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LAsNEx simulations of the classical and laser-driven Rayleigh-Taylor instability
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We present the results of two-dimensional LAsNEx simulations of the classical and laser-driven

Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid

problems agree closely with the exact analytic expressions. We illustrate in several examples how

perturbations feed through from one interface to another. For targets driven by a 4-pm laser at

I =2X10' W/cm' our growth rates are 40-80% of the classical case rates for wavelengths be-

tween 5 and 100 pm. We find that radiation transport has a stabilizing effect on the Rayleigh-
Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experi-
ment is also presented.

I. INTRODUCTION

In this paper we present the results of two-dimensional
LASNFx (Ref. 1) simulations of the Rayleigh-Taylor (RT)
instability, first in the classical case where the accelera-
tion is provided by a pressure gradient, and second in the
laser-driven case where the pressure is provided by abla-
tion. The first case was carried out to check the perfor-
mance of the code on classical two-and three-fluid prob-
lems for which exact analytic answers are well known,
and to illustrate feedthrough of perturbations from one
interface to another. The second case was simulated be-
cause exact results are not available and there has been
some controversy ' over how much the ablation process
stabilizes the RT instability. The numerous checks and
test problems described in this paper give us confidence
in our results, which are all in the linear or weakly non-
linear regime. We find that LASNEx reproduces the
correct analytic growth rates and eigenfunctions for clas-
sical linear problems, including feedthrough of perturba-
tions from one interface to another. For laser-driven
plastic targets at an intensity of 2X10' W/cm we find
growth rates that are 40—80% of the classical case rates
which is consistent with more recent calculations. We
have already pointed out that the analytic work on
density-gradient stabilization of Emery, Dahlburg, and
Gardner in Ref. 3 is in error. The simulations reported
here suggest that density-gradient stabilization may play
a more important role at high laser intensities (I—10'
W/cm ) where the effect of radiation transport is most
important and leads to longer density gradients.

At lower intensities (I —10' W/cm ) where experi-
mental results are available, our code simulations sug-
gest little stabilization, with the growth rates being
within 90—100% of y,~„„-„&. This is not consistent with
the large stabilization seen in the experiments, although
several caveats are given in Ref. 7 and the experimental
results must be taken with caution. We present the simu-
lation of a perturbation with a square-wave pattern as
was the case in the experimental targets, and our results
suggest that mass transfer, which is the hallmark of the

RT instability, may be hampered in square as opposed to
sinusoidal perturbations. We should also point out that
other experiments are in progress and that a definitive
answer is not yet at hand.

In Sec. II we present our classical problems. In Sec.
III we present our laser-driven problems with I=2 X 10'
W/cm, and in Sec. IV we consider other intensities.
Concluding remarks are given in Sec. V.

II. CLASSICAL RT PROBLEMS

A. N=2

Two fluids of densities 1 and 10 g/cm, each 500 pm
thick, are set in motion with a constant acceleration g
directed from the lighter toward the heavier fluid. We
use an ideal equation of state (EOS) with an adiabatic in-
dex of 10 to suppress compressible effects, and turn off
electron and ion conduction. The acceleration is generat-
ed by a pressure gradient to give g = 100 p,m/ns .
Sinusoidal perturbations of amplitude g and wavelength
A, are initialized at the interface between the two fluids.
The classical result predicts that in the linear regime
(t) ((A, ) g grows exponentially in time with a growth rate

y given by

y„„„„,=&2m. Ag /A, ,

where the Atwood numberA =(ph„„„—p~;sh, )/
(ph„„„+p„sh,) =9/11 for the nominal problem described
above.

Exponential growth was seen in all cases. An example
is shown in Fig. 1(a). We considered A, =25, 50, 100, and
200 pm. The corresponding classical growth rates are
4.5, 3.2, 2.3, and 1.6 ns ', respectively. The growth rates
agreed with y,~„„„&to within a few percent. The eigen-
modes, i.e., perturbation amplitude versus position
throughout the two fluids, also agree with the classical
expression [an example is shown in Fig. 1(b)]. We
checked our computed growth rates against Eq. (1) by
varying 3, g, and A, independently, and obtained good
agreement in all cases. For example, we verified that the
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time evolution of 4pr for two problems, one in which g
was doubled and another in which A, was halved, agreed
with each other.

