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Incoherence introduced in two-path experiments by interactions with scatterers in thermal equi-

librium is examined with an energy-momentum approach previously used for the Mossbauer efFect.

Oscillations in intensity with variations in the magnetic flux are shown to be insensitive to random

phase changes in the individual scattering amplitudes. Inelastic incoherent scattering may be

suppressed when there are a large number of scatterers. A small loss of phase coherence negligible
in cases of practical interest can occur even via elastic scattering, which does not perturb the envi-

ronment. The temperature dependence of the loss of interference, analogous to the Debye-Wailer
factor, may be tested by experiment.

I. INTRODUCTION: A SIMPLE SINGLE SCATTERER
MODEL

The suppression of quantum interference due to the
coupling of the interfering degrees of freedom to many
other degrees of freedom has always been a central sub-
ject in the understanding of quantum phenomena. ' Its
importance has recently been emphasized in experiments
on mesoscopic systems. While most treatments of these
effects use a space-time description, the equivalent com-
plementary energy-momentum description often provides
useful insight from a different point of view. We ex-
amine the possible use of this approach here.

Consider one of the Aharonov-Bohm experiments in
which an electron can go in two paths around a ring
which contains magnetic flux, and the relative phase of
the two waves depends upon the flux. Let a scatterer
like an impurity ion bound in some potential in a state of
thermal equilibrium be put at one point on the ring so
that one path goes by the scatterer and the other does
not. The scattering process will be either elastic —like
the Mossbauer effect —with the scatterer remaining in
the same bound state after the scattering, or inelastic,
with a change in the state of the scatterer. The elastical-
ly scattered wave is coherent with the wave going
through the other path and shows the Aharonov-Bohm
coherence and interference effects. The inelastically scat-
tered component is not coherent and does not interfere
with the component from the other path. This can be
seen formally by expanding the total electron-scatterer
wave function in a factorized basis and integrating over
the scatterer variables. The elastic amplitudes all have
the scatterer in the same state. Thus the integral over the
scatterer variables in the interference term between any
two elastic amplitudes gives a factor of unity. The in-
terference terms between an elastic and an inelastic am-
plitude vanish when integrated over the scatterer vari-
ables, because the two amplitudes have the scatterer in
two different orthogonal states.

The intensity of the scattered wave in a transition
where the scatterer goes from an initial state li & to a final
state

lj & is proportional to the square of a matrix element
which depends upon the momentum transfer and thus on
the angular distribution of the scattered wave,

f =
l &j le'" "li & l' (la)

where 5k is the momentum transfer during the scattering
process and x is the distance between the position of the
scatterer and its equilibrium position. This factor arises
in many different areas of physics in which there is a
momentum transfer to bound systems. The matrix ele-
ment (la) is often called a form factor or structure factor.
The square is called the Debye-Wailer or Mossbauer frac-
tion factor. The form factor satisfies the well-known sum
rule

(lb)

(2a)

where P, denotes the probability that the scatterer is in
the state li &.

The scattered intensity is the product of three factors, the
Debye-Wailer factor f;, a factor depending upon the
details of the scattering process from a free scatterer, and
a phase-space factor. The basic physical assumption un-

derlying this factorization is the impulse approxima-
tion, ' in which the bound-state scatterer wave function
is expanded in a plane-wave basis and the scattering
operator is applied separately to each plane-wave com-
ponent. This assumption is trivially valid in all scattering
processes treated in Born approximation. A general
derivation is given in the Appendix below.

