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Binding in pair potentials of liquid simple metals from nonlocality in electronic kinetic energy
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An explicit expression is obtained for the pair potential P(R) in liquid simple metals from low-

order density-gradient theory when the superposition of single-center displaced charges is em-

ployed. Corrections are thereby explicitly exhibited to the local Thomas-Fermi result PrF(R } from
second- and fourth-order inhomogeneity corrections ET2(R ) and ET4(R ) to the Thomas-Fermi
electronic kinetic-energy change 6TzF (R ). The important point to emphasize is that, in each order,
the potential V(R /2) and displaced charge h(R /2) of a single screened ion at the midpoint of the
metallic bond completely determines the pair potential in the density-gradient theory. These ap-
proximate results are illustrated by explicit calculations on liquid Na and liquid Be near their
respective freezing points. While the pair potentials obtained by including AT2{R)+ET4{R)are

major improvements over the linear response result, the remaining nonlocal corrections to the total
kinetic-energy change AT(R) are substantial, as again demonstrated by explicit results for Na and

Be. The importance of further study of a possible functional relation between hT(R) —hTzFG(R)
and the potential V(R /2) at the midpoint of the metallic bond is finally emphasized.

I. INTRODUCTION

with q
' the TF screening length and kf the Fermi wave

number, that the two-center potential is the superposition

~= ~&+ ~2 (1.2)

of the screened potentials centered on the charges 1 and
2, and the total displaced charge h=n —n was similarly
obtained by superposition of one-center densities. This
superposition property lies at the heart also of the present
study. The result for the pair interaction P(R) for the
two test charges Z at separation R was

ZP(R)= exp( —qR) .
R

This is simply the interaction of the second charge Z with
the screened potential V(R)= —Zexp( —qR)/R of the
first charge.

Corless and March subsequently generalized the linear
TF theory' and demonstrated that the pair interaction
P(R) was still

P(R) = —ZV(R), (1.4)

The interaction between a pair of test charges Ze in a
metallic medium was studied by means of the linearized
Thomas-Fermi (TF) method, the latter being the
forerunner of density-functional theory, in the early work
of Alfred and March. ' Their result was, from the linear
equation for the screened potential V,

4kf
V2V=q2V, q2

mao

P(R)=P„,(R)+P„„,(R) . (1.6)

Anticipating one of the important results to be present-
ed in the present paper, let us merely note at this stage
from Eqs. (1.3) and (1.4) that, with V(R )= —Z exp( —qR ) /R,

but that the screened potential V(R) must now be calcu-
lated from the equation

2kf V(r')j,(2kf ~r —r'~ )dr'
V V(r)= (1.5)

7T' r —r'

j,(x)=(sinx —x cosx )/x . This reduces to Eq. (1.1) only
for such slowly varying potentials that V(r') inside the
integral in Eq. (1.5) can be replaced by V(r), an approxi-
mation which is too primitive to apply to liquid simple
metals. Unlike the semiclassical theory based on Eq.
(1.1), Eq. (1.5) leads to binding. The It-space solution is
equivalent to the use of the Lindhard dielectric function,
discussed also by Langer and Vosko.

In the present paper, generalization of the above re-
sults will be affected in a number of directions, namely,
by the following.

(i) Corrections of the TF result (1.1) by adding
the lowest-order density-gradient correction tz
=(1,/8)(Vn ) /n to the TF kinetic-energy density. The
next-order correction t4 will also be included.

(ii) Incorporating exchange and correlation, albeit ap-
proximately, into the theory at local-density level.

(iii) Demonstrating that same incorporation of single-
center nonlinearity can be made in the local-density func-
tional theory.

(iv) Interpretation of P(R) in all cases as a sum of local
plus nonlocal pieces,
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(R)=-R R
loc 4

(1.7)

II. PAIR POTENTIALS IN LINEAR RESPONSE
THEORY WITH LOWEST-ORDER

GRADIENT CORRECTION

Following the pioneering work of von Weizacker, one
writes the most elementary nonlocal correction to the TF
kinetic-energy density in terms of the electron density
n (r) in the form

(Vtt )
TFG TF 8 n

(2.1)

where tT„=—,', (3~ ) 'n . Then, for von Weizsacker's
choice of I,, namely unity, March and Murray converted
the resulting density-functional Euler equation to a
Schrodinger equation by the substitution

n 1/2 (2.2)

This formula will be shown to be more general than the
linear TF method from which it has just been derived. It
evidently expresses the local form of the pair potential
solely in terms of the electrostatic potential of one
screened charge at the midpoint of the metallic bond.
Further, Eq. (1.7) shows that the local form is always
repulsive, which is related to what is nowadays referred
to as Teller's theorem, namely, that binding is not possi-
ble in a local (TF) theory.