A large number of tests were carried out to check that
variations in parameters other than the physical parame-
ters A, g, and A, do not acct the growth rate: (a) increas-
ing both densities by a factor of 2; (b) increasing or de-

creasing the initial amplitude go by factors of 10 or 100;
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FIG. 1. (a) Evolution of hpr as a function of time for the
classical two-fluid case 3 and three-fluid cases B, C, and D. We
define b,pr as the diff'erence of fp dr taken at the maximum and

the minimum of the perturbation [for two incompressible fluids

bpr =2q(p, —p2)]. Interfaces have initial perturbations of
0

A, = 100 pm and go= 1 A. (b) Perturbation amplitude vs position
after 6 ns. The perturbations die off exponentially in the two
outer fluids and are a linear combination of e — in the rniddle

layer (Ref. 10).

(c) changing the adiabatic index from its nominal value of
10 to —', or 20—the growth rates and eigenmodes are not
affected as long as g is kept constant and no shocks are
introduced; (d) simulating half of a wavelength or a full
wavelength gives the same y; (e) the same ) is obtained
running LASNEx fully Lagrangian or semi-Eulerian where
rezoning is done only in the transverse direction; and
finally (f) the zoning has a relatively small effect on these
linear RT problems —we obtained 78% of Eq. (1) with
our crudest zoning (8 X 50 mesh lines, i.e., resolving a full

wavelength by eight transverse zones and the two fluids

by 25 longitudinal zones each). With the code's artificial
viscosity turned off, the growth rate increased to 87% of
the classical rate in this crudest zoning scheme. We ob-
tained 96% of Eq. (1) with a 40X 200 mesh, and most of
the tests were carried out on a 20X 100 mesh, giving 92%
of the classical rate. When the two fluids are allowed to
"slide" freely along their common interface, the rate in-
creases to —100% of the classical rate.

B.N=3

Three-fluid problems were set up by "inserting" a 50-
pm-thick fluid layer of density p;dd~, between the two
original fluids. We ran most problems with perturbations
of the same wavelength and amplitude at both interfaces,
so that the initial hpr perturbation is the same for the
two-fluid as for the three-fluid problems. In Fig. 1 we
compare the two- and three-fluid problems for

p, dd~,
=

—,'&10, &10, and 2&10 g/cm . The two-fluid

case A shown in Fig. 1 grows the fastest, and case C
(p;dd„=&10) grows the slowest. A few years ago we
proved' that the growth is slowest when

p,dd„=+ph„„„p~;sz, and Fig. 1 shows that very clearly.
The growth rate agrees with the analytical expressions
given in Ref. 10: there are two y's that give 1.77 and 1.84
ns ' for this specific case (g=100 pm/ns, t;dd~, =50
pm, A, =100 pm, p&/p2=p&/p3=1/v 10). LAsNEx gives
1.7 ns ' on a 20X112 mesh and 1.8 ns ' on a 40X225
mesh. A close inspection of the eigenmodes, a snapshot
of which is given in Fig. 1(b), shows how the perturbation
evolves slightly faster on the lighter side even though the
Atwood number is the same on both sides. This is a
characteristic of the slightly faster growing eigenmode.

If we start with a perturbation at only one interface, we
find that the other interface soon develops its own pertur-
bation, which then evolves in time. This is the
phenomenon of feedthrough" shown in Fig. 2, where we
start with a perturbation only at the inner surface (be-
tween p =p,dd„and p = 10 g/cm ). The outer surface
(between p=p, dd&, and p= 1 g/cm3), which starts per-
fectly smooth, develops a perturbation of its own by t = 1

ns that is caused by feedthrough of the perturbation from
the inner to the outer surface. Conversely, perturbations
can feedthrough from the outer to the inner surface also.

