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The collapse of wave packets governed by the Zakharov equations is investigated at critical di-

mension. Their classical self-similar solutions are described by a linear time-dependent contraction
scale g{t) = V{t~ —t) where t „denotes the collapse time. We study two spherically symmetric ver-

sions of self-similar collapses, namely one corresponding to a vectorial electric field and another one
relative to a scalar modelization of the Langmuir field. Each of these solutions can be regarded as a
function of the collapse velocity V = —g. In the case of a Uectorial electric field, the solutions are

analytically shown to exist in the subsonic regime only, provided that the velocity Vis lower than a
critical velocity V,„„,in agreement with previous numerical results. By contrast, the solutions of
the scalar model are found to exist for every value of the collapse velocity; they exhibit two localized
modes that evolve continuously as a function of V from the subsonic to the supersonic regime.
These two modes are analytically and numerically shown to merge together in the limit V~ ~.

I. INTRODUCTION

The Zakharov equations, ' originally introduced in
1972, describe the nonlinear evolution of plasma waves
and are still the subject of intensive investigations in the
scope of the strong Langmuir turbulence. Their solutions
are shown to collapse toward a point singularity whenev-
er the energy of the electrostatic plasma waves exceeds a
threshold value. The latter property is true provided the
space dimension d is larger than the so-called critical di-
mension, denoted as d, . Classical investigations of this
problem consist in understanding the behavior of one
elementary turbulent cell—one collapsing caviton-
assuming that a complete scenario of the collapse process
in a strongly turbulent plasma can be correctly described,
at the lowest level of approximation, as a set of indepen-
dent collapsing cavitons.

There is also a large body of numerical work related to
this question, which can be subdivided into two main
groups. ' On the one hand, Refs. 6—11 are devoted to
nutnerical analysis of the two-dimensional (2D) damped
and driven Zakharov equations: in this case one observes
a steady-state turbulence that consists of cavitons, the
latter being created at random, due to the energy drive,
and disappearing by the Landau absorption. On the oth-
er hand, the nonlinear evolution of one given caviton is
investigated in terms of an initial-value problem in Refs.
6, 7, 9, and 12. In these simulations, three stages are
clearly seen during the caviton lifetime: after an initial
transient period that depends upon the initial conditions,
a collapsing behavior is observed in the so-called inertial

regime where the dissipation is negligible; moreover, it
has been observed that thi. s collapsing behavior develops
in a self-similar manner; Anally the caviton burns out, due
to Landau damping, when its characteristic size becomes
of the order of a few Debye lengths.

A collapsing caviton is thus assumed to be correctly
described by the self-similar part of solutions that obey
the following set of undamped and undriven Zakharov
equations, expressed in convenient units as

V (i 4, +V 4) =div(5n VC&),

(t), —c 6 )5n =c b, V4
~

(la)

and, under the supersonic assumption, namely,
c b 5n « r), 5n, are known ' to depend on the scaling fac-
tor:

(2)

V- )t), 5n/V5n[

one easily finds that the velocity of a self-similar contract-
ing caviton is given by

so that the supersonic approximation can be asymptoti-

where t, here denotes the moment of collapse and where
the critical dimension d, is given by d, =2/m.

Indeed, defining now the caviton contraction velocity
as
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cally satisfied for t~t, in the case d, (d only, that is

when the space dimension exceeds the critical value d„as
just said above.

In Eqs. (1), 4(x, t) corresponds to the electrostatic po-
tential of a plasmon envelope coupled to the low-

frequency density fluctuations represented by 6n (x, t). In
the physical case, one has m=1 and the right-hand side
(rhs) of Eq. (lb) represents then the ponderomotive force
of the plasma waves acting on the electrons; this pon-
deromotive force has been here extended to an arbitrary
degree of nonlinearity characterized by the exponent m;
the parameter c in Eq. (lb) corresponds to the ion-sound
speed.

In this paper we investigate two scalar versions of Eqs.
(1) in the case where the space dimension d is equal to the
critical dimension d, . In this special case, the time
dependence of the scaling factor g(t) is linear, according
to Eq. (2), corresponding thus to a velocity V which is
time independent: in this regard, such a case is marginal
in the sense that the operators c), and c b, in Eq. (lb) are
of the same order, so that neither the supersonic nor the
subsonic approximations can be imposed. As originally
introduced for a vectorial two-dimensional collapse by
Gol'tsman and Fraiman in Ref. 3, a convenient way to
deal with the critical collapse consists in defining the scal-
ing factor (2) in the following form:

(3)

where the time-independent parameter V = dg/dt-
denotes the collapse velocity. This quantity V is a free
parameter and the domain of existence of localized solu-
tions for the set (1) will be investigated as a function of V,
or equivalently as a function of the ratio A = c /V. Since
localized solutions will be shown to exist for a continuous
and connected domain of V, we have found it necessary
to generalize somewhat the usual terminology. Indeed, in
the standard references on this subject, the supersonic re-
gime is commonly thought as corresponding to the limit
V~ ~ (A=O), and similarly the subsonic regime to the
limit V=O (A —+ ~ ), that is to the nonlinear Schrodinger
equation, for which one has 5n = —

~E~ . In our paper
the supersonic regime relates more generally to the
domain V))c (A«1) and the subsonic regime to the
domain V «c (A ))1). On the other hand, the terminol-

ogy "strongly supersonic" will be used when referring to
the limit V~ oo (A=O); similarly "strongly subsonic"
(V=O, A= oo ) will refer to the nonlinear Schrodinger
equation.