The Debye-Wailer factor for the case of a single elastic
scattering from a single impurity subject to thermal and
zero-point oscillations in the lattice is given by Eq. (la) as
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In the Mossbauer effect all the dependence of the
scattering cross section on the properties of the bound
state is given by the Debye-Wailer factor (1). The y-ray
energy is very much larger than the excitation energies in
the scatterer system; thus the phase-space factor is the
same for all relevant inelastic final states to an excellent
approximation and the dependence of the scattering from
a free scatterer on the velocity of the scatterer is negligi-
ble over the domain of zero-point and thermal velocities.
For this case the sum rule (lb) shows that the Debye-
Waller factors (la) gives the normalized relative probabil-
ities for each transition, f, is equal to the elastic scatter-
ing probability and a difference between f, and unity in-
dicates the presence of incoherent inelastic scattering.

This probability interpretation breaks down if there is
a significant energy loss in the dominant inelastic transi-
tions. The phase-space factor is then lower for these in-
elastic transitions. The Debye-Wailer factor f, still ap-
pears in the expression for the elastic cross section, but
no longer as a normalized probability. It is only a lower
bound for the elastic scattering probability and the
difference between f ~

and unity no longer indicates the
presence of incoherent inelastic scattering. This is easily
seen in the extreme case where the excitation energy of
the first excited state of the scatterer is greater than the
electron energy. Inelastic scattering is energetically for-
bidden; all scattering is elastic and coherent, but the form
factor appears in the elastic cross section and has a very
simple physical interpretation. It is the Fourier trans-
form of the probability density of the thermal and zero-
point motion. It expresses the fact that the scatterer ap-
pears as a finite density distribution at energies small
compared to the characteristic energy of its motion. '

Evaluating the matrix elements in (2a) and summing
over the probability distribution P, give the well-known
result,

has also been pointed out" with reference to a discussion
of dephasing of weak localization by zero-point motion. '

That this issue is irrelevant to the Aharonov-Bohm
phases in the experiments under discussion is shown in
detail below.

II. A MODEL WITH A LARGE NUMBER
OF SCATTERERS

A. The case of a single elastic amplitude

=exp —g 5k, (x, ) (3)

where F denotes the overall Debye-Wailer factor for elas-
tic scattering from a large number of impurities and 5k,
and (x; ) are the momentum transfer and the mean-
square deviation in the direction of 5k; of the oscillating
scatterer for each individual scattering process labeled by
the index i. This overall factor can be expressed in terms
of lattice properties which depend upon the temperature,
phonon variables, Debye temperatures, etc. For a system
in thermal equilibrium at a temperature T

We now generalize this model by introducing a large
number of scatters. We first consider the case where the
elastic scattering amplitude can be expressed as a single
amplitude which is proportional to the product of the
square roots of all the Debye-Wailer factors, one for each
scatterer. For the case where the elastic scattering inten-
sity is appreciable, each of these factors must be individu-
ally close to unity and the approximation (2b) can be
used. The intensity of the observed elastic scattering
then depends upon the product of a large number of
Debye-Wailer factors.

F= P f; =exp —g ( (5k, x; ) )

—((6k x) )
z ~=e =e (2b) F( T) =exp — coth

R fico

Aco
(4a)

where (x s& ) is the mean-square deviation in the direc-
tion of 5k of the oscillating scatterer from its equilibrium
position averaged over the distribution.

This result is valid in nearly all cases of practical in-
terest. It has two independent derivations (1) as an ex-
act result for the case of a harmonic oscillator at zero
temperature, i.e., for a scatterer wave function with a
Gaussian probability density in configuration space; (2) as
a lowest-order result in powers of the momentum transfer
6k for the general case, as can be seen by expanding the
exponential in Eq. (la). It is better than a lowest-order
approximation for most reasonable potentials, since the
difference between the higher-order terms in the expan-
sions (la) and (2b) vanishes for a Gaussian density and
therefore depends only on the difference between the ac-
tual density and a Gaussian. In cases of practical in-
terest, there are many scatterers, and the elastic ampli-
tude involves the product of many Debye-Wailer factors.
The total elastic amplitude will therefore be appreciable
only when all these factors are reasonably close to unity
and the lowest-order result is a very good approximation.

The role of the Debye-Wailer factor in phase coherence

where co is an average characteristic frequency for the
motion of the scatterer in the lattice,

R = g fi 5k; /2M, (4b)

(x, &= coth
Acu

2M' 2kT
(4c)

For the case where the motion of the scatterers is de-
scribed by a Debye model of the crystal, the expression
(3) is a well-defined known function of the temperature
and of the Debye temperature 0 of the crystal. At zero
temperature the Debye model gives

F(0)=exp 3R
2kO

Thus in a model where the destruction of interference by
inelastic scattering comes from systems of oscillators in

where M is the mass of the scatterer, and we have used
the value for a single harmonic oscillator in thermal equi-
librium,
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B. The case of many incoherent elastic amplitudes

A more realistic model considers contributing ampli-
tudes, each describing a transition in which the electron
interacts differently with some set of a large number of
scatterers; e.g. , a multiple-scattering expansion in which
there is a single-scattering amplitude, a double-scattering
amplitude, etc. We need not specify the details of these
individual amplitudes, but simply label them as a„where
1 n ~ N, for the set of elastic amplitudes which traverse
paths going around the magnetic Aux in one direction
and bn where 1 ~ n ~ Nb for the set going around in the
other direction. We assume that N, and Nb are both
large and that all these amplitudes have random phases
with respect to one another, except that the relative
phase between any a amplitude and any bn amplitude
depends upon the magnetic fiux 4 in the ring in a manner
independent of m and n. The amplitudes thus satisfy the
conditions

~man mn

b'b„=B „,
a 4 b &q(4)G

m n mn

(6a)

(6b)

(6c)

where the phase q(4) depends upon the magnetic flux 4,
while A „,B „,and 6 „depend upon m and n and are
independent of the magnetic flux. Thus the intensity ob-
served in the experiment depends upon the magnetic flux
only via the interference between the a and b amplitudes,

I= ga + gb„

ga ~+ gb„'

+ y (
iY/(e)G + —i7)(e)G 4

)mn mn
m, n

thermal equilibrium the signal should be suppressed by
something like a Debye-Wailer factor [(4) and (5)] which
should show a characteristic temperature dependence,
possibly related to known bulk properties of the solid,
such as a Debye temperature. This could be tested by ex-
periment.

The evaluation of the Debye-Wailer factors (3) depends
upon the details of the scattering processes and the indi-
vidual momentum transfers 5k;. One can envision many
different scattering contributions, each defined by a
different set of values of 5k; and each having a different
Debye-Wailer factor. Although a quantitative treatment
for this case is not feasible, qualitative factors indicate
that the process may be dominated by very low values of
5k, ; i.e., forward scattering, where the Debye-Wailer fac-
tors are close to unity. The forward-scattered intensity
can also be enhanced by coherence factors of the order
N" ' where N is the number of scat terers. ' ' Such
coherence effects have been observed in y-ray scattering
by ions in crystals' ' and should also be present in elec-
tron scattering. This coherence enhancement reduces the
loss due to inelastic processes by the N" factor which
may be appreciable.

g Ib'
I
=N& Ib'I &, (8b)

pa =N(Ia
I )+[N(N 1)—]' (Ia ), (8c)

g b„=N( Ib I ) +[N(N l)]'—& Ib
I

&' (8d)

m, n

(8e)

where (IaI), (Ib ), (Ia ), (Ib I), and (IabI) denote
average values of these quantities. Let us define a phase 0
by the relation

QG „—= QG „e
m, n m, n

Then to leading order in N,

I=N& Ia'I &+N& IaI &'+N& Ib'I &+N& IbI &'

+2N( Iab
I )cos[g(4) —8] .

Thus the elastic contribution to the intensity contains a
term oscillating with the magnetic flux of the same order
as the term independent of the flux, and this result is in-
dependent of any effects in the solid which might change
the relative phases of the individual a and b„ampli-
tudes.