In Fig. 2(a) g~„, is always less than g;„„,„because
when p, dd&, =&10 g/cm the Atwood numbers are the
same at both interfaces and q,„„,does not overtake q,„„,„.
In Fig. 2(b), where p;dd&, =5 g/cm, we see that q,„„,
(again induced by feedthrough) overtakes g;„„,„by t =4.5



4946 KARNIG 0 MIKAELIAN

E

1Q 3

10-'

10-a

10

10-5

10

I I I I I I I

inearlaser with intensity increasingdriven by a —,'-pm aser wi

ns andfrom 0 to 2X10 cmW/ between t =0 and 2 ns, an
A h k wave breaks throughheld constannt thereafter. A s oc wa

hich the compressed partf'1 st ta lr tio o
side b —1 ns, after w ic e c

f
1

'
1 t

r et moves at a fair y cons a
m/ns, the same as in ourabout 100 pm n

bations are expected to
grow e

' . B t=5 ns the target burns
t=2 and 5 ns pertur a ions

grow exponentially in time. By t= n
through.

f our LASNEx problems with per-We initialize most o
'

ns on the backside of the target, i.e., e
r. h h k wave breaks throughr. As the s oc wav

chan es phase, as expec ep g
ov RM} instable sty. e

in the RM instability per se, u in
bl t' n front that are seededtion of perturrbations at the ablation ron
k

'
t the front, much theby feedthroug h from the backsi e to e

b'lit as discussed above.

in time at the a a
'

lation surface, whic is uns a
f the computationalhows a few snapshots o eFigure 3 show

lf f avelength withmesh where we simsimulated ha o a w
at the ablations the erturbation grows a e

tes d
'

fact feedthroughtes the roblem an in ap
is now in e oth posite direction, from t e a a i

ho tth 1 1 t'o
m Fi . 3 that t e sinuso'

B Fourier transforming

'
n is maintained throug out e

ar roblem. y ou
'

the shape oe of the perturbations we ave trac e
1 i.e., the imposed signal at thattion of the fundamental, i.e., t e impo

32 4.Q 4.8 5.6 6.4
I

0 0.8 1.6 2.4
t (ns)

2.8 nS
j 3.0ns i

'
n of the erturbation amplitudes at the two

11 1 fthree-Quid problem. Initia y on yt f of
with =10 ' cm. The perturbation ee s

h f '
(b) hto the other interface and grows there, as er in

3

3.3 AS 3.5ns
,

'

hat the Atwood number at thens. The reason clearly is that t e w

( =—') is now larger than inner

ter surface, starting wit no pe
h f ho sa erturbationt a gr
d h

'
1g;„„„and overtakes

' .s it. In other wor s, e
acted as a seed for theturbation at eth inner surface has acte as a se

outer surface.

III. LASER DRIVEN RT PROBLEMS

T instability in laser-driven targetso simulate the RT ins a i

and ion conduction, laser ray tra
realistic EOS etc. The target is a 25-pm-t ic

of a A, =20-pm problem at four differentp
laser is directed vertically down. e ve

) Q 1 }1 lf 1 t}lip20 m (10 pm. ny a
simulated. The initial amplitude was 10 A on t e ac

—10 m at the ablation surface.final amplitude is — pm a



42 LASNEx SIMULATIONS OF THE CLASSICAL AND LASER-. . . 4947

specific wavelength, as well as the higher harmonics of
shorter wavelength generated by and amplified in the
code. We did this for both the classical and laser-driven
problems. The harmonics are several orders of magni-
tude smaller than the fundamental, except when the
problem approaches the nonlinear regime, where the
wave form is expected to deviate from a sinewave and
eventually develop into a bubble and a spike. Unfor-
tunately, a fully Lagrangian or semi-Eulerian code
bowties when strong shears develop in the flow, and we
stop the problems at that time. (A bowtie is a quadrila-
teral zone in which two opposite sides intersect each oth-
er. ) By initializing the problem with a small 7)o we delay
bowtying so that by the time it occurs the amplitude has
grown by several (typically 3—4) orders of magnitude
from which a growth rate can be extracted.

