of the basin of attraction occurs.

III. BASIN OF ATTRACTION FOR A FIELD PARALLEL
TO THE INPUT

and

P(b, )=5
1/2

(2.16)
We first consider a network with constant stabilities.

From (2.15) and (2.16) we get

( + 1 )
0 E f m ( t)lr+ h

+2[1—m(t} ]
P(b, ) = —,'[I+Erf(a/V2)]5(h —a)

1+ —8(b, —a }exp
&2m

(2.17)
with

1 —ma m (t)lr h-
Erf

/2[1 —m(t) ]
(3.1)

respectively, where the parameter ~ in (2.17) is related to
the storage capacity c by the Gardner formula

1/2

(3.2)

exp
2

Dt=

2

Dt t+v+~ 2

a —a

Here we have used the shorthand notation

(2.18)

(2.19)

The fixed point structure of the dynamical law (3.1) is
to be determined numerically and is shown in Fig. 1 for
h =0 where stable (unstable) fixed points are shown in
solid (dashed) line. The full retrieval fixed point m *= 1 is
stable for 0 & a & 1 and disappears at a =1. The m *=0
fixed point is unstable for 0 & a & 0.39 and becomes stable
for a) 0.39. For 0.39&a &1 the basin of attraction is
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FIG. 1. Zero-field point structure for two extremely diluted
models. For the network with constant stabilities the stable (un-
stable) fixed points are shown by the solid (dashed) line. For the
Gardner diluted model only the unstable fixed points appearing
for a )0.42 are shown (dash-dotted line).
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determined by an unstable fixed point which rapidly rises
with a.

The inhuence of the external field is demonstrated in
Fig. 2(a) where the fixed points are plotted versus the field
strength for ~= 1 corresponding to a =0.5 and an initial
overlap of mo=0. 4. Two features clearly emerge. First
the unstable fixed point determining the basin of attrac-
tion decreases from its value at zero field and the stable
fixed point originating from the m*=0 fixed point at
zero field increases, both fixed points merge at
h =h, „(a,mo ). Second the full retrieval fixed point
m *=1 disappears at k =~ via a first order transition to
another stable fixed point tending to mo for h ~~. This
fixed point corresponds to the stabilization of the initial
conditions by too strong an external field. The first-order
transition necessitates the existence of another unstable
fixed point which hides the m *= 1 attractor for
h )h, „(a,mo). Therefore though locally stable the full
retrieval fixed point cannot be reached but is dynamically
blocked by the external field. Hence for
h;„(a,mo) (h (h,„(a,mo) the external field enables us
to reach the m *=1 fixed point from the initial overlap
ma=0. 4, i.e., from far outside the attraction region at
h =0 hereby improving the content addressability consid-
erably. This increase in the basin of attraction occurs
however at the expense of the storage capacity since the
m *= 1 fixed point is already destabilized by the external
field for h = ti, which by (3.2) corresponds to
a=1/(1+6 )( l. Increasing a, thus decreasing l~ re-
sults in larger values for h;„and smaller values for h

[see Fig. 2(b)] until they merge at some value a,„(mo).
For a) a,„(mo) the fixed point topology is qualitatively

0.4

(c)

1.2 0 4 1.2 h

FIG. 2. Fixed point structure vs field strength for an ex-

tremely diluted model with constant stabilities for mo=0. 4 for
different a values (a) a =0.5, (b) a =0.51, (c) o.=0.515, (d)
@=0.61. The solid (dashed) lines show the stable (unstable)
fixed points. The field region where the dynamics yields full re-
trieval is bounded by dotted lines in (a) and (b).

different as shown in Figs. 2(c) and 2(d). Still the unstable
fixed point decreases initially a little for small field values
h but then rises with h and merges with the m *= 1 fixed
point at h =~. The m*=0 fixed point rises with increas-
ing field h and tends asymptotically to the value m *=mo
corresponding to a stabilization of the starting pattern.
Hence for a) a,„(mo) a field of the proposed type is un-

able to notably improve retrieval.
Figure 3 shows h, „and h, „versus a for different

values of the initial overlap mo. Clearly the method
works best for large values of mo since then the external
field acts almost parallel to the desired pattern. Never-
theless for mo as small as 0.2 one can accomplish re-
trieval until a,„(0.2) =0.44. From Fig. 1 one infers that
for this value of e retrieva1 without field is possible only
for mo) 0.6.