Given the result (1.7), it is then obvious that the
difficult part of the problem of constructing realistic pair
potentials P(R) is to judiciously approximate the nonlo-
cal contribution in Eq. (1.6) and the main aim of the
present work is to discuss this point.

Therefore, to gain initial insight, let us turn immediate-
ly to correct the linear TF theory based on Eqs.
(1.1)—(1.3) by adding the lowest-order gradient correction
to the TF kinetic-energy density.

III. TOTAL SCREENING CHARGE Q (R ) RELATED
TO PAIR INTERACTION f(R ) IN LINEAR

RESPONSE THEORY

The definition of the total screening charge Q(R) is
evidently given in terms of the displaced charge b(r) by

Q (r) = f "b(r)4mr dr .
0

(3.1)

From Poisson's equation, the potential V, (r) treated by
the valence displaced charge b(r) around say Na+ or
Be++ in their own liquid metals is related to Q (r) since

P=((}LR=—ZV, V and 5 are intrinsic single-center quan-
tities, independent of any two-center model. It is surpris-
ing to see that Eq. (2.3), a relation between these quanti-
ties, anticipates on the physical picture of binding, where
the pair interaction is determined by properties at the
midpoint of the bond.

The important points to stress about the nonlocal con-
tribution proportional to R [h(R /2)] to the pair poten-
tial (2.3) are the following.

(i) It is always attractive; i.e., the nonlocality in the ki-
netic energy tends to bind the charged centers, though
for some choices of A, it is easy to show from the Appen-
dix that the pair potential remains repulsive everywhere.

(ii) As with the local contribution to PT„o(R) in Eq.
(1.7), the nonlocal contribution R[b,(Rl2)] depends
only on a property at the midpoint of the metallic bond.

Naturally, one must not assume that Eq. (2.3) is pre-
cise: it is valid within the lowest-order density-gradient
treatment. Much of the ensuing discussion will focus on
the way Eq. (2.3), plus its extension to include the next-
order density-gradient correction T4 to the kinetic energy
(see Sec. IV below), can most fruitfully be converted into
realistic information about the true pair interaction P(R )

in liquid simple metals. With this as the main focal
point, it is worthwhile next to introduce the total valence
screening charge, Q (R ) say, inside a sphere of radius R,
and to relate this quantity to P(R).

After linearization of the Euler equation, they were able
to solve it self-consistently together with the Poisson
equation. As shown in the Appendix, a completely gen-
eral solution can be obtained for arbitrary values of A, ,
and the final result is

dV,
p2 dT dp

and hence

4~5(r)— (3.2)

(R)=—R V
R

TFG 4 2

where

2

y2
2

(2.3)

Q(r)
2

(3.3)

But as already discussed in Sec. I, in linear response
theory P(r)= ZV(r) and h—ence the turning points of
the pair potential occur at positions R„i.e., where

b, =n(r) —n

is the displaced electron density and y is given by

(2.4)
dV dV,
df' dl'

Z=——=0
2

(3.4)

(2.5)

The derivation of Eq. (2.3) is carried out in reciprocal
space, using the Fourier transform of the response func-
tion associated with the kinetic-energy functional in Eq.
(2.1).

In the linear response formalism invoked above,

or

Q(R, )=Z . (3.5)

Evidently a necessary, though not sufficient, condition
for Eq. (3.5) to be satisfied is that b, (r) oscillates. To illus-
trate Eq. (3.5), we have plotted in Fig. 1 Q(R) versus R
for liquid Na near freezing using our earlier results. 9 Evi-



4886 F. PERROT AND N. H. MARCH 42

I.20 ten formally as

G'[6+n ] G—'[n ]= —V(r), (4.1)

I. I 0

I.OO

0.90
5

R kI. U. j
IO

FIG. 1. Total valence screening charge Q(R) defined in Eq.
(3.1), for liquid Na near freezing. Q(R) determines the pair in-

teraction Q(R) through Eq. (3.6) in linear response theory Ar. -

row denotes position of principal minimum in "exact" pair po-
tential P.

