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In this paper, we study the thermodynamic properties of dense plasmas considered as high-

temperature liquid metals. The problems that have to be solved are the following: (1) calculation of
the "average" electron-density profile around an ion in the plasma, (2) determination of a self-

consistent average ionization of the plasma, (3) calculation of the pair interaction between two ions,
and (4) calculation of the total Helmholtz free energy. The first point is approximately solved in the
Mermin-Kohn-Sham (MKS) density-functional theory of thermal ensembles, for a single ion in a
spherical cavity in jellium. A prescription is then proposed for calculating the average ionization as
a function of density and temperature using the electron densities from the MKS scheme. This
prescription is shown to work well when the electron structure of the plasma is simple (i.e., when

the overlap of bound states is not too large, and when there is no resonance in the free spectrum).
The use of a superposition of single-ion densities for the total charge density of the plasma, together
with a cluster expansion of the kinetic and exchange-plus-correlation energy, leads to the definition

of the pair interaction that is readily calculable. Finally, the structural (ionic) part of the free ener-

gy is obtained from the hypernetted-chain theory of Auids.

I. INTRODUCTION

Studies of the thermodynamics of plasmas are current-
ly based almost always on the notion of pair interactions
P(R ) and pair-correlation functions g (R ). Extensive cal-
culations of the thermodynamic functions have been
made in the past, using simple model potentials, such as
bare' or screened Coulomb interactions. Self-
consistent pair potentials have also been carefully deter-
mined in the case of light, fully ionized materials, ' cov-
ering quite a wide range of densities and temperatures. It
seems now of some importance to relate these approaches
to a number of models currently used in conventional
condensed-matter physics, where much work has been
done on ion-ion interactions in metals, with application
to structures of liquid metals, alloys, impurities and va-
cancies, phonon spectra, etc. ' The aim of this paper is
to show that, in some cases, the solid- and liquid-state
models may be extended to plasmas, leading to a con-
sistent treatment of the high-temperature fluid phase.

In solid-state physics, quite accurate methods do exist
to construct pair interactions for simple metals. " ' The
case of more complex systems, such as transition metals,
is less clear: the question arises as to whether two-body
interactions are really relevant and, if they are, how to
construct them in a physically transparent way. ' '
Much less has been done in plasmas, even for systems
having a simple electronic structure. A major diSculty is
that the ionization state Z' changes with temperature
and density. The definition of Z* itself is subject to con-
troversy because this quantity is not the eigenvalue of any
operator; Z* may be in fact intuitively thought of as a
number of electrons responding to external perturbation.
Obviously, a given material is never "simple" (in the
sense of "simple metal" ) for all densities p and tempera-

tures T: there are domains of p and T where electron
states evolve continuously from bound to resonant
scattering states, ' making the definition of Z' somewhat
ambiguous (in these domains, the plasma behaves more
or less like a transition metal). Finally, there is a lack of
reference calculations and experimental information al-
lowing the test of the plasma tb(R) and g(R).

In the present work, we assume the possibility of using
the approach commonly adopted for liquid simple met-
als' at least in specific regimes of density and tempera-
tures to be defined. This approach leads to dividing the
free energy into an electronic contribution and an ionic
contribution. The electronic contribution does not de-
pend on the ionic positions and may be calculated using
"single-ion" quantities. The ionic part is the free energy
of a one-component system of ions interacting through a
screened pair potential. Such a decomposition implies
the adiabatic approximation (electronic time scale are
much smaller than ionic ones) and is straightforwardly
obtained in the weak model-potential perturbation (MPP)
theory' and the neutral-pseudoatom (NPA) theory that
does not require the fitting of parameters and provides
fully nonlinear core and valence electron densities. '

The NPA theory has been successfully applied to sim-
ple metals at zero temperature and in very small ranges
of density where Z* is well defined and constant. Here
we shall construct the NPA for finite temperatures with
the help of the Mermin-Kohn-Sham' ' equations. Us-
ing the NPA electron density, we shall compute the elec-
tronic part of the free energy and extend the calculation
of the ion-ion pair interaction P to cases of p and T
dependent ionizations. Finally, by performing a
coupling-constant integration, the ionic part of the free
energy will be calculated, leading to the total free energy
of the plasma.
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The paper is organized as follows. The main features
of the NPA theory are summarized in Sec. II where re-
sults for beryllium and aluminum metal at zero tempera-
ture and densities in the range of constant normal valence
are also shown. Section III is devoted to higher densities
on the T =0 isotherm; in this range of densities, the core
states begin to overlap, and the definition of an effective
valence Z (i.e., ionization state due to high pressure) is
proposed, as well as that of the density profile (i.e., free-
electron density) associated with it. With these quantities
the total energy of the metal is computed as a function of
the metal density p and compared with results of band
structure calculations, which provide accurate reference
energy curves E(P ). By doing so, we are able to propose
and test a definition of Z* in terms of the NPA bound
and scattering electron densities. This definition is ex-
pected to be transferable to finite temperatures since
there is no reason to believe that the delocalization of the
average electron-density profile due to temperature
behaves differently, with respect to Z*, from that due to
pressure effects. Various results relating to ionization
Z, pair interaction, and equation of state at high densi-
ties in Be and Al are shown. The range of densities that
can be dealt with in this model is discussed. Temperature
effects are treated in Sec. IV where the calculation of the
ion-ion contribution to the free energy is explicitly set
out. Numerical results are presented and discussed. Fi-
nally, concluding remarks and guidelines for future work
in the field are given in Sec. V.

II. NEUTRAL-PSEUDOATOM METHOD
UNDER NORMAL CONDITIONS

The neutral-pseudoatom method was proposed first by
Ziman, ' and then extensively used by Dagens. ' ' ' Its
philosophy is the same as that of the pseudopotential
method, and so is its domain of applicability. In con-
junction with density-functional theory (DFT), ' it is en-

tirely a priori and has the advantage of handling "true"
densities instead of pseudodensities.

A. NPA densities

The NPA was, in its original version at zero tempera-
ture, applied to metallic systems where a clear distinction
between non-overlapping core states and valence states is
possible, i.e., to simple metals. "The density in the metal
is assumed to be accurately given by a superposition of
single site, structure independent, and localized densities
b, n(r), so that

n(r)=gbn(r —R;) .

An includes a core bound contribution nb and a contribu-
tion from valence free states b nI

bn(r)=n&(r)+An&(r) .

The superposition approximation is quite common in
condensed-matter physics. For instance, the recent for-
mulation of "embedding theories" in an effective medi-
um also makes use of it.

It is worth noting first that Eq. (I) is consistent with
the binary character of interatomic forces and, hence, is
perfectly compatible with the subsequent analysis of the
total energy in terms of pair interactions. It is assumed
that there is no ambiguity in the valence (ionization) