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Photon number divergence in the quantum theory of n-photon down conversion
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The process of n-photon down conversion is considered both with a quantized pump and in the
parametric approximation. In the parametric approximation it is formally found that the photon
number diverges at a finite time for n )2. This divergence limits the times for which the parametric
approximation is useful. The divergence does not occur if the pump is quantized. Furthermore, it
is shown that the Hamiltonian with a quantized pump is essentially self-adjoint. This means that
the questions that have been raised about the existence of the time-development operator in the
parametric approximation do not arise when the pump is quantized.

I. INTRODUCTION

A two-photon down converter, otherwise known as a
degenerate parametric amplifier, can be used to produce
squeezed states. ' In this device a pump field at frequency
2' is converted into one at cu inside a nonlinear crystal.
If the mode at frequency co is initially in a coherent state,
then it will be squeezed at later times by the action of the
device. The oscillator version of the two-photon down
converter has been used to produce squeezed states in the
laboratory. Because the quantum noise properties of
squeezed states have proven to be interesting and useful it
has been natural to inquire into the corresponding prop-
erties of the states which are produced by an n-photon
down-conversion process. Here, controversy has
arisen. The problem is whether the time-development
transformation for an n-photon down converter is a
meaningful object.

Before discussing this dispute let us examine the Harn-
iltonians which can be used to describe n-photon down
conversion. If both the pump and signal modes are quan-
tized then the Hamiltonian in the rotating-wave approxi-
mation is

p[a neinnn+(a t)ne inrun] (1.2)

where p is the amplitude of the pump field and, for sim-
plicity, it has been chosen to be real. In the interaction
picture this Hamiltonian is

Ht „=tt„P[a"+(a )"] . (1.3)

The existence of the time-development transformation

H„= toa a + n cob b + tc[ "ab + ( a )"b ],
where a is the annihilation operator for the signal mode,
b is the annihilation operator for the pump mode, and a„
is a coupling constant which is proportional to the nth-
order nonlinear polarizability coeScient of the crystal. If
the pump mode is in a highly excited coherent state then
one can treat it as a classical field. This is the parametric
approximation and with it the Hamiltonian becomes

for the n-photon down-conversion process was first con-
sidered by Fisher, Nieto, and Sandberg. They examined
the time-development transformation generated by the
Hamiltonian in Eq. (1.3). Formally this operator is given
by the power series

Ut„(t) =exp( itHt „)—= g ( itHt „)"/—k! .
A=0

(1.4)

In Ref. 3 this power series was used to find a series for the
expectation value (0~ Ut„(t) ~0) by taking the vacuum ex-
pectation value of both sides of the above equation. It
was found that this series does not converge for n &2.
This shows that the vacuum is not an analytic vector of i
times the Hamiltonian for n )2, i.e., the power series
considered as a function of t does not converge for any
value of t )0. From this they concluded that it is not
possible to define states which result from applying
Ut„(t), for n & 2, to the vacuum.

This was disputed by Braunstein and McLachlan.
They pointed out that the fact that the vacuum is not an
analytic vector of i'~„does not imply that a unitary
time evolution operator does not exist. By using Fade ap-
proximants they were able to obtain numerically the Q
functions for the states Ut3(t)~0) and Ut~(t)~0) for a lim-
ited range of time.

In this paper a number of aspects of the problem of the
existence of a time-development operator for n-photon
down conversion will be considered. In Sec. II the basic
mathematical issues will be discussed. The theory in the
parametric approximation will be examined in Sec. III.
There it is shown that if we assume that everything is
well defined, then for n equal to 3 or 4 the photon num-
ber becomes infinite in a finite time. This result presum-
ably holds for higher values of n as well. The situation
with a quantized pump is considered in Sec. IV. It is
demonstrated that in this case the photon number is al-
ways finite and that the Hamiltonian is essentially self-
adjoint. This implies the existence of a unitary time-
development operator. Finally, the conclusions which
can be drawn from these results are summarized.
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II. MATHEMATICAL BACKGROUND n ~ 1, and if there is a t )0 such that

In order to generate a unitary time-development trans-
formation the Hamiltonian of a quantum-mechanical sys-
tem must be self-adjoint. What complicates matters is
that most Hamiltonians, including those considered here,
are unbounded operators. This means that the operator
cannot act on all vectors in the Hilbert space but only on
a particular subset which is called the domain of the
operator. Both the operator and its domain must be con-
sidered when determining whether it is self-adjoint.