III. POSSIBLE LOSS OF COHERENCE IN ELASTIC
SCATTERING

So far we have considered all elastic scattered ampli-
tudes as coherent, and have not examined the possibility
of a loss of phase coherence in elastic scattering. This ap-
proach is justified when the scatterers are in a pure quan-
tum state. However, if the scatterers are described by a
statistical mixture; e.g. , an ensemble in thermal equilibri-
um, there can be a loss of phase coherence. One indica-
tion of such a loss is the dependence of the expression (9)
upon the particular quantum state of the scatterer system
via a parameter 8. If the scatterer is described by a sta-
tistical mixture of states, each having a different value of
0, the oscillations of the intensity with magnetic Aux can
average out, and the effect can be lost.

This effect can be seen in a simple model with a single
scatterer in the a path and no scatterer in the b path. Let
the scatterer be an impurity atom with energy levels such
that the Debye-Wailer factor is unity for the ground state
and zero for all other states. This could be achieved if
the potential consists of a strong attraction with very
short-range and a much weaker long-range attraction
such that there is only one bound state in the short-range
potential. Let P denote the probability that the scatterer
is in the ground state, and let ao and a], denote, respec-
tively the contributions to the amplitude when the elec-
tron goes through path a without being scattered and
with being scattered by the scatterer. Then the intensity

Let us assume that X, =N& —=N &&1. Then if all the
terms in the various summations have random phases,

(8a)
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(loa)

a "b=e'"~~'la ble (10c)

observed in the experiment is given by modifying Eqs.
(7)—(9) to give an incoherent sum of the intensities corre-
sponding to the case where the scatterer is in its ground
state and when it is not in its ground state:

I= lao l
+ lbl +P la, l +2Pg laoa, leos(8O —8, )

+2laob lcos[g(4) —
8O]

+2P l a, b
l cos[71(4&) —8,],

where 80 and 8, are defined by the analog of Eq. (8d)

aob =e'"' 'laoble

A certain loss of coherence is seen in the appearance of
two periodic functions with a phase difference between
them.

We now generalize this treatment to the case of an ar-
bitrary number of identical scatterers in thermal equilib-
rium each having a probability denoted by P, for being in
a state denoted by i which has a Debye-Wailer factor
denoted by f;, but only single-scattering amplitudes are
considered. We generalize Eqs. (6) and (7) by redefining
the amplitudes a„, and b as reduced amplitudes without
the Debye-Wailer factors, so that the scattering ampli-
tude from scatterer m in the state i is given by Qf;a
For this case Eq. (7) becomes

I= QP, f, ga + gb„+ QP, P, (f,f, )'
nm

X g ( A „+A '„+B „+B*„)+g (e'~ 'G „+e '"' 'G*„) (1 la)

This can be rewritten

m+n m, n

I=(f & ga + gb„
m n

+(&f ) g (A „+A'„+B „+B'„)+g (
'"' 'G „+ ' G"„) (1 lb)

m&n m, n

where (f ) and (&f ) denote the thermal averages of
these factors.

The interference terms including the interesting term
which depends upon the magnetic flux are seen to be
suppressed by a factor (v'f ) while the direct terms are
suppressed by the factor (f ) . Since 0 ~ f, ~ 1,

(f) (&f )' (f)' (12a)

) ( f ) ) (f ) (12b)

That the interference terms are suppressed by a larger
factor than the direct terms shows the loss of coherence
or the introduction of phase uncertainty as a result of the
coupling of the scatterers to a heat bath which keeps the
scatterers in thermal equilibrium. However, the ratio of
the suppression factors of the interference and direct
terms is less than the suppression factor for the total elas-
tic scattering contribution. This suggests that the effect
of loss of phase coherence in elastic scattering cannot be
serious in any practical experiment. The loss of phase
coherence is appreciable only when the ela"tic amplitude
itself is very small, having been drastically reduced by the
Debye-Wailer factor.