Z 1V= ——+—eh
r r

(4.2)

where the e is simply shorthand for the convolution
product.

A. Two-center energy calculation with superposition density

where 6' is simply a shorthand notation for the function-
al derivative 5G/5n(r), which in TF theory is simply
proportional to [n (r)] . Here, the functional G
=T+E„, includes exchange and correlation effects in
the local density approximation. V is the usual electro-
static potential created by the displaced charge A(r),
namely,

dently since the positions of the insertions of Q(R)/Z
with unity do not agree with the turning points of the
pair potential (()(R) that we calculated for liquid Na near
freezing, linear response theory must be transcended to
faithfully reproduce the Na pair potential. Therefore, we
shall return to the TF theory corrected by low-order gra-
dients in a more general discussion of pair binding in
liquid metals below. However, to summarize the results
of this section; when linear response theory is valid (i.e.,
when P = /La = —Z V) the total valence screening charge

Q (R ) uniquely determines the pair potential P(R ),
defined to tend to zero at infinite separation, by integra-
tion of the equation obtained from Eqs. (3.3) and (3.4),
namely,

1 1 Z—eA ——'b '—eA +
r ' R

(4.3)

Let us consider two ions at positions R;,R, and, let us
also write b, ; =b(r —R; ) and bG(b, +n)=G[h+n]
—G[n]. Then for the pair interaction ()) between ions i
and j we have

P=bG[b, , +b., +n] AG[b, ;+n] —KG[5 +n]—

Z Z+ ——6+
r rJ

+ —'(b +b, )
—e(b, +b )
1

dg(R) Q(R) —Z
R2

where Z is the valence.

IV. SUPERPOSITION OF SINGLE-ION
DENSITIES AND THE PAIR INTERACTION
FROM DENSITY-FUNCTIONAL THEORY

(3.6)
Next it is to be noted from Eq. (2) that

ZV(R)= — +f, b(r')dr'
Z' Z

r' —R
Z2

+ f „h(r"+R)dr"
R r"
Z2 Z+
R r,

(4.4)

Having noted the inadequacy of the linear response
formula for (t in liquid Na near freezing, we now return
to a more fundamental discussion, still based on density-
functional theory (DFT), of the basis of Eq. (2.3), which
so far has been derived within the framework of linear
response theory for the single-ion screening.

Here, we still retain the superposition of single-ion dis-
placed charge, but focus then directly on the pair prob-
lem, utilizing the symmetry about a plane through the
midpoint of the metallic bond, and perpendicular to that
bond. By doing so, we shall provide a more fundamental
derivation of Eq. (2.3), and shall also be able to extend it
to include the higher density-gradient correction T4, to
be defined precisely below, to the kinetic energy in local
TF theory.

As before, let us start from the DFT equation for a sin-
gle ion in the electron gas of density n. This can be writ-

Utilizing Eq. (4.4) in Eq. (4.3), one finds

Q=AG[b, , +b, +n ] bG[h, +n] AG[A,—+n]—
Z 1 1+ ——.6 +—'b, —eh +—'6 .—eA —ZV(R),I 2 l J 2 J I

J

(4.5)

where the dot means the integral of the product of func-
tions through the whole of space; technically the scalar
product.

It is important to note at this point that, if one works
with the exact density of the "molecule, " written as
6,. +6 +p, instead of with 6, +6 in the superposition
approximation, then Eq. (4.5) is correct to O(p ), due to
the stationary properties of the energy functional. Let us
now turn to examine several particular cases.
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1. Linear response solid

This means 5; «n and 5 «n everywhere. Then one
can expand the functionals in the form

KG[5, +b, +n] —AG[b, , +n] —EG[b,, +n]
=(b, , +b, } G'[n] —b, , G'[n] —AJG'[n]

+O(h;, 6;h, bj. )=0

in first order. Thus Eq. (4.5) then yields

(4.6)

P= —ZV(R)+ (4.7)

—,
' G"[n ] [(b, ; + b, )

—b, ; —b,
~ ]+—,

' b, ; V~ + —,
' b, V;,

but from Eq. (4.1)

b, , G"[n]=—V;,

so that the second-order terms vanish to leave the result

where the ellipsis represents second-order terms, which
are

FIG. 2. This defines coordinate system used in calculating
pair interaction in local density theory, plus low-order gra-
dients, via surface integrals over the plane X, utilizing the sym-

metry of the homonuclear pair of ions.