In order to illustrate some of these considerations we
can examine the number operator N=a a. The fact that
N has eigenstates with arbitrarily large eigenvalues im-

plies that it is unbounded. A necessary condition for a
vector lg) to be in the domain of N is that Nlg) be a
normalizable vector, i.e., that NIQ) be in the Hilbert
space. For example, the vector

X t "IIT"@II«'&-
n=0

(2.4)

In order to state the theorem we also need to know what
a total set of vectors is. A set of vectors 5 is total in a
Hilbert space A if the set of all finite linear combinations
of elements of S is dense in %. Nelson's theorem states
that if T is a symmetric operator and D ( T) contains a to-
tal set of analytic vectors, then T is essentially self-

adjoint. This theorem provides a connection between an-

alytic vectors and self-adjointness. As Braunstein and
McLachlan pointed out, showing that the vacuum is not
an analytic vector ofi' „does not imply that H~ „ is not
self-adjoint, so that the self-adjointness of this operator is
an open question. On the other hand, Nelson's theorem
can be used to settle this issue for H„.

Iy&= y (I«)ln&
n=1

(2.1) III. PHOTON NUMBER IN THE PARAMETRIC
APPROXIMATION

is not in the domain of N because although I(()) has a
finite norm NIP) does not, i.e.,

(2.2)

The largest choice of domain for N would be the set of all
vectors such that IINIP)ll( 00. It is also possible to
define N on domains which are subsets of this one.

Before defining what is meant by self-adjoint we first

need to define the adjoint of an operator. ' Let T be
defined on a dense domain D (T) which is a subset of a
Hilbert space &. Let the domain of T, D(T ), be the
set of PG& for which there is an rt C% with

&Tally) =&pl~&, (2.3)

for all /ED(T). For each /ED(Tt) we define T /=at,
and T is the adjoint of T. Note that this definition gives
both the action of T and its domain.

An operator T is symmetric if T C T, i.e., if
D(T)CD(T ) and TP=T P for PGD(T). It is self-
adjoint if it is symmetric and D(T) =D(T ). It is the is-
sues involving the domains which can make proving the
self-adjointness of an operator difficult.

Note that for a symmetric operator the adjoint is an
extension of the original operator; if T is symmetric, then
T has the same action as T on D(T) and has a domain
which is at least as big. If T is self-adjoint, then T is said
to be essentially self-adjoint. An essentially self-adjoint
operator has a unique self-adjoint extension. In particu-
lar, if a Hamiltonian is essentially self'-adjoint then its
self-adjoint extension can be used to generate a unitary
time evolution operator, and the dynamics is well defined.
What we would like to do is to show that the Hamiltoni-
ans mentioned in the Introduction are essentially self-
adjoint. This will be done in Sec. IV for H„.

One way of proving that an operator is essentially self-
adjoint is Nelson's theorem. This theorem makes use of
the concept of analytic vectors. A vector P is an analytic
vector of an operator T if P is in the domain of T" for all

4i p[ A (t) ——A (t) ], (3.2)

where JLt=x4P and A (t)=a(t)e' '. The second derivative
of N can also be calculated and is

d N =64@ (2N'+3N +7N+3) .
dt

(3.3)

Let us consider the vacuum expectation values of these
expressions. First, note that for t )0

d&N(t))
dt

d&N(t)) + dt, , (3.4)
d &N(t, ))

0

where the angular brackets denote the vacuum expecta-
tion value. From Eq. (3.2) we see that the first term of
the right-hand side of Eq. (3.4) is zero. It is also true that
the integrand in the second term is positive. This follows

In this section we shall examine the fourth-order
down-conversion process from a formal point of view,
i.e., domain questions will be ignored. %'e shall find that
in the parametric approximation the photon number be-
comes infinite in a finite period of time. This result is un-

physical and results from the fact that pump depletion is
neglected in the parametric approximation. The para-
metric approximation is clearly not valid beyond the time
at which the photon number becomes infinite. In fact, it
is only a good approximation for times at which pump
depletion and quantum fluctuations of the pump are not
important. ' It is expected that these times are much
smaller than the time at which the photon number
diverges.