In Fig. 4 we plot Apr versus time for a X=50-pm prob-
lem with go=100 A and 10 A, confirming the expected
behavior of the perturbations: Apr remains constant at
its initial value of 2gopcH (pcH = 1 g/cm ) until the shock
breaks through, and after t=2 ns, when the laser has
reached full power, Apr grows exponentially in time at a
rate which is independent of go. The third curve shown
in Fig. 4 is from a problem which we ran in one dimen-
sion until t =1.5 ns and then linked to a two-dimensional
(2D) problem with a perturbation at the ablation front
near peak density. Such a comparison was made by Em-
ery and co-workers who routinely link their problems,
and they obtained a rather poor agreement between these
two methods. As Fig. 4 shows, a fairly unique growth
rate can be extracted from our three curves: 2.7 ns ', or

~classical '

We can show that the exponential growth of Apr and
the growth of the perturbation at the ablation surface are

very closely related (experimentally, b,pr is measured).
Unlike the classical problems where the interface between
two fluids is well defined and its distortion can be studied
experimentally, the ablation surface changes continuous-
ly as the laser penetrates the target and ablates the sur-
face (along with its deformation). To show graphically
the correlation between hpr and q,»„,,„,we plot in Fig. 5

bpr and q,„l 2 as functions of time. g,„/&2 is the
largest root-mean-square variation in the surface position
within the problem. Initially it is found at the backside
of the target, as we mentioned above. It changes phase,
as expected, when the shock wave breaks out of the back-
side of the target at t = 1 ns, and subsequently the pertur-
bation feeds through to the ablation surface. By t =2 ns
the maximum perturbation is at the ablation surface and
grows exponentially in time with a growth rate y very
close to that given by the hpr curve, viz. , 2.7 ns '. Note
that shock breakout reverses the phase of the amplitude
at the backside (sharp dip at t =0.9 ns), but this is not
enough to reverse Apr, which decreases by about a factor
of 2 but does not go through zero (see Fig. 5).

In addition to varying rio and linking (Fig. 4), we did a
zoning study by doubling the number of transverse or
longitudinal zones by factors of 2. We also compared La-
grangian and semi-Eulerian runs of the same problem.
The growth rates agreed to within —10% or less.

In Fig. 6 we summarize our results for A. =5, 10, 20, 50,
and 100 pm. They are, respectively, 40%, 66%, 71%,
77%, and 80% of the classical rates. The reduction from
the classical rate can be described as a combination of
density gradients and ablative stabilization, an example of
which is shown in Fig. 6. We emphasize, however, that
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FIG. 4. Evolution of hpr as a function of time for a laser-
driven problem with 1=50 pm. The two curves starting from

0 0
t =0 had go=10 A and 100 A on the backside. These perturba-
tions change phase when the shock breaks through. The curve
starting at t = 1.5 ns was linked from a 1D problem.

FIG. 5. Evolution of Apr and maximum root-mean-square
deviation g,„/&2 for a laser-driven target starting with a per-

0
turbation of X=50 pm, go=10 A on the backside. The sharp
dip in amplitude signals shockwave breakout, after which the
perturbation feeds through to the ablation surface and grows ex-
ponentially in time {see also Fig. 3).
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locity, respectively. Other fits are also possible.

such a description is not unique and our computed
growth rates are not suScient to identify the exact form
of the dispersion relation —we found other fits that were
equally acceptable.

In contrast to the classical problems which took less
than 1 h of computing time on a CRAY-1 computer, the
laser-driven problems took 4—6 h each, with 90% of the
time going to radiation transport which was done by 20-
group diffusion. The A, =5 pm computation was an ex-
ception in that is took 24 h because we increased the zon-

ing to resolve such very short wavelengths and maintain
a reasonable aspect ratio (

—1) between zones. About 20
transverse zones per wavelength and 300 1ongitudinal
zones were used. A three-temperature treatment of this
problem takes only 1.5 h, but overestimates the growth
rate. A three-temperature treatment appears acceptable
at longer wavelengths such as 50 pm. A two-temperature
treatment generally overestimates y at practically all

wavelengths though, of course, it requires the least
amount of computer time.
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linearly from 0 to 2 X 10' W/cm, between t =0 and 2 ns,
and is held constant thereafter. The target thickness was
increased to 100 pm to prevent early burnthrough. A
shock wave breaks through the backside by —1 ns, after
which the compressed part of the target moves at a fairly
constant acceleration of about 200 pm/ns (twice as large
as the previous acceleration).

The 2D problems were linked from a 1D run at t =1.5
ns, much the way we described in Sec. III. This saved
computer time and also eliminated any numerical noise
associated with the (stronger) shock wave breakout.

In a preliminary run without radiation transport we
found that the growth rates were somewhat below classi-
cal (60—80% of classical for A, between 25 and 100 pm).
A completely different picture emerged when radiation
was allowed to couple to matter and was transported,
again using 20-group diffusion. The early-time "growth
rates" were not too dissimilar, but as the laser intensity
reached its peak and stayed at 2X10'5 W/cm2, the
growth was substantially reduced. In Fig. 7 we show the
Apr evolution of the X=50-pm perturbation with and
without radiation transport. The suppression of the per-
turbation was even more prominent for A, =25 pm.

Since the perturbation does not grow exponentially in
time, we cannot describe it with a constant rate y (one
can do so in the absence of radiation transport —see Fig.
7). Note that the acceleration of the target is fairly con-
stant and cannot be the source for the time variation seen
in y. We believe the correct explanation is found by
studying the density profiles with and without radiation
transport, as we do in Fig. 8. In Fig. 8(a), without trans-
port, the density profiles are sharp, i.e., the density gra-
dient scales L are very small (of the order of 1 pm) and
remain so through times. In Fig. 8(b), with transport, the

IV. OTHER INTENSITIES

In this section we consider laser-driven problems at
two other intensities: I—10' W/cm and I—10'
W/em . The first was carried out to see if the stabiliza-
tion improved at higher intensities (it did), and the
second was carried out to see if we could explain the
strong suppression or lack of growth in the experiments
of Ref. 7 (we could not).

The higher intensity laser drive was patterned after the
drive discussed in Sec. III, except that the peak was 10
times higher: a —,'-pm laser whose intensity increases

10
0

t (ns)

FIG. 7. Evolution of Apr for a target driven by a —'-pm laser
0

at I=2X10" %/cm, X=50 pm, and go=10 A. The two
curves show the results of LASNEX simulations with and without
radiation transport.
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kgAP
Ak+P (2)

where P-1/L is the inverse of the density-gradient scale
length. Equation (2) is a good approximation to an ex-
ponential density profile p=pzep", which can be solved
exactly (see Ref. 6 for a comparison). Clearly, Eq. (2)
with a time-dependent P is in good qualitative agreement
with Fig. 7, and also explains why the shorter wavelength
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(a)

4.8

ch
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density profiles are much smoother, the density gradient
scales are longer, and, perhaps more importantly, they
get longer with time. This offers an explanation for the
slowing down of the perturbation growth seen in Fig. 7:
L (t) gets longer with time.

In Ref. 6 we suggested a simplified version for density-
gradient stabilization:

1/2

(A, =25 IMm) exhibits even more stabilization.
We now turn to our lowest-intensity runs. As we men-

tioned earlier, these were done primarily to understand
the experimental results of Grun et al. The drive was
taken to be a 1.06-pm laser pulse, Gaussian in shape with
a full width at half-maximum of 4.5 ns and I,„=4X10'
W/cm, reached at t =5 ns. The targets are 10-pm-thick
plastic foils. The characteristics of bulk, i.e., 1D motion,
agree with the data of Ref. 7: shock breakout at t =2 ns
and peak acceleration of 8.5 pm/ns2 at t =5 ns.

The actual shape of the perturbation was square in the
experiments. However, we first simulated a number of
sinusoidal perturbations, which are the eigenmodes for
the linear problems. We used A, =50—150 turn (the experi-
mental range for square grooves) and, as usual, a variety
of initial amplitudes (go=10 A to 1 pm) to verify lineari-
ty.

We found that in all cases the growth rates are within
90—100% of the classical rates (there is some time depen-
dence because of the Gaussian shape of the laser pulse,
hence the acceleration is not constant). These are larger
than the experimental results which lie between 0 and
70% of the classical rate. Turning radiation transfer on
or off in the code made little difference, as would be ex-
pected at such low intensities. Finally, we attempted the
simulation of a square groove 100 pm wide and 2 pm in
depth, which is shown in Fig. 9 (the perturbation was
again initiated at the back side of the target). Severe
bowtying after t =5 ns, the last snapshot shown in Fig. 9,
terminated this run (sinusoidal perturbations could run
past 8 ns with a shape not too different from the one
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FIG. 8. Snapshots of the density profile for the simulations
described in Fig. 7. Curves labeled a, b, c, and d are taken at
t =2.5, 3.0, 3.5, and 4.0 ns, respectively.