V V;
p+ZV(R) = V.o — ' +Z5(r —R, )

4~

pLR= —ZV(R)+O(b ) . (4.8) +2 V—
V, o — ' +Z5(r —R } . (4.11)

4m

2. Local density approximation for 6
Because R is outside II, , the term in V, o Z5(r —R } does
not contribute. Therefore

Inside the ion core i, 6, is much larger than n so that
expansion in b, is not permissible. But in this same re-
gion, b, is very small compared with 5, +n so that one
can expand in A. . Next, let us exploit the symmetry
about the midpoint of the metallic bond in Eq. (4.5) and
replace the integration over the whole of space by twice
the integration in the half-space 0, containing i, as in

Fig. 2.
Then we have

P+ZV(R) =2(b G[h;+ 5 +n ] b, G[b, , +n ]—
—bG[h +n])+b;o V~+5,io V, . (4.9)

P+ZV(R )= V(r —R, )o Z5(r —R; )

+ ( $,.0 p V. —V.o p' p;. },
4m.

and one is left with an integral over the plane X:

f (V;V„V —VJV„V;)ds .
4~ r

On this plane one evidently has

V;=V

~nV ~nVJ

Using the coordinate system of Fig. 2,

(4.12)

(4.13)

(4.14)

In Eq. (4.9), the volume integrals appearing in b, G are
now restricted to the half-space Q;. Now given the as-
sumption that 6 is local, one can expand for small 6 in
the half-space 0;, to obtain

((}+ZV(R)=2Ib, oG'[b, ;+n] b~o G'[n]+O(b~) . I—

+6;~ V +5-o V;

P(R)= f dp 2mp2V(r) — cos8
a dV

4m 0 dr
(4.15)

oo dVR R RP(R)= — dr V(r) —=—V
8/2 dr 2 4 2

+O(b, ) .

But cos8=R /2r, r =R l4+p or r dr =p dp and hence
2

= —6 o V, +b,io VJ+O(b, ~) (4.10)
(4.16}

with the help of Eq. (4.1). It is worth noting that Eq.
(4.10) retains the full nonlocality of G around the center i
and thus transcends linear response. The integrals in the
scalar products of Eq. (4.10) are now restricted to the
half-space 0; and are denoted by an open circle o. In the
second step of Eq. (4.10), use has again been made of the
basic Euler Eq. (4.1). Using 7 V= —4m Ib, —Z5] one
finds

Thus, in a considerably more general framework than
that employed in Secs. I and II, one regains the local
form given in Eqs. (1.7) and (2.3). This establishes then
on a more general basis the use of the form (1.7} for the
first contribution to the pair potential in Eq. (1.6).

Having discussed fully the local contribution to P(R)
in Eq. (1.6), it is natural to examine further the status of
the nonlocal form in Eq. (2.3). This is done immediately
below.
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B. Gradient corrections to P~„(R)

T2= — dr .
(Vn)

8 n
(4.17)

In the pair interaction one then obtains the additional
contribution

T2[I5,, +I5 +n] —T2[h, +n] —T2[h, +n] .

Expanding for small b, the previous line reads

Following the procedure of Sec. II, let us consider next
the case when 6 is given by the usual local leading term,
plus a gradient correction

first integral along with those involving VA in the
second. The first integral may be transformed using
Green's theorem into a volume integral and a surface in-
tegral. The volume integral is exactly that which is re-
quired in —6 o V,-. The surface integral contributes to
the pair interaction for

2d LaeL
' Vlek j ds 2d V la( ' dsAJ 4 22

on X, 6, =6, and V„6 = —V„A;, so that one gets im-

mediately

2d f V(b, V[—b, ]) ds (4.23)

or
2V~, V~,——f '

b, dr ——f ' dr+0(A )" (~, +n)' ' 8 n ~, +n J 2d ——b 6 2nr dr-oo R
R/2 dr 2r

(4.24)

~v~, ~' x v'~,
hdr —— b, drn(a+n)' ' 4 nS+n '

= 277 dR ( 62[6]) & =g /2 ~ (4.25)

In Eq. (4.25) we have used

+ f— ' ads.
4 a+n (4. 18) 2V b —', (Vh)

&[~]=
(Is.+ n )'" (~+ n )'" (4.26)

The first two terms are those which appear in the DFT
Euler equation together with the TF term, to give—Q oP'.