For a network designed by the optimal learning rule of
Gardner the behavior is rather similar. Froin (2.15) and
(2.17) we find instead of (3.1) and (3.2) now'

1+m0m(t+1)= [I+Erf(&/V2)]Erf + f DgErf
&2[I—m(t)'] &2[1—m(t) ]

1 —m
+ [I+Erf(x/v'2)]Erf

+2[1—m(t) ]
+f D+E f m(t)b, —h

+2[1—m(t) ]
(3.3)
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FIG. 3. Critical field bounds h, „(mo,a) (
———

) and

h„„„(mo,a) ( ) which limit the domain of field values
where the external field allows full retrieval (network with con-
stant stabilities) for m0=0. 2 (~ ), mo =0.4 ( A ), mo =0.6 ( ~ ).

FIG. 4. Critical field bounds h, „(mo,a) ( ———) and

h, „(mo,a) ( ) which limit the domain of field values
where the external field allows full retrieval (optimized Gardner
model) for rno=0. 2 (~ ), mo=0. 4 (A), mo=0. 6 ( ~ ).

with a related to ~ following (2.18).
Here for h =0 the full retrieval fixed point m*=1 is

stable for a &2, the m*=0 fixed point is unstable for
a &0.42 and stable for a & 0.42. Just as in the case with
constant stabilities an unstable fixed point rises rapidly
from a=0.42. This unstable fixed point line is shown in
Fig. 1 (dash-dotted line) for h =0.' Note that although
the maximum storage capacity is twice that of the net-
work with constant stabilities the basin of attraction is
extremely small for a&0.42. In particular the value of
a =0.42 where the unstable fixed point rises from m ' =0
is only slightly larger than in the previous case.

The plots of the fixed points versus field strength for
given values of ~ and mo are very similar to Fig. 2 and so
are not reproduced here. Figure 4 gives a plot of h

and h „versus a to be compared with Fig. 3. Even
quantitatively both solutions are rather similar which
suggests that the proposed procedure is rather general.
For all values of mo one can in the second case penetrate
a little bit further into the region of small basins of at-
traction by including the external field. The optimal field
strength is in all cases about 0.4.

IV. TIME-DEPENDENT EXTERNAL FIELDS

h, (t) =hS, (t) . (4.1)

Then instead of (2.4) we have

S;(t+1)=sgn —g J,,S,(t)+hS, (t)
1

C,(~, )

(4.2)

A field of this type is equivalent to a diagonal coupling
J,,

=h (i=1, . . . , N). Still (2.14) is sufficient to ensure
the absence of correlations between S, (t) and S,(t) and
we find similarly to (2.15):

It is tempting to improve the performance of the net-
work further by allowing for a time dependence of the
guiding external field, where both the strength and the
direction of the field could vary. An obvious choice for a
changing direction is a field parallel to the configuration
at time t:

1+m(t) m(t)b, +h 1 —m(t) m(t)h h-
Erf + Erf

2 V 2[1—m(t)~] 2 +2[1—m(t) ]
(4.3)

Erf(h, /&2)+&2(1 —a)/~a exp( —h, /2) = 1 (4.4)

Unlike (2.15) the dynamical law {4.3) possesses the fixed
points m'=0 and m*=1 for all values of h. Figure 5

gives a plot of the fixed point structure versus field
strength for a network with constant stabilities and
different values of a. The unstable fixed point determin-
ing the basin of attraction always decreases and merges at
some value h, (a) with the rn *=0 fixed point. This field
value is given by

and for a~1 tends to infinity as h, —[a/(1 —a)]'
Figure 6 shows h, versus a, i.e., to the left of this curve
the m =0 fixed point is unstable and the basin of attrac-
tion is 100%. Again the behavior of a network optimized
with the Gardner prescription is very similar.

From these results it seems that diagonal couplings are
very efficient for enlarging the basin of attraction even
without reducing the storage capacity. This is however
limited to the extremely diluted model. For a fully con-
nected model with constant stabilities it is known from
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I FIG. 6. Critical field value h, for the model with constant
stabilities limiting the full retrieval field values (h ) h, ) when
the field is parallel to the configuration at time t.

FIG. 5. Fixed point structure vs field strength for the model
with constant stabilities when the field is parallel to the
configuration at time t. The lines m =1 and m =0 are stable
fixed points. The dashed lines (marked by ~ for a=0. 5 and by
A for a =0.8) are unstable fixed points.