In order to study a critical self-similar collapse, we first
recall in Sec. II the set of self-similar substitutions which
reduce the Zakharov equations to a system of nonlinear
ordinary difFerential equations which only contains
derivatives with respect to the transformed coordinates
x'=x/g(t). We then discuss the behavior of the solutions
at the vicinity of the sonic point, defined as the place
where one has 0,5n =c 66n in the ion-sound equation
(lb) and we prove that such substitutions continuously go
through this sonic point under certain conditions on the
density potential 5n (x, t) On the other hand. , we study
within the same framework the so-called vectorial case
and scalar model of a self-similar collapse in order to ex-

II. SELF-SIMILARITY ANALYSIS

Because it is difficult to analyze asymmetric supersonic
self-similar distributions associated with the partial
diff'erential problem (1), we discuss the self-similar re-
gimes of a wave collapse which is described by the follow-
ing scalar equation set:

d, —1

iB,E+hE —
2

eE =5nE,
r

(Q cQ)Qn—=c Q~g~

(4a)

(4b)

In the latter set, the Laplacian operator reads as fol-
lows:

1 0 d, .
—

& 8
(5)

for an axisymmetric collapse expressed in spherical
geometry, with r—= ~x~. The additional parameter e has
been introduced to distinguish a wave collapse corre-
sponding to a vectorial electric field, from the one corre-
sponding to a scalar modelization of the electric field.

(i) In the case of a centrally symmetric Uectoria/ field
(see Refs. 1, 3, and 5), one has E(x)= —V4(r)

E(r)(x/r ) with r —=—)x~, where 4 depends on r only, in
which case one has V(divE) = [b, —(d, —1)/r ]E, corre-
sponding to the case e = 1 in Eq. (4a).

plain the apparent paradox between the Gol'tsman and
Fraiman results on the axisymmetric collapse corre-
sponding to a vectorial electric field, and the Zakharov
and Shur ones relative to a spherically symmetric col-
lapse in which the vectorial nature of the electrostatic
field is disregarded (corresponding to what is referred to
in our article as the scalar model): in the case of a vec-
torial electric field, the collapsing solutions have been
found to be always subsonic, whereas in the scalar model
of a spherically symmetric collapse there exist localized
solutions defined in the supersonic regime. In order to in-
vestigate this paradox, we develop a least action principle
by using 2D soliton-type trial functions, whose aim con-
sists in anticipating analytically the realization domain of
two distinct localized modes, previously observed in
numerous works. ' ' At the opposite of the vectorial
collapsing solutions that may be self-similarly realized for
V below a critical subsonic value V,„;, only, with

V,„;,=0.14c, ' we show that scalar modes of a two-
dimensional collapse can be self-similarly realized with
subsonic and supersonic velocities as well, for every va"ue
of V from zero to infinity. For increasing V, the second
mode converges to the first one until both reach the col-
lapse singularity for the supersonic velocity V= ~, in
which case the maximum of fields is located at the center
of the caviton.

In Sec. III we perform a numerical integration of the
Zakharov equations transformed under self-similar sub-
stitutions, which enables us to illustrate and confirm all
the theoretical results brieAy stated above. As a result,
we show in Sec. IV that a one-dimensional scalar collapse
simulates with a great accuracy the problem of self-
similar solutions of a real 2D Langmuir collapse.
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(ii) In the case of a scalar modelization of the electric
field, one simply replaces in the Zakharov equation set (1)
—V4 by a scalar function E(r), and similarly V V( —4)
by V E, corresponding thus to e =0 in Eq. (4a); this mod-
elization has been widely used in the Soviet literature
(see, e.g., Refs. 2—13), although it does not receive any
rigorous justification (it will be simply shown further on
that the scalar model corresponds to the same Lagrang-
ian density as for the exact vectorial case, in which one
assumes the electric field to be scalar).