J
The remainder of Eq. (4.18) can be handled again as for

the local case, to allow its evaluation on the plane X in
Fig. 2. The outcome of this is to recover precisely the
nonlocal term proportional to R [b,(R/2)] in Eq. (2.3),
which is thereby established on a more general footing.

VA- —.
l'

One has for P[b, ]

(4.27)

Let us recall that the above derivation implies
6, =b &&n on the X plane, though not everywhere. Let
us now assume that the gradient of the density 5 may be
measured in terms of a characteristic length 1:

I. Inclusion offourth order gradien-t correction 9'[b, ]-
I2(g+ —)5/3

9g2
8

I2(g+ —)8/3

b.T~=T4[b,;+I5,, +n] —T4[b;+n], (4.19)

when expanded to first order in 5, . T4[h +n ] does con-
tribute to first order in 6 . Writing

d— 1 1

54o (2~)'" (4.20)

the form of t4 calculated by Hodges' then yields

Q74 =2d
2V2S (-', )(V~, )'

dr
(a, +n)'" (S, +n)'"

( —')v 6
+2d f (Vb, Vh, )

(6 +n)
( —', )(V&, )'

+ „dr, (4.21)
(a, +n)""

where terms in V' 6 have been collected together in the

It will prove important in calculating the well depth of
the first minima in the pair potentials of liquid Na (Ref.
9) and Be near freezing to include in the nonlocal part of
P(R) in Eq. (1.6) the next-order gradient correction t4 for
the kinetic energy.

Following the previous approach, the contribution is
that which is associated with the surface integrals in

2 5 91—
12 —5/3 3 8

so that, if one works to lower order in 5/n, one is left
with

2V' b
(4.28)

and Eq. (4.25) becomes

4trdR

(
—)5/3 r =R/2 (4.29)

which, according to Eq. (4.23), is of the form

9g3

~ (n )'/3i' (4.30)

The integrand is of order [1/(n )
/ ]6 /1 to be com-

pared with order [1/(n) ](b, /I ) for the previous con-
tribution in Eq. (4.25). Equation (4.30) is of higher order

Let us return to the second integral in Eq. (4.22). It gives
a surface contribution which is

f
—9V2a, 4(VS, )'

2d 6 — + Vh, .ds
( Z + —

)
8/3

( Z + —)11/3
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in A jn so that we can neglect it. Finally, the contribu-
tion of fourth-order gradients to the pair interaction is

given by Eq. (4.29) only.

2.IO

V. NUMERICAL RESULTS FOR THE GRADIENT
EXPANSION PAIR INTERACTION

IN LIQUID Na and Be

Let us first collect together the local TF plus gradient
correction contributions to the pair potential. The result
1s

2.00

R
pro(R ) = —R ' V4 2

2
R
2

2

+Yi [6V A]g yp (5.1)

where g is taken from Eq. (4.29).
We have performed the calculation of this pair poten-

tial for liquid Na and Be near freezing. Let us stress the
fact that we always use in Eq. (5.1) the V and b, provided

by the DFT calculation, '" never the potential and elec-
tron density which would result from the self-consistent
solution of the TF+gradient correction problem.

A. Pair potential for liquid Na

Figure 3 has been constructed for Na. The curve la-

beled P(R ) is our electron theory pair potential for liquid
Na near freezing. The curves labeled P~F'o and P~F'o add

T2 with A. =—,
' given by Kirznits' and T2+T4, respec-

tively, to the curve labeled PzF(R). These curves were

calculated as follows: (i) PzF(R ) from Eq. (1.7), (ii)

Pzza(R ) from Eq. (2.3), and PzF'a(R ) from Eq. (5.1).

(a.u. )

5
R (a. u.}

FIG. 4. Same as Fig. 1, but for liquid Be at a density equal to
the solid density. Arrows denote first minimum and following
maximum in "exact" pair potential P(R).