Although the restriction to only single-scattering con-
tributions is an oversimplification, the model seems to
show a general property that the loss of phase coherence
arises from incoherent excitations of states with Debye-
Waller factors. Since these factors are always less than
one, the total elastic scattering from such states is also
correspondingly reduced and the phase coherence loss is
appreciable only when the elastic scattered intensity is re-

duced by a large factor.
The result (12) has a simple physical interpretation.

The density matrix of a thermal distribution has no off-

diagonal matrix elements in a basis of energy eigenstates.
Thus the result of any experiment is thus a weighted
average of the results of experiments performed with
pure energy eigenstates. From Eq. (9) we see that the
only dependence of the result on the particular energy
eigenstate is in the Debye-Wailer factors. Thus coher-
ence can be lost by thermal averaging only when the
states dominating the thermal distribution have
significantly different Debye-Wailer factors; i.e., have fac-
tors much smaller than unity. This case is not expected
to be important in practical experiments.
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APPENDIX: GENERAL DERIVATION OF THE FORM
FACTOR (1)

The transition matrix element for the scattering of an
electron of momentum p, and a momentum transfer 6k
by a scatterer which g&&es from an initial state li ) to a
final state lj ) can be simplified by expanding the states
li ) and lj ) in a plane-wave basis denoted by l k )

(j lT(p„bk)li ) = g (j k')(k'lT(p„5k)lk)(kli ) .

(Ala)
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where t(p„k5,k) denotes the transition matrix element
in the plane-wave basis. The conventional result with the
Debye-Wailer factor (1) now follows from the additional
assumption that the dependence of t(p„k5,k) on k can
be neglected over the domain of k relevant to the bound-
state wave function of the scatterer. In this approxima-
tion the summation over k by closure gives

(jlT(p„5k)li&=t), (p„5k)(jle' ""Ii&, (A2)

where tz(p„5k) denotes the value cf t(p„k, 5k) at some
appropriate value of k.

We now examine the validity of the two approxima-
tions used. Neglecting the dependence of t(p„k, 5k) on
k appears to be a reasonable, since t(p„k, 5k) is expected
to be a smoothly varying function of the relative velocity
between the electron and the scatterer

1 m Pe m k'Pe
v„,=—(p, — k) = 1—

m ' M m M p,
(A3a)

and the ratio of the electron mass m to the scatterer mass
M is a very small number. Thus

dt(p„k5k, ) dt(p„k5k) , dv„„
dk dv„) dk

~ k p, dt(p„k, 5k)

M kp, dp,
(A3b)

We now examine the assumption of momentum conser-
vation. If the electron-scatterer interaction conserves
momentum, the T matrix also conserves momentum in
Born approximation and the impulse approximation
(Alb) is valid. In higher orders in the perturbation series,
the propagators of intermediate bound states of the
scatterer do not conserve momentum, and there can be
corrections to the simple Debye-Wailer factor (1).

Most treatments of these phenomena do not go beyond
the Born approximation. We shall now see in a simple

If momentum conservation is assumed in the scattering
process, only the terms in which k'=k+5k are nonvan-

ishing and

& jl &(p„5k)li &
= g & jlk+5k&t(p„k, 5k)

k

x (k+5kle' "'"Ik&(kli &, (Alb)

example how a higher-order correction does not affect
our conclusions in cases where the relevant Debye-Wailer
factors are not very different from unity. Consider the
generalization of Eq. (Al) to treat an elastic double-
scattering contribution with momentum transfers 5k
and 5kt) from an initial scatterer state Ii & with energy E;
via an intermediate state

Ij & with energy E, ;

t' )(p„5k,5kt))
&il~("(p„5k., 5k&)lt &

= g
J

x (t le' "Ij &

x(jle' (A4)

where x denotes the component of x in any given direc-
tion; e.g. , the direction of k . Since I(i Ix, Ij & is posi-
tive definite we can obtain an inequality by replacing the
energy denominators by their minimum value and sum-

ming by closure,

I&ilr("(p„5k., 5k, )li &I

t (2)(p„5k., 5k, )' 5k. 5k, (x'. &,
1 i

(A5b)

where E, is the energy of the state closest in energy to
the state Ii & that contributes to the sum (A4). We can
obtain some estimate of the importance of higher-order
terms in the expansion in 5k and 5kt) from two simple
cases where the sum in (A4) can be evaluated by closure.