—1—I+6' — e E'=5n'E',
(r')' (1 la)

so that, without loss of generality, we can assume A =1
in Eq. (8a) by setting p A =1; this single eigenvalue
makes the isospectral Schrodinger problem (8a) highly
degenerated, which implies the possible existence of
several localized solutions defined under the boundary
conditions (9). After performing the transformations (10)
together with E'~p' E' in (Sb) and taking p= V/c, we
finally obtain an equivalent form of Eqs. (8):

T

A. General properties of a self-similar collapse

We denote by t, the finite time at which the ampli-
tudes of E and 5n go to infinity. The latter divergence for
t ~t, is included in the rescaling factors in front of the
self-similar quantities

1 [(r') 5n'] A—b, '5n'=b, '~E'~r' dp'2

where A is given by the simple relation

A2 2/V2

(1 lb)

(12)

E(r, t)=
r

1

d z2
E'( r ', V)exp + —2A t '+ ~ r 2l The quantity A appears thus to be an appropriate pa-

rameter to investigate self-similar collapses.

5n (r, t)= 5n'(r', V),
1

g'(t)

for which we define the new variables r' and t' by

(6a)

(6b)

(7a)

B. Strongly supersonic collapse

The limit A =0, that we refer to as "strongly super-
sonic, " has already been intensively discussed by many
authors, ' ' so that we will simply recall briefly their
results. In this limit A =0, Eq. (11b) reduces to

(13)
X

r r'=~x', with x'=
(r)

(7b)

d, —1—A E'+6'E' —
z

eE' —5n'E'=0,
(r')'

2 1
V —, [(r') 5n'] cb, '5n'=c 6'~E—'~r' dr'2

with

1 d, d, —
~ d

c dr dr

(8a)

(Sb)

(Sc)

As already known, ' such a system admits localized
solutions under the boundary conditions:

E', 5n'~0 as r'~ oo,

E'(r'=0)=0 for the vectorial case,

(9a)

(9b)

, E' (r'=0)=0 for the scalar case .Br' (9c)

We also note that Eq. (8a) is invariant under the substitu-
tions

r'~pr', 5n'~p 5n', A~p 'A, (10)

It can be checked that the scaling law (3) ensures t'~ co

as t ~t, . In this limit, self-similar solutions E' and 5n',
defined by (6), correspond to the asymptotic state of the
transformed problem (4) expressed in the new system of
coordinates (7). Inserting expressions (6) and (7) into (4)
leads to the following set of ordinary differential equa-
tions for the unknown functions E' and 5n ';

1. Large-r ' behavior

According to the classical procedure originally
developed by Zakharov and Shur in Ref. 2, the self-
similar solutions (6) become time independent asymptoti-
cally as t'~ ~ and the function 5n' (13) is given by its
asymptotic behavior as r'=r/(t, t) tends to—infinity for
any finite point of space r when t ~t, . So, we obtain for
large r'

dc 2
5n '(r') = — go+(r')' (14b)

where the remaining terms are exponentially small as
r'~~, due to the exponential decay to zero of P' for
r'~ ~ [see Eq. (1 la) with 5n'~0 for r'~ ~]. By using
Eqs. (6b) and (7), one easily finds that expression (14b) for
5n' corresponds in real space to a potential well 5n given
by

d 2
5n (r) = — $o .

r

Integrating Eq. (13), the expression for 5n'(r'), which
is regular at r'=0, can be written as

0' —(()o5n'(r', oo ) = + ' f"(P' Po)dr', (14a)—(r')' (r')'

with P'= ~E'(r')~ and tI)o= ~E'(r'=0)~ . From Eq.
(14a) one realizes that in the degenerate limit A=0, Po is
the only relevant parameter regarding the nonlinear ei-
genvalue corresponding to the set (11).
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From the latter expression, one may see that the self-
similar solution for 5n is positive for sufficiently large r
provided the critical dimension is smaller than 2; such a
behavior corresponds to the so-called "lips" of the cavi-
ton (see, e.g. , Refs. 4 and 5).

2. Small-r' behavior

It will be seen further on that in the general case AWO

the point r'= A plays a particular role regarding the con-
tinuity of 5n': for reasons detailed later, this point may
receive the name of "sonic" point. In the limit A=0 con-
sidered here, the sonic point reduces to the origin, and
for further comparison we will restrict ourselves to the
case d, =2.

Let us consider first the scalar model @=0. Inserting
5n'=5no+0((r') ) and E'=ED+0((r') ) into Eqs.
(1 la) and (13), one obtains at the origin

' —1

3 —1 (16)5no =

2 + p2m( ~ )2(m —1)

m (2m +1) (17)

which is a positive quantity for m )0. In particular, one
would have 5no= —', p for the case d, =2, m=1 con-
sidered here. On the other hand, substituting the same
expansion for E' into Eq. (1 la) yields 5no = —1, in obvi-
ous contradiction with Eq. (17). We therefore conclude
that no solution can exist for the vectorial case in the
strongly supersonic regime.

C. Trans-sonic problem

Let us now consider the general case A WO. By in-

tegrating once Eq. (11b), one obtains the first-order
differential equation

r'[(r') —A ],5n'+[3(r') A(d, —2)]5n'—
Br'

=r', P'+(d, —2)[P' ($0+A 5n() )—],Br'
(18)

A localized solution for 5n' with a negative minimum at
r'=0 can therefore exist only if the condition

P()) 3

is satisfied.
Regarding now the vectorial case a=1, let us show

that there is no solution in the strongly supersonic regime
A=O considered here (more generally it will be found
later on that solutions for the vectorial case may exist
only if the velocity V is smaller than a critical velocity
V,„;„which lies in the subsonic regime).

We already know that the boundary condition imposes
E'(r'=0) =0; since the equation of evolution for E' is of
second order, let us show that one also has
[(8/Br')E']„. 0=0, in which case the function E'(r') is

necessarily null everywhere. If we indeed had
[(8/Br')E']„0%0, ,the expansion for E' in the vicinity of
r'=0 would be E'=Pr'+ (see, e g—, Refs.. 6. and 12).
By inserting this expansion into Eqs. (lib) and (13),
5n'(r'=0) would be found to be given by

+y A (5 —d), (19)

with

y = (d, —2)()})),
'

P()
—A5n —

() ),
where )}),

' denotes the quantity P'(r') at the sonic point,

P'(r'=A) —.

One of the main difficulties when solving numeri-
cally the set (11) is therefore to determine self-consistent-
ly on the first hand the proper boundary value

IEO I—:IE'(r'=0)I so as to obtain localized solutions, and
on the second hand the potential well 5n ~ =5n'(—r'=0) so
as to fulfill the constraint (19).

D. Two mode solutions

Now, we use a variational method in order to estimate
the range of collapse velocities in which localized solu-
tions may exist and thus describe a self-similar critical
collapse. To investigate this problem, as primarily ex-
posed in Ref. 3, we confine ourselves to the physical case
m =1 and d, =2 and we first define the action integral for
the set (4) as follows:

S=fdtf Lr ' dr .

Here the Lagrangian density is written as

(20)

L =i E'—E—E—E' +IdivEI +c —'IVUI2
dt )3t 2

—-' IEI'+
2 at

(21)

where U(r, t) is the hydrodynamical potential relative to
the sound wave flow, which satisfies the following rela-
tion:

BU = —IEI —5n .
Bt

(22)

In the expression (21), E should read
E=E(r)(x/r) = —V4 in the vectorial case, and the

d —].

quantity divE is then given by divE=( 1/r ' )(8/
d —1

'dr)r ' E(r) By contrast, in . the scalar modelization of
the electric field, E is simply to be considered as a scalar
function, and accordingly divE reduces to (8/Br)E(r). It

with 5no =5n'(r')I„. o. One can see on the latter expres-
sion that the points r' =0 and r' =A play a particular role
because they make the leading order in (8/)3r')5n' van-
ish. The point r'=A will henceforth be referred to as the
"sonic" point since it corresponds to the point where V is
equal to the ion-sound velocity c in the prime dimension-
less units.

Equation (18) is easily seen to impose a boundary con-
dition for 5n at the sonic point r'=A. Assuming the
continuity and the derivability of 5n' everywhere, and
taking the limit r'~ A, one indeed obtains

5n'(r'=A)
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U(r, t)=— U'(r', t'), (23}

can be checked by varying the action with respect to E'
that these two definitions of divE correctly reproduce Eq.
(4a) with a=0 in the scalar model and E= 1 in the vec-
torial case.

After writing the self-similar substitutions (6) and (7)
into (21) and taking the self-similar transformation on
U(r, t) into account, by setting namely

On the other hand, the quantity [(8/Br')U'] may be
evaluated as follows [see the Appendix, Eq. (A2)]:

2

(V'„U') —=
1 Ro

(fin')
A

Inserting then the expressions (25), (27), (28), and (29)
into L ' defined by Eq. (24) leads to the following
transformed action integral S'—:R 0 f + "L'dr':

the Lagrangian density (21) becomes, assuming a steady-
state asymptotic limit as t' goes to infinity

r

I I

+—'c (P" U')
dT P' (r')'

L'=

2

iE' —V r', U'+ U'
2 Bp

(24)

(R' )
F.'(r', V) = 2 1—

A
sech(r' —R 0 )

(Ro)
1 — f (r' —R' ),

A
o (25)

which is moreover supposed to satisfy approximately sys-
tem (8) under the following assumption:

(Ro/A) &1 VRO &c . (26)

Such a function describes a symmetrical cylindrical
solitonlike solution characterized by a typical radius
ro(t)=((t)RO(V); here Ro(V} is a function of V which
represents the coordinate of the maximum of the local-
ized solution (25). Since the trial solution (25) for E'
models a two-dimensional soliton rolled up around its
maximum R o, a trial function for the density can be eval-
uated from Eq. (8b) by simply developing its different
contributions around r' =R o; namely, we took the follow-

ing trial function for 6n':