B. Pair potential for liquid Be

It seemed of interest to perform similar calculations for
the divalent liquid metal Be. First, the total valence
screening charge Q (R ) was calculated using the DFT
method. " It should be stressed that there are no adjust-

3x IO

(f) (a. u. )

io '- 2 x10

I x IQ

-3—IO 0

8
Rk. U. )

IO

FIG. 3. This shows pair potentials calculated from local den-

sity (TF) theory plus density gradient corrections T& and T4 to
kinetic energy, for liquid Na near freezing. Various curves were
obtained using Q {R)in Fig. 1 from diff'erent degrees of approxi-
mation as follows. PrF, calculated from Eq. (1.7); P~F'o from Eq.
(2.3) with A. = —,

' in which T, only is included; Pz'„'o, from Eq.
(5.1) containing both T~ and T4', PLR= —ZV; P(R) is the pair
potential obtained in our earlier work.

-3-I x IQ

I

5
R (a.u. )

FIG. 5. Same as Fig. 3 but for Be.

6
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able parameters in this calculation. The input into the
full density functional calculation of Q(R) is (a) the
atomic number, (b) the mass density at freezing, and (c)
an exchange-correlation potential.

Figure 4 shows Q(R) versus R, which yields in linear
response the pair interaction Pi a= —ZV in Fig. 5. This
is shown compared with the "exact" P(R) in the curve la-
beled P. Again Pr„(R) and Pri,"G have been constructed
from Q (R ) in Fig. 4. The agreement for the well depth is
quite comparable with that in liquid Na, The result is, at
best, semiquantitative. However, it is more apparent for
Be in Fig. 5 than for Na that the gradient expansion re-
sult is already a substantial improvement over the linear
response curve —ZV(R) around the principal minimum
of P(R).

These numerical results obviously indicate that the
remaining nonlocality in the electronic kinetic energy is
crucial to a quantitative calculation of the pair interac-
tion in simple liquid metals. The discussion of these
remaining contributions is the object of Sec. VI.

VI. REMAINING NONLOCALITY IN THE KINETIC
ENERGY CONTRIBUTION TO THE PAIR INTERACTION

In the linear response approximation, the fully nonlo-
cal kinetic energy change (plus exchange and correlation
energy change) in bringing an ionic pair together from
infinity, is given by (see Sec. IV A 1)

b,G(R)= —,'G"[n] [(6;+b,, )' b; bj]——

=G"[n] b, , b~

= —
—,'(V; b,, +V, b,;). (6.1)

This expression may also be derived from the infinite or-
der perturbation formalism of Stoddart and March, '

which gives the changes in electron density and in kinetic
energy density as

(6.2)

t —to=@A, —g n (r)V(r),1P+1
(6.3)

with V(r) the one-body potential in the Schrodinger
equation. In this theory, exchange and correlation effects
are neglected. The first-order term on the right-hand side
of Eq. (6.3) does not contribute to the integrated kinetic
energy. In linear response, the terms to be retained are
only the p = 1 terms, so that

b, T(R)= —
—,'(5, +6, ).( V, + V, )+ —,'b, , V, + —,'b, V,

= —
—,'(b, , V+6, V),

which is exactly Eq. (6.1) when exchange and correlation
effects are neglected.

That Eq. (6.1) has achieved the summation of the gra-
dient expansion of the kinetic energy terms in the pair in-
teraction to all orders is now clear by rewriting the
density-potential relation utilized in Eq. (1.5) as

V, (r)= JK(r —s)h, (s)ds (6.4)

with a similar expression for V~(r) in Eq. (6.1). Here K
is a known kernel, given in Fourier transform by Stod-
dart and March' as

where

—3 f dqexp[iq. (r —s)]
J(q, kt )

(6.5)

J(qk )= ' —+ 'k 1 k 2 q +2k
2 2q 4k2

n
q

—2kf f
(6.6)

By means of the small q expansion of J (q, k& ), one gets

(6.7)

Substitution of this result (6.7) into Eq. (6.1), together
with a similar equation for Vz(r) in terms of b,z(r) gives
back the early results of the linearized gradient expan-
sion. Unfortunately, we are not able to achieve a similar
resummation beyond the linear response approximation.
To get a better feeling of the numerical importance of the
terms beyond T4, we can display the sum of the missing
contribution as a function of R.

All the pair potentials plotted in Fig. 3 for liquid Na
and Fig. 5 for liquid Be near freezing can be regarded as
derivable from a single equation:

P(R)=bG(R) —ZV(R)+b, U, (R) . (6.8)

Then the common element, for Na, for example, is the to-
tal potential-energy change

AU(R)= —ZV(R)+b U, (R), (6.9)

which is determined solely by the total valence screening
charge Q(R), plotted in Fig. 1 for Na and Fig. 4 for Be.