The Hamiltonian for the four-photon down-conversion
process in the parametric approximation is

H =coa a+ag[e ' 'a +e '"'(a ) ] (3.1)

This Hamiltonian can be used to calculate the time
derivative of the photon number operator N =a a

dN
i[N, H ~]—
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from Eq. (3.3) and the fact that N and its powers are posi-
tive operators. We can, therefore, conclude that

d(N(t)) )
dt

(3.5)

for t ~ 0. The mean photon number is an increasing func-
tion of time.

It is now useful to derive some inequalities involving
expectation values of powers of the number operator. A
direct application of the Schwarz inequality gives

(N t)') (N(t)&', &N(t)') (N(t)'&' (N(t)&'.

(3.6)

Because N(t) is a positive operator is has a well-defined
square root. Making use of this fact and again applying
the Schwarz inequality we find

(N(t)')'=(N(t)'"N(t)'")'~ (N(t))(N(t)') . (3.7)

Combining this relation with the second inequality in Eq.
(3.6) gives

(N(t)') &(N(t))'. (3.8)

It is now possible to derive an inequality for
d (N(t) ) /dt Equat. ion (3.3) and the results of the
preceding paragraph imply that

N
64 (2(N) +3(N) +7(N)+3) . (3.9)p

Because of Eq. (3.5) we can multiply both sides of the
above inequality by d (N ) /dt without changing its sense,
yielding

d (N) d(N)
dt

&64 (2(N) +3(N) +7(N)+3)
dt

or

d(N)
dt

dV(&N))dt~ (3.10)

where

V((N))=64p ((N) +2(N) +7(N ) +6(N) ) .

(3.11)

Integrating both sides gives

d(N)
dj

d(N)
dt 0

V((N(t) ) ) —V((N(0) ) ) . (3.12)

Because the system is in the vacuum state at t=0 we
have that ( N(0) ) =0. We have already noted that
d(N(t))/dt is zero at t=0 so that Eq (3.12) can. be ex
pressed as

[V(&N(t) &))'"
dt

(3.13)

It is possible to obtain a simpler result by noting that
each of the terms in V((N) ) is positive. Dropping all
but the (N ) term gives

d(N)
&

),

which can be expressed as
—d(1/(N)) ) (3.15)

1/(N(t, )) —1/(N(t, )) ) 8p(tz —t, ) . (3.16)

We now return to Eq. (3.9) and drop all but the last
term on the right-hand side

d'(N )
dt

(3.17)

Integrating twice and making use of the fact that (N(t) )
and its first derivative vanish at t =0 gives

(N(t)) &96(pt) (3.18)

If we now set t = t
~

and invert both sides of the above in-
equality we obtain

1/(N(t, )) ~1/[96(jtzt, ) ] . (3.19)

Finally, this result can be combined with Eq. (3.16) to
give

(N(t, ) ) & [[I/96(pt, )']—8p(tz —t, ) j

This should hold for all t, & t, . Note that if

(3.20)

tz = t, + [I /(768p3t f )], (3.21)

then the right-hand side of Eq. (3.20) diverges.
Let us see what this inequality for (N(tz)) implies. If

tz (tz, where tz =(3/8p)(1/6)'~, then Eq. (3.21) has no
solution, and for all t, &tz the right-hand side of Eq.
(3.20) is finite. If tz=tz, then when t, = ztz Eq. (3.2—1) is
satisfied and (N(tz ) ) must be infinite. Therefore, the lat-
est time at which (N(t) ) can diverge is tz

This divergence clearly places limits on the times for
which the Hamiltonian in Eq. (3.1) is useful. In the case
of two-photon down conversion, which has been exten-
sively studied in connection with squeezing, the photon
number also diverges. In that case, ho~ever, the diver-
gence occurs only in the limit that t goes to infinity, and
therefore does not present a problem. The four-photon
process is clearly more divergent, and the Hamiltonian in
Eq. (3.1) will provide a valid description only for times
which are much less than t&.

Finally, let us mention that the techniques employed in
this section can be applied to Hp3 as well. In this case
one also finds that the photon number diverges in a finite
time.