4. 5ns 4. 7ns 5.0ns

FIG. 9. Simulation of an experiment (Ref. 7) with a 2-pm-
deep square perturbation on the backside of a 10-pm-thick tar-
get. The drive peaks at 5 ns. The vertical and horizontal dis-
tances are 15 and 100 p,m, respectively.
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shown in Fig. 3). We can, however, make some tentative
conclusions based on this run. The hpr difference be-
tween the center and the edge of the groove is less than
the corresponding difference in the sinusoidal case
(bpr-0. 3 mglcm by t-5 ns), but not by much. The
last snapshot in Fig. 9 suggests that mass transfer be-
tween the thick and the thin parts of the target is inhibit-
ed (compare with Fig. 3), with the sharp edge of the
square acting as a bottleneck. This edge was simulated as
a linear drop spread over 5pm, i.e., the target thickness
varied from 9 to 11 pm over a lateral distance of 5 pm,
which is probably wider than the experimental edge (a
sharper edge in the simulation caused even earlier bowty-
ing). Figure 9 suggests that, unlike a sinusoidal perturba-
tion where mass is continually transferred from the thin
to the thick part of the target, a square groove with a
large initial depth (20% of the thickness in this case)
causes the two parts to slide past each other without
much lateral mass transfer across the sharp edge. In a
sense the amplitude of the perturbation increases as the
two parts separate, but without mass transfer there is lit-
tle difference in Apr, the experimentally measured quanti-
ty.

Simulation of such square grooves taxes the code ex-
cessively and requires numerous rezonings to continue
the problem. It might be easier to carry out experiments
with sinusoidal perturbations. If the lack of growth at,
say, X=50 pm continues to hold up in sinusoidal pertur-
bations, then we must look elsewhere for the source of
that stability. Some suggestions are given in Ref. 7.

V. REMARKS AND CONCLUSIONS

The primary purpose of the research reported here was
to find out if and how the RT instability at an ablating
surface differs from the RT instability at a classical inter-
face between two fluids. Our main result is given in Fig.
6, showing that the ablative growth rates are somewhat
smaller than the classical rates.

All the computations reported here were done on the
two-dimensional hydrocode LAsNEx. To check the code
an extensive series of classical tests were carried out,
summarized briefly in Sec. II. Our results compared very
favorably with the classical expression, Eq. (1), and we
checked that spurious effects were not misleading us.
Checking for zoning effects was particularly important
because they would carry over to the ablative case.

In addition, we carried out a number of three-fluid
simulations. Of particular importance here is the stabil-
izing effect of the middle layer, and the problem of

feedthrough from one interface to another. The problem
is not purely academic because in inertial confinement
fusion (ICF) capsules the outer surface of the shell(s) may
be polished off or otherwise treated for smoothness, but
the inner surface(s) are not available for such post-
fabrication treatment. In our classical as well as laser-
driven problems we saw how perturbations feed through
from the inside to the outside and seed fast-growing per-
turbations there.

Our ablative growth rates are only 40—80%%uo of the
classical rates, and they agree with more extensive and
recent calculations, but of course not with the earlier re-
ports of strongly inhibited growth (those reports were
the primary motivation for undertaking this research).
The implication for ICF is that shells must now be thick-
er than previously thought and therefore a higher energy
drive is needed to implode them. The stabilizing effect of
radiation coupling at high intensities (see Sec. IV) may be
useful if ways can be found to increase shell density and
hence its effectiveness as a tamper during the final stages
of the implosion. Note that laser intensities much higher
than —10' W/cm are not viable because of the various
plasma instabilities that set in at higher intensities. '

Other approaches may be found to minimize the RT in-
stability in directly driven capsules. Needless to say, the
task will be easier if the experimental results continue to
show much suppressed growth, in which case we need to
identify the source of such stability to take full advantage
of it in ICF capsule design.

Finally, we note that new 3D codes and preliminary re-
sults in the turbulent regime have been recently report-
ed. ' We have presented' a model for turbulent energy
at an ablating surface, expected to be less than the tur-
bulent energy at a classical surface. Because of the com-
p1exity and the extensive computational time needed to
perform realistic simulations, we believe that such efforts
must be augmented by analytic approaches and by cross
checks among codes and experiments, the ultimate pur-
pose being to understand and predict mix and to find
means of suppressing it in ICF capsules.
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