Thus, the kinetic plus exchange and correlation energy
change AG(R) is solely responsible for the differences of
the various curves for $(R) in Figs. 3 and 5. We have
now extracted the fully nonlocal energy change b.G(R)
from Eq. (6.8), using P(R) and —ZV(R) already plotted
in Figs. 3 and 5, plus a calculation of b U, (R ) from

6 U, ( R ) = —,
'

( 6, V~ +b i V, ), (6.10)

which is evidently the interaction potential energy be-
tween the displaced charge around one ionic center with
the screened potential due to the other. The convolution
involved in Eq. (6.10) is readily calculated in Fourier
transform and the results are displayed for liquid Na and
Be in Figs. 6 and 7, respectively. The difference between
b, T+zo(R) and b, T(R) (equal to AGrI„'o —hG) is clearly
the remaining nonlocality in the electronic kinetic-energy
charge. Thus the difference b, T(R)—b, T~+~zo(R) can be
regarded as the effective sum of the remaining terms in
the gradient expansion beyond T2 and T4.

The remaining question is whether what is embodied in
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this difference is determined by the size and the shape of
the total screening charge Q ( R ) around the midpoint
R /2 of the metallic bond.

VII. DISCUSSION AND SUMMARY
(a.u.)

h(R)= cos(2kFR)+0 1

R R
(7.1)

The main results of the present study are the low-order
density-gradient equation (5.1) for the pair potential, and
the calculation of the fully nonlocal electronic kinetic-
energy charge b T(R) plotted in Figs. 6 and 7, for liquid
Na and Be. The comparison of Eq. (5.1) with the pair po-
tentials P(R) including the fully nonlocal kinetic energy
shows that Eq. (5.1) is not more than semiquantitative.
However, its major merit is that it focuses on the impor-
tance of the form of the total valence screening charge
Q (R) around the midpoint of the metallic bond.

We think it possible that b, T(R) b, T~„'o—(R) may also
be expressible, at least approximately, in terms of
Q(R/2) [or V(R/2) or b,(R/2)]. Our argument is the
following. The gradient expansion has dealt with the
small-q components of the pair interaction, but cannot
treat the components q -2kF. These components are re-
sponsible for the asymptotic behavior (Friedel oscilla-
tions):

5x lO

—4xlO
3 4 5

R (a. u. )

I

6

in linear response. In this asymptotic regime, the poten-
tial is

FIG. 7. Same as Fig. 6, but for Be.

V(R}= b(R)+0
k R4

1 dh
4kF' dR R/2

(a.u.)

so that it may be written as
2

V(R)=BR'. R
2

+2

(7.2}

(7.3)

suggesting that, here again, it may be expressed in terms
of b, at R/2. It is not obvious whether this argument
holds beyond the linear approximation, when a phase
shift has to be introduced into Eq. (7.1). Clearly, further
work is called for before a definitive conclusion can be
reached on this point. A convenient approach could be
the use of the formulation of P in terms of the pressure
tensor in the symmetry plane of the "molecule, " as pro-
posed by More. '"

The final remarks concern the potential interest of the
present study for the theory of bonding in free space mol-
ecules. Though, of course, a different derivation must be
found (due to the lack of uniform background density n ),
some of the present ideas should be relevant. In the case
of "molecules" in high-temperature plasmas, where
Friedel oscillations are damped by temperature effects,
the TF and low-order gradient expansion results should
become increasingly quantitative.
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From Poisson's equation, one finds the displaced charge
b, as

APPENDIX: VON WEIZSACKER'S GENERALIZATION
QF TF THEORY IN LINEAR RESPONSE

FOR ARBITRARY A, IN Eq. (2.1)

h(r)= 1

4m.r
+ — [(vb, —1)q e

2

+(v b, +1)q,e ' ] . (A6)