(&')'
5n'(r', V)=—

[1—(Ro) /A ]
(27}

Using the latter expression for 6n', one finds that the
last contribution of the Lagrangian density (24) is given
by

2

(gl )2 V I Ul+ Ut
Br'

=—(5n') =
2

. (28)
(&')'

[1—(Ro) /A ]

For the sake of clarity, we will use system (8) and the
original Lagrangian density (24) to analyze the realization
of localized solutions according to the collapse velocity,
i.e., the value of V which is chosen here, as being the only
relevant parameter. The interested reader will find in the
Appendix a brief explanation of the connection between
the Lagrangian density (24) and Eqs. (8).

By analogy with Langmuir 1D solitons, ' we found it
appropriate to use the following trial function:

1/2

S'=—'Ro 1 — (Ro) + 1 — (Ro)
c o c

(30)

Since the form of the solution is known, it is possible to
get the dependence of the maximum coordinate Ro on
the parameter V: taking the derivative of (30) with
respect to the only relevant variable R o leads to a simple
quadratic equation for (R 0 ), whose roots for positive R 0
are given by

a+(a —4p)'
0 2

(31a)

with

and

c E

3V
(31b)

p=c
2V

(31c)

and

Vqtjt Oe 219c for e = 1

Vcrit (x) fol E' —0 .

(32a)

(32b)

As R 0 (44) is a decreasing function of V, the two modes
tend to converge together as V is increased to V„;, until
the second mode is superposed with the first one at the
same coordinate (Ro)+=(Ro) . A self-similar collapse
therefore may be regarded as a mode merging mechanism
and V„;, as a bifurcation parameter as far as the self-
contraction velocities are concerned.

(i) In the vectorial case (e= 1), the above results are in

agreement with those of Gol'tsman and Frairnan that
were deduced from similar investigations. The latter au-
thors have indeed numerically evaluated the critical sub-
sonic value of V~ V„;, as V„;,—=0. 14c, the theoretical
prediction (32a) V„„=0.22c could thus be considered as
reasonably a good approximation. Moreover, although
the existence of a critical value for V exhibits a velocity
limit, the latter value of V„;, can be improved by
surrendering the supersonic assumption in Eq. (28). Let
us indeed show that the numerical result V„;,=0.14c

From the expression (31a) which predicts the existence
of two distinct localized modes whose maxima are locat-
ed at (R 0 )

—one realizes that there is a critical velocity

V„;, such that for V ) V„;, there is no self-similar solu-
tion: V„;, corresponds to the vanishing of the discrim-
inant (a —4p)'i in Eq. (31a). Under the basic condition
VRo (&c, V„;, reads as follows:
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could be deduced from a calculation analogous to ours
under the assumption V /c «1 and RQ=0(1) charac-
terizing the vectorial case of a wave collapse that is typi-
cally subsonic. Indeed, in the limit V ~0, expression
(28) can be simplified into (5n') =(E') /
I 1 —[V(RQ)/c] ] which leads to modify the action S'
(30) in the following way:

S' —+S '=S' —4 (RQ)
V2

C

Then taking the derivative of S ' again with respect to
R0 gives the critical value V„;,=0.144c, which is thus
very close to the numerical estimation V„;,-=0. 14c. We
can thus understand a posteriori why a supersonic col-
lapse with A=O does not take place in the vectorial case,
as previously announced.

(ii) Regarding now the scalar model (e=O), the most
surprising result which can be deduced from these con-
siderations concerns the existence of self-similar scalar
modes whatever the values of V may be, in particular for
V=oo, as shown by Eq. (32b). This result is in agree-
ment with the properties of strongly supersonic scalar
modes, as given above. Taking the derivative of (30) with
respect to R0 after setting a=0 enables us to display a
first mode located at

(R0) =0 (33a)

and a second one located at (R Q
)+ given by expressions

(31), namely,

(RQ)+=, + (33b)

Setting A=c/V in Eq. (33b) leads us to find again the
critical velocity V„;,= ~ previously obtained, and the
two localized modes together reach a maximum at the
center R 0=0.