Another interesting possibility for a time-dependent
field is one parallel to the input and steadily decreasing in
strength:

h, (t)= h (t)S,' . (4.5)

numerical simulations' that there is an optirnurn value
for the diagonal couplings and the basin of attraction
shrinks again for larger values. This is probably due to
the stabilization of spurious states by the field. Hence for
fully connected models the usefulness of the method is
limited although a notable increase for the basin of at-
traction for a suitable value of h is possible. '

This means that the input S, is enforced by a strong
[h(0) &) I] stimulus which then disappears slowly still
guiding the relaxation process for some time. Hence the
dynamics becomes only gradually more and more deter-
mined by the network structure which is reminiscent of
the simulated annealing approach to complex optimiza-
tion. Similar to (2.15) we find the dynamical law

1+mp
m(t+1)= J dhP(h) Erf + mo m(t)b, h(t)—

Erf
+2[1—m(t) ]

(4.6)

It is impossible now to determine the basin of attraction
by inspection of the fixed point structure because of the
explicit time dependence contained in h (t). Concentrat-
ing however on the situation where the field decreases to
zero very slowly we can assume that m (t) is always near
to the fixed point for the given value of h and may use the
results of Sec. III for a qualitative analysis of the retrieval
dynamics.

One always starts with m =mp corresponding to the
fixed point for h ~ oo. For a&a,„(m„) [cf. Fig. 2(a)]
m (t) slowly increases with decreasing h and for h ~ h

relaxes to the full retrieval fixed point m*=1 where it
remains when h tends to zero. Hence a slowly decreasing
field allows in this case to reach the fu11 retrieva1 fixed
point m *= 1 without knowing the values of h, „(m p, a )

and h „(mp, a) and is therefore advantageous as com-
pared with the constant field studied in Sec. III. For
o.)a,„(mp) on the other hand one infers from Fig. 2(c)
that after a small increase of m with decreasing h it soon
starts to decrease again tending finally to m*=0 for
h =0.

V. CONCLUSIONS

In the present paper we have shown how the typical
basin of attraction of neural network models with given
synaptic matrix can be enlarged considerably by per-
sistent external fields parallel to the input configuration
IS, ]. In order to make analytical progress we had to
confine our investigations to an extremely diluted net-
@ ork which was shown to remain exactly solvable with
respect to the dynamics also in the presence of external
fields of the discussed type. Nevertheless the procedure is
sufficiently general and should be of value for fully con-
nected networks too. This is of interest since most mod-
els of neura1 networks studied so far are optimized with
respect to their storage capacity e, which gives rise to
nonoptimal basins of attraction. For the optima1 learning
of Gardner, e.g. , one has a, =2 but only for a &0.42 the
attraction basins are large. '

Persistent stimuli are convenient tools to combine the
information contained in the initial configuration [S, ]

and that in the network structure IJ, I in an efficient
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way. They are easily implemented in simulation pro-
grams as well as in hardware realizations. Of course the
improvement is largest if the initial overlap no between

IS, ) and the desired pattern is large, nevertheless our in-

vestigations show that even for values of mo as small as
0.2 a notable enlargement of the basin of attraction
occurs. For an efficient use of persistent stimuli the prop-
er choice of their intensity, i.e. the strength h of the field
parallel to IS; ] is essential. As we have shown it has to
lie within a definite interval (h;„,h,„) depending both
on a and mo. For h &h;„(mo, a) the unstable fixed

point of the dynamical recursion relation determining the
basin of attraction is still larger than mo, for h &h
(mo, a) the full retrieval fixed point though still stable
cannot be reached due to a dynamical blocking by the
external field. Since mo and perhaps also u are for a gen-
eric association problem not known in advance the value
of h has to be fixed somewhat tentatively, a drawback
which can be avoided using a field strength h (t) slowly
decreasing with time (see below). Moreover our results
suggest that h =0.4 is a suitable value for h for various
values of mo and a. (cf. Figs. 3 and 4).

It should be emphasized that the described increase in
the basin of attraction occurs at the expense of the
storage capacity a, . Not only is the full retrieval fixed

point m *=1already destabilized by the external field for
a (a„but even being still locally stable it is blocked by
the external field for too large a value of a. Both efFects
result in a decrease of h, „(mo,a) with a. Since

h;„(mo, a) increases with a there is for all values of mo
a maximal value a,„(mo) of a where h;„and h

merge. Beyond this value of a persistent stimuli are of no
use to improve the network performance. It is an advan-
tage of our dynamical approach to yield a critical storage
capacity a,„(mo) depending on the initial overlap mo.
A static approach only gives a, =a,„(mo= l) a quantity
with limited relevance to practical association problems
only.

A simple generalization of the proposed method in-
volves time-dependent external fields where both the
direction and the strength of the field could vary. If the
strength remains constant and the direction is chosen to

be always parallel to the current configuration I S; ( t) I the
dynamics is the same as for a network with constant diag-
onal couplings J,-;=h. This choice of field seems to be
very efficient for the extremely diluted model for not too
large a values since the full retrieval fixed point m'=1
remains stable for all values of h and no dynamical block-
ing occurs. Numerical investigations of fully connected
networks' suggest, however, that in this case diagonal
couplings are of limited use. This is probably due to the
creation of spurious states by the selfcouplings which act
like an external field parallel to any configuration thereby
stabilizing configurations which have not been stored.