If the sum is dominated by a single intermediate state,

where the reduced t matrix t' '(p„5k, 5kt)) depends only
on the momenta and is independent of the properties of
the scatterer bound states. For simplicity we assume that
the system is isotropic and discard all anisotropic contri-
butions to the expression (A4).

In cases where the Debye-Wailer factors are not too
small, this expression can be approximated by the leading
term in the expansion in powers of 5k and 5k&',

t")(p„5k.,5k, )

& il z'2)(p„5k., 5k, ) li & = y
jwi j i

x5k. 5kt)l& ilx. l j & I',
(A5a)

t' '( 5k, 5k')
(t Iz'"(p„5k., 5k, ) li &

=
J I

2t' (p 5k 5kt))
p

—[(s) ) +(sky) ](» )I&
5k 5kt)( x & e

E —EJ t

(A6)

teak .x
If the scatterer is bound in a harmonic potential, and the exponential e can be expanded, keeping only the lead-

ing term,

jI & = i 5k. .& ( x
Ij &

=5k. . =
& i

I
5k p Ij &

&il H p Ij& . E
(A7)
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where 0 denotes the oscillator Hamiltonian of the scatterer p its momentum and m its angular frequency. Substituting
(A7) into (A4), summing over the intermediate state by closure and summing over all values of the two momentum
transfers gives

5k, hkp

&i
~

T' '(p„5k, 5ktt)~i) =
5k,

Skag

t' '(p„5k, 5k'}
&i ~[5k p, e s ]~i)

MAL@

t ' )(p„5k,5ktt)5k 5kt)

Sk,5k' Mco

5k. 5k,&x'. &&t ~e' (ASa)

where &x ) =(2n+1)ttl/2Mco. The matrix element on the right-hand side is just a Debye-Wailer factor for the
momentum transfer 5k&. The approximation (A7) which is good only to first order in 5k but good to all others in 5ktt
loses the symmetry between the two momentum transfers of the original expression (A4). We can restore this symmetry
by adding an additional Debye-Wailer factor for the momentum transfer 5k which is of higher order in 5k . Evaluat-
ing the matrix element then gives

&ilT'"(,5k, 5k )= y " " ~ 5k 5k &x
5k, 5k' (2n +1)fico5k, 5k'

(ASb)

Note that this result (ASb) reduces to the previous case
(A6} for n =0, where only a single intermediate state con-
tributes to the sum (A4), and both (A6) and (AS) reduce
to (A5b) to lowest order in 5k and 5k&.

The first factor on the right-hand sides of Eqs. (A4),
(A6), and (AS) involves ratios of some energy characteris-
tic of the scattering interaction to the energy-level spac-
ing of the scatterer. These factors are small if the Born
approximation is valid for the scattering. The remaining
factors include Debye-Wailer factors which are of order
unity if the probability for single elastic scattering is ap-
preciable. Thus corrections to the Born approximation

contain the same Debye-Wailer factors for somewhat
different momentum transfers, but do not qualitatively
change the previous result that the simple description
with elastic coherence is valid whenever the relevant
Debye-Wailer factors are of order unity; i.e., the proba-
bility of inelastic scattering is not large. The entire
second-order contribution is seen to be small if the
Debye-Wailer factor is near unity, even if the first factor
is comparable to the first-order result (A3) and the Born
approximation breaks down. The expressions (A5) —(AS)
all contain the small factor 5k 5ktt&x ).
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