At the opposite of the vectorial case, a self-similar col-
lapse governed by the scalar model can thus be achieved
with supersonic velocities. From a general point of view,
an infinite set of collapsing solutions exists, correspond-
ing to every value of collapse velocity V. These solutions,
which verify the continuity conditions (19) and (26} [as
shown by Eq. (33b)], always pass continuously through
the sonic point A =c /V for each value of V until V is in-
creased to infinity (or, equivalently, A=O). When this
sonic point is located at the origin of the transformed
coordinates (A =0), collapse occurs within the so-called
"strongly supersonic regime. "

Let us now comment on the opposite limit A = ~; as
recalled in the Introduction, this limit corresponds to the
nonlinear Schrodinger equation (NSE). It is well known
that in the NSE case, there are two distinct contraction
rates g(t) for a two-dimensional collapse for which one
has d =d, =2. ' ' These scaling laws are indeed given
on the first hand by g, (t) = V(t, —t), which corresponds
to an exact ground state E'(r', oo ) for a 2D NSE self-
similar collapse, and on the other hand by

1/2

1nln
1

which takes into account logarithmic corrections onto
the main scale g(t) =(t, t}'—~ characterizing a NSE col-
lapsing solution. This latter contraction rate gz(t) has
been recently investigated by Papanicalaou and co-
workers' ' from both analytical and numerical points
of view. One of their important results is that the self-
similar solutions corresponding to gz(t) are thought to be
stable because they are numerically observed; on the oth-
er hand, the solutions relative to g&(t) have never been
found through numerical computations. Moreover, such
linear time-dependent solutions relative to g~(t) have
been proved by K. Rypdal et al. ' to be marginally stable
only for a 2D NSE collapse, in the sense that there exist
infinitesimal perturbations that would prevent the blowup
and other ones that give rise to a radically different evolu-
tion of the collapse singularity from the one originally
predicted with g, (t).

Returning now to the complete Zakharov equation set
(4), the exact self-similar solution (6a) is linearly depen-
dent on time, as is the case for the solution in g, (t) of the
2D NSE. The former solution can therefore be con-
sidered as the generalization of the latter one in the gen-
eral case VAO of the Zakharov equations. Thus the un-
stable nature of the self-similar solution in g~(t) of the 2D
NSE raises the question of the stability of the solution
(6a). On the other hand, one can hardly find a generaliza-
tion of the solution in gz(t) of the 2D NSE to the
Zakharov equations, since a time dependence in
( t, t)' cannot res—pect the balance between the opera-
tors 8, and b, in the ion-sound wave equation (4b). For
this reason, the strongly subsonic limit V~O seems to be
highly singular; a stability analysis of the solutions (6)
would be certainly very instructive about the proper col-
lapsing solutions of Eqs. (4) and about the link between
the NSE solutions and the Zakharov ones in the limit
V~O. This problem is, however, beyond the scope of the
present paper.

III. NUMERICAL RESULTS

and

, E'(r')
Br' r'=0

We integrated the set (11) by using a Runge-Kutta
method. Because the vectorial case (E=1) has already
been widely investigated in Ref. 3, we concentrated our
attention on the scalar model (e=O). In order to be
definite, we choose three typical values of A, namely,
A = 12.5, A = 1, and 0 corresponding thus, respectively, to
subsonic, so-called "trans-sonic, " and supersonic veloci-
ties (with, respectively, V=O. OSc, V=c, and V= ao ).
For every configuration, the fields E'(r') and 5n'(r') have
to satisfy the boundary conditions (9):

E'( ~ ) =5n'( ~ ) =0
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As already said, the actual problem consists in finding
the correct value of IIto=iEoi at the origin, such as to
obtain localized solutions, together with fixing the correct
boundary condition for 5n', namely, 5n'(r'=0), which
verifies the relation (19) [in the case of a fully supersonic
behavior, i.e., V=oo or A=O, 5no(r'=0) is given by
(16)). For a given $0, the procedure consists in finding
the proper value 5noiI„0I which ensures a regular be-
havior of the potential well at the sonic point. On the
other hand, as system (11) admits solutions with a singu-
larity as some arbitrary point ro:

&ZroE'=—+ (34)
(r ro) r ro

5n'=-

(( 01) & 3 (002)

For too large deviations b, ((}0 from ($0)', the function
E' goes to infinity in accordance with expressions (34).
Here, the solutions are ensured to be correctly localized
with a good accuracy b, ((}0=5X 10 and the behavior of
Sn' near r'=A is regular by satisfying the relation (19}
with an authorized deviation 65n 0 from (5n 0

)' equal to
b,5n0=2%%uo for each mode. This latter estimate implies
that the density function 5n'(r') goes through the critical
point r'=A without diverging with a permitted very
small deviation 65n'(A) from the correct 5n'ii„aI given
by (19} of order b,5n'(r'=A) =(5n„'„—5nI„„,)/
5nih„, =—10 . Here, we have denoted by 5n,'„„,and
5n„'„ the integrated values of 5n'(r'} at r'=A, obtained
respectively from the analytical expression (19) and from
the numerical computation, after first introducing the
boundary values 5n 0 and $0 and letting the computer cal-
culate until the critical point. In that case, one has the

it is necessary to iterate this procedure until one gets the
proper value $0 which ensures that solutions will recover
a physical meaning —i.e., to be regular and localized as
r'~ 00—for which one has ro = 00. For the sake of sim-

plicity, we have mainly investigated the case of a two-
dimensional collapse (irt =1), for which we give in Table I
the correct boundary values of fields E' and 5n' at r'=0
corresponding to each A.