IV. QUANTIZED PUMP

Let us now examine the four-photon down-conversion
process when the pump mode is quantized. This means
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that we need to consider the Hamiltonian

H4=aia a+4cob b+ic4[a b +(a ) b] . (4.1)

which in turn gives us that

IIH. @ll ~(m~+&.m'")IIIII . (4.9)

M =4b b+a a (4.2)

commutes with H4. This allows us to break up the full
Hilbert space into invariant subspaces & . The space

is the subspace on which M has the eigenvalue m and
consists of all linear combinations of the vectors

I Im, o), Im —4, 1), . . . , Ir, (m r)/4) j
—where r=0, 1,2,

or 3 and is the remainder when m is divided by 4. If
, then the fact that [M,H4]=0 implies that any

power of H4 acting on g is also in &
If fE& let us find a bound for IIH4gll in terms of

II/II. If PE&, then it can be expressed as

[m /4]
lg&= y„c„lm —4k, k&, (4.3)

/& =0

where [m /4] is the greatest integer less than or equal to
m /4. We then have that

H4g=mcog+Q, +f2,
where

(4.4)

[m /4] —
1

c„v'k+1[(m —4k )!/(m 4k —4)!]'i'—
/& =0

X Im —4k —4, k+1&,

%'e want to use Nelson's theorem to show that this Ham-
iltonian is essentially self-adjoint. In order to do so it is
necessary to find a domain on which H4 is symmetric
which contains a total set of analytic vectors.

Consider the set of states S=
I In„nb ) In, =0, 1,2, . . .

and nb =0, 1,2, . . . I where In„nb ) is a state with n, pho-
tons in the a mode and nb photons in the b mode. This
set is total, i.e., the set of all finite linear combinations of
vectors of this form is dense in the two-mode Hilbert
space. Let us choose the domain of H4, D (H4 ), to be all
finite linear combinations of elements of S. The Hamil-
tonian H4 is symmetric on this domain. If it can be
shown that each of the vectors In„nb ) is analytic, then
the conditions of Nelson's theorem will have been
satisfied.

The Hamiltonian H4 has a conservation law because
the operator

Because H4$ is in % if gE% we can apply Eq. (4.9)
repeatedly to give

m~+~, m (4.10)

Finally, this result can be applied to the exponential
series to give for gE&

g IIH41(lit "/n! g [(mao+le, m' ')"t"/n!]II@II
n=0 n=0

exp[(m~+~, m'")t]Ilqll . (4.11)

& 1((0)IMiq(o) &
)

& 1((t)la'a ly(t) &,

—,'&q(0)IM 1((0)) &q(t)lb'big(t)) .
(4.12)

Therefore the divergence problem which plagues this
Hamiltonian in the parametric approximation is not
present when the pump is quantized.

In this section we have proved the essential self-
adjointness of H4 defined on the dotnain consisting of all
finite linear combinations of vectors of the form In„nb ).
The method of proof which was employed can be easily
generalized to show that H„defined on the same domain
is also essentially self-adjoint. Therefore the quantum
theory of n-photon down conversion with a quantized
pump in the rotating-wave approximation is well defined.

This implies that P is an analytic vector of H4. As each
of the vectors In„nb ) is in one of the subspaces & (m
for this state will be n, +4nb) each is also an analytic
vector of H4. Nelson's theorem now allows us to con-
clude that H~ defined on the domain D (H4) is essentially
self-adj oint.

The conservation law which H4 obeys also implies that
if the initial photon numbers in the a and b modes are
finite, then they wi11 be finite for all times. In fact, we
have that if P(t) is the wave function of the system at
time t, then

[m /4]
ci, v k [(m —4k+4)!/(m —4k)!]'c

/& =1

X Im —4k+4, k —1) .

For 0 ~ k ((m /4) —1 we have

v'k+1[(m —4k)!/(m —4k —4)!]' (m /2,
and for 0 ~ k (m /4

v k [(m —4k+4)!/(m —4k)!]' (m /2 .

These imply that

(4.5)

(4.6)

(4.7)

(4.8)

V. CONCLUSiON

%'e have discussed a number of issues in the quantum
theory of n-photon down conversion. Both the case in
which the pump was treated c1assically and that in which
it was quantized were considered.

If the pump is classical (parametric approximation) it
was formally shown that the photon number diverges at a
finite time in the cases n =3 and 4. Because the theory is
expected to become more singular as n increases, the
suspicion is that this behavior holds for all n )2. This
divergence places limits on the use of the parametric ap-
proximation. This approximation wi11 provide an accu-
rate description of these processes only for times which
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are much less than the divergence times.
If the pump is quantized the divergence of the photon

number does not occur. Furthermore, it is possible to
show explicitly that the Hamiltonian is essentially self-
adjoint. This means that a unitary time-development
operator exists in this case. The theory with a quantized
pump is, therefore, well defined for all times.
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