(2vr)' V(r) = —4~Z Ie'q'dq
kF

q +4m
7T

1 +
4k 2

1+a= —4qrZ f e'~'dq z, (Al)
a q +q +q&F

The purpose of this appendix is to effect the general
demonstration of Eq. (2.3) with arbitrary value of A, in the
first gradient correction to the TF kinetic energy. The
value X=1 corresponds to the original choice of von
Weizsacker. ' The later work of Kirznits' and subse-
quently of Jones and Young' showed that the consistent
generalization of TF theory for its range of validity of po-
tentials which vary by but a small fraction of themselves
over a characteristic de Broglie wavelength of the system
yielded the value A, =—,', used in constructing Figs. 3 and

5.
Taking the results of Jones and Young' as a con-

venient starting point, the screened ionic potential V in
linear response theory can be written in Fourier trans-
form for a general value of A, as

Using Eq. (A5) one obtains
2

r ' r
V

4 2

Z2
(v'S —1)'e "+(v'a+I)'e "

4hr

+2(b, —1)e (A7)

Thus it follows that

r rZV—(r) ——V
4 2

2

r
4m.r

2

—qor —
q& r~2

qyp(e
' +e

urer

4 2 2
Z a qoq) —qlr —qor —(qo+q) )(r/2)

r

(A8)

Similarly the nonlocal contribution to P is directly related
to

where

a = 3A

4k,' (A2)

Hence it follows that

r r
ZV(r) —— V—

4 l 2

'2
Ka r

4m.r
q+F

2

The set of the denominator a q +q +q~F may be con-
veniently classified by the parameter

where

(A 10)

5—1 4a qyF (A3)

1. 5)0

where 6, being independent of position, is not to be con-
fused with the displaced charge b, (r).

4m a nA,

qgF 4n2
(Al 1)

which agrees with Eq. (2.3) in linear response theory.

2. 6&0

The roots are ( —1 —v b, )/2a and (
—1+v b)/2a

real, negative. Let us define

Here b, = 1 —4a q~„&0 and the roots are
( —1 —iv'lAl)/2a and (

—1+iv lb, l )/2a, with the real
part negative. Let us define

1+v'a , 1 —v'Z
qo= 2 q&

=
2a 2a

(A4) 1+)v'ix) „, 1 —) v'lzl
q2 (q4 )2

2a 2a
(A12)

After a straightforward decomposition of the integrand
in Eq. (Al), one obtains the screened ionic potential V in
the form

and retain for q, and q,
* the solutions with positive real

part.
Hence the screened potential is now

Z 1 (Vb, —1) —q, r+ (Vb, +I) —q, r
V(r = ——— e '+ e

r 2 v'g v'g

(A5)

V(r)= ——— e ' +z 1 tv lkl 1 q r iv 1~1+1
e

iv'lal iv'li(
l

(A13)
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where

with

&I+ ~a~

a
(A14)

It follows that

r r
Z—V(r) —— V

4 2

2

Thus

&((9/2}
q, pe )

2

and

Z" 1 vr
e "" sin8sin(vr+8) —sin +8

sin 0 2

(A20)

—I ( |I)/2)
q, —pe

The potential becomes

r
r

2

2

Z 1 qTF 1 . vr2 2

2
sin

4m n sin 0
e Pf

(A21)

cos( 0/2) r 0
V(r)= ——e ~"' ~ '" 2cos psin —r

2r 2

i . . . 0
2i sin p sin —rv'g 2

The transformation

sin8 sin( vr +8)—sin +8 = —sin
vr . 2vr
2 2

then yields

(A22)

Writing

g . 0
p cos—=p, p sin —=v

2
'

2

(A15)
r r

ZV (r—) — V—
4 2

2
Z 1

e sin
sin2g 2

(A23)

one finds and comparison of Eqs. (A21) and (A23) leads to

Z — ~ 1V(r)= ——e "" cosvr+ sinvr (A16) r rZV(r) ——V—
4 2

2
277 —r

8 2

2

Using Poisson's equation with V in the form

Z 1V(r)= ——. sin(vr+8)e
r sin0

yields the displaced charge h(r) as

Z 1 1 qTFb(r)=- sinv re
r sin0 4~ a

(A17)

(A18)

(A24)

This is again equivalent to Eq. (2.3) in the linear response
regime.

Hence the conclusion is that both for 6)0 and b (0
in Eq. (A13), the result in linear response for the pair po-
tential P(r) is

Hence

r rV—
4 2

2
Z 1

sin
sin 8

+g —Pf
2

(A19)

r r
Q(r) = ZV (r) = ——V

4 2

2
7TA, r

2

(A25)
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