Using the same notations as in Ref. 2, we denote by
($0I)' and (I|}02}'the respective boundary values of the
two localized modes, correctly chosen at the origin r'=0,
and for which E' and 5n' tend to zero as r'~ oo. It can
be shown that for A=O, the latter quantities respectively
satisfy the following inequalities (see Ref. 2):

E

hn'-5

0.5

I

I
I
I
I
I
I

I
I
I
I
I
I

I

(2) (
I
I

I
I

if
I
I

J
(i)

1
I
I
I
I

I
I

I

I

I

(a)
I
I
I

FIG. 1. Diverging curves of functions 5n'(r') near the criti-
cal point r'=A=1. Setting (Poz) =13.8901& 10, the cases (2)
and (3), respectively, refer to 5n o

= —1 and —1.4 with too large
a deviation 65n'(r'= 1)= —6.26 and 55n'(r'= 1)=+5.41. The
curve (1) is defined for the correct value of
(5n&2)*(r'=0) = —1.208975 which ensures a regular behavior
of the potential well at this sonic point with an authorized devi-
ation 55n '(1)=5 X 10

following implication:

i55n'(r'=A)i »10 = lim 5n'(r')= oo

as shown by Fig. 1. This figure exhibits the physical
divergences of the potential well (in the case d, =2) in the
vicinity of r'=A=1 when the condition (19) is not
satisfied (dashed lines}. On the contrary, for the accurate
values ($0I)' and (5noi ) verifying (19), the density func-
tion 5n'(r') regularly reaches the sonic point with a devi-
ation b,5n'(A) ( 10 (solid line). At the locus r'=A, the
constraint (I}',) 5n'(A)=0 has been imposed on a test
function to avoid a numerical singularity.

We have plotted in Figs. 2(a), 2(b), and 2(c) the local-
ized solutions which respectively correspond to a subson-
ic (A = 12.5), a "trans-sonic" (A = 1), and finally a super-
sonic behavior (A=O) of the two modes. Here, the
dashed-line curves refer to the first mode, while solid
lines indicate the second one. As predicted by our former
theoretical results, the scalar model contains two local-
ized solutions whose first one has always a maximum at
the center r'=0, whereas the second one tends to be pro-
jected onto the first mode as A goes to zero ( V»1). In
all cases, the variational principle t}S'1'BR0=0 gives
reasonably good estimations since we have from (31) the

TABLE I. Boundary values of fields (Po, ),(gozl aud (fizioi)* (5zioz) defined at the origin r'=0
for various collapse velocities at d, =2 and 1. Such origin conditions correspond to two localized self-
similar solutions for each space dimension.

A=c/V

12.5
1

0
0

dc

624.5
7.196
7.279
5.057 17

(5noI )

—4.18
—3.64201
—3.3455
—2.4654

(0oz)'

0.15
13.8301
13.0075
14.5282

(5n o2 )*

0.134
—1.208 975
—1.2997
—1.2602
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maximum coordinates:

(Ro)+(A=12.5)=-7.2

and

(R o ) (A=12.5) =(Ro ) (A=0) =(Ro )+(A=O) =0,
which have to be compared with the numerical results
[(Ro)+(A=12.5)]„„=—6 and [(Ro) (A=12.5)]„„
= [(R0 ) (A=0)]„„=[(R o )+(A =0)]„„=0.On the

E 5,
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E 30

25 ~

20—

15—

10—

\
\

I

\

\
I

\
1

'i

\
\

\
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E
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hn'

E 4

(b)
hn' -3

FIG. 3. Three different stages of a collapsing evolution,
namely, for subsonic ( A = 12.5, dashed line), "trans-sonic"
(A=1, dash-dotted line), and supersonic (A=O, solid line) col-
lapse velocities describing the regular behavior of (a) mode I; (b)
mode II.

I
I-2— I

I
I

I
I

I
I3 I

/

hn'-4

f 4

( I I

(c)

other hand, in order to avoid making the rhs of (1 lb)—
the ponderomotive term —too large as compared with
A 5'(5n') in the left-hand side (lhs) of (1 lb) as A tends
to infinity (the subsonic limit), it is convenient to intro-
duce the formal rescaling E'~A'~ E' in system (11). In
that case, this latter substitution makes it possible to deal
without any loss of generality with the equation set (8}ex-
pressed in reduced units c =1. Under these conditions,
Figs. 3(a) and 3(b) show three stages of self-similar behav-
iors of the two separated modes defined for different
values of V, namely, V=0.08 (dashed lines), V= 1 (dash-
dotted lines), and V~ ~ (solid lines).