A more interesting possibility is given by an external
field always parallel to the input but of decreasing
strength h (t). If this decrease is suiliciently slow one can
assume that m (t) follows adiabatically the fixed point
corresponding to the current value of h(t). From Fig.
2(a) one infers that starting from m(t=0)=mo for
h(t=0) » I m(t) slightly increases with decreasing h (t)
as long as h(t)&h, „(mo,a). As h(t)=h, „(mo,a)
there is a discontinuous transition to the full retrieval
fixed point m*=1 and the external field becomes ir-
relevant. No a priori knowledge of h, „(mo,a) is neces-
sary. This is a rather attractive scenario. The relaxation
process is at the beginning firmly guided by the stimulus.
If this guidance is relaxed step by step and the amount of
noise in the stimulus was not too high (mo not too low) at
some point the system "realizes" the similarity with a
stored pattern and completes the information by its in-
trinsic dynamics. If, however, mo was too small, i.e.,a,„(mo) &a, the overlap m(t) is always mainly deter-
mined by the field h (t) and despite a possible slight in-
crease at the beginning, tends to zero for h (t)~0 [cf. Fig.
2(b)].

ACKNOWLEDGMENTS

One of us (A.K.) is indebted to the Belgian Inter-
University Institute for Nuclear Sciences (IIKW) for
financial support. This research has been funded by the
Belgian program on Inter-University Attraction Poles
(IUAP).

D. J. Amit, H. Gutfreund, and H. Sompolinsky, Ann. Phys.
(N.Y.) 173, 30 (1987).

2H. Sompolinsky, Phys. Rev. A 34, 2571 (1986).
I. Kanter and H. Sompolinsky, Phys. Rev. A 35, 380 {1987).

4J. L. Van Hemmen, Phys. Rev. A 36, 1959 (1987).
5D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. A

35, 2293 (1987).
M. V. Feigelman and L. B. Ioffe, Int. J. Mod. Phys. B 1, 51

{1987).
7N. Parga and M. A. Virasoro, J. Phys. 47, 1857 {1986).
~A. Crisanti, D. J. Arnit, and H. Gutfreund, Europhys. Lett. 2,

337 (1986).
W. Krauth, J. P. Nadal, and M. Mezard, J. Phys. A 21, 2995

(1988).
'oW. Krauth, M. Mezard, and J. P. Nadal, Complex Systems 2,

387 (1988).

'T. B. Kepler and L. T. Abbott, J. Phys. (Paris) 49, 1657 (1988).
' G. Kohring, Europhys. Lett. 8, 697 (1988).
' M. Opper, J. Klein, H. Kohler, and W. Kinzel, J. Phys. A 22,

L407 (1989).
' R. D. Henkel and M. Opper, Europhys. Lett. 11,403 (1990).

W. Kinzel, Z. Phys. B 60, 205 (1985).
B.M. Forest, J. Phys. A 21, 245 (1988).

'7B. Derrida, E. Gardner, and A. Zippelius, Europhys. Lett. 4,
167 (1987).

'8E. Gardner, J. Phys. A 21, 257 (1988).
' E. Gardner, J. Phys. A 22, 1969 (1989).

E. Garnder, N. Stroud, and D. J. Wallace, J. Phys. A 22, 2019
(1989).

'A. Engel, H. Englisch, and A. Schutte, Europhys. Lett. 8, 393
(1989).
D. J. Amit, G. Parisi, and S. Nicolis, Networks 1, 75 (1990).



42 ENLARGED BASIN OF ATTRACTION IN NEURAL NETWORKS. . . 5005

W. Kinzel, Z. Phys. B 62, 267 (1986).
~4T. B. Kepler and L. T. Abbott, J. Phys. (Paris) 49, 1657 (1988).

E. Gardner, B. Derrida, and P. Mottishaw, J. Phys. (Paris) 48,
741 (1987)~

~R. Kree and A. Zippelius (unpublished).

L. T. Abbott and T. B. Kepler, J. Phys. A 22, 2031 (1988).
B.Derrida and J. P. Nadal, J. Stat. Phys. 43, 993 (1987).
A. Rau and D. Sherrington, Europhys. Lett. 11,499 (1990).
S. Kirkpatrick, C. D. Gelatt, and H. P. Vecchi, Science 220,
671 (1983).