I
I—2 I

I

I
I3 I

/
\

hn' 4

FIG. 2. Two localized modes I and II (respectively plotted in

dashed and solid lines) illustrating self-similar solutions E'(r')
and 5n '( r') with (a) subsonic collapse velocity {A = 12.5;
V=0.08c); (b) "trans-sonic" velocity (A=1; V=c); (c) super-
sonic collapse velocity (A=O; V »c).

IU. ANISOTROPIC SOLUTIONS
OF A LANGMUIR COLLAPSE

While isotropic axisymmetric solutions of system (4) al-
low one to describe various phenomena such as self-
focusing processes, in particular, in nonlinear optics,
the exact solutions of the original Zakharov equations (1)
are not spherically symmetric, as shown in Refs. 2 and
12. Though the quantity

~
VN~ has a maximum in the

center r=0 as in the case of a scalar collapse, the Lang-
muir collapse has necessarily a dipolar character; in cy-
lindrical symmetry on (r, z) is then axially symmetric
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E 5 instead of m =2). The numerical solutions of such a criti-
cal collapse are very similar to those obtained in the case
of a two-dimensional one. As an example, we have illus-
trated the supersonic behavior of these latter in Fig. 4,
where, for the two localized modes, one can observe the
positive contributions of the density functions (the so-
called "lips" ) at r'~ CD, as predicted by its asymptotic
definition (14b), namely, lim„. „5n'(r') =P o/(r') &0.

I
l «LI MT e'w 4 4 ~ k~~

V. CONCLUSION

I
I
I2 I

n

FIG. 4. Supersonic self-similar solutions (A=0) defined for
d, = 1; this field configuration simulates the two localized modes
(dashed line for mode I, solid line for mode II) of a critical
Langmuir collapse.

around the z axis and the potential 4(r, z) is antisym-
metric as follows:

4=40+4~r +, 5n =5no+5n&r +
with

(35)

4(r, —z)= 4(r, z) . —

It is thus useful to integrate the peculiar case for which
one sets d =d, = 1 and m = 1 (in this case, one no longer
has m =2/d, ) and a=0 in Eqs. (11), because a two-
dimensional asymmetric Langmuir collapse can behave in
a way that is very similar to a scalar one-dimensional col-
lapse. The coordinates r and z here denote, respectively,
the radial and the axial components of an ellipsoidal cavi-
ton depicted in plane geometry. As shown by many nu-
merical experiments, ' ' ' a Langmuir caviton becomes
asymptotically Hat along the privileged z-axial direction,
so that a critical collapse may be modeled by a scalar
model by expanding various quantities around r=0 in the
following way:

We have shown that at critical dimension, the scalar
modelization of a spherically symmetric collapse, which
in several aspects can be regarded as the most appropri-
ate to describe a Langmuir collapse, admits self-similar
solutions, with arbitrary supersonic collapse velocities,
unlike the Uectorial case whose self-similar behavior is
limited by a critical contraction velocity V V„;,=0.14c,
corresponding to the subsonic regime. It has been analyt-
ically and numerically proved that the field distributions
are continuous at the sonic point r'=A provided the con-
straint given by Eq. (19) on the potential well at this point
be satisfied. Thus a critical wave collapse described by
the scalar model is always self-similarly realized and as
the control parameter Vis increased from zero to infinity,
its two localized scalar modes merge together until reach-
ing a maximum of the fields in the center of the caviton,
where collapse can occur for very large values of V.
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APPENDIX

In this appendix, we present the connection between
the Lagrangian density (24) and Eqs. (8). By using a vari-
ational principle with respect to the various fields
E', U', 5n' appearing in the functional (24), one obtains in
particular Eq. (8b) that may be directly deduced from a
combination of the two following ion-density equations:

T

= ~
a' = ~

a'
4, -=a @o(z), 5n, =-a 5no(z),

az2
'

BZ2
V 1+r', U' = ~Z'~'+5n ',~ a = ~ 2

Br' (A 1 )

where a (&1 is here defined as the ratio of the caviton
thickness g, (0) over its radial size g„(0). ' Substituting
(35) under the linut a ~0 together with E =B@o(z)/Bz
into system (1) leads to the one-dimensional problem (11).
Thus a two-dimensional Langmuir collapse can be de-
scribed by a scalar critical collapse with d, =l at the
zeroth order in the a expansions (35). To solve the
trans-sonic problem, it is then convenient to take the gen-
eral relation (19) into account with d, = 1 and an anoma-
lous value for m (let us recall that the relation d, =2/m is
here assumed to be no longer satisfied since one has m = 1

8, pl 8, 8
V 2+r', 5n'=c —, , r', U',

Br' r' Br' Br' (A2)

1E'~ —E',
A

with A=c/V.

(A3)

where Eq. (Al) corresponds to the transformed Eq. (22)
under the substitution (7). We will also notice that one
may easily pass from Eqs. (8) to (11)by simply transform-
ing E' in the Lagrangian density (24) according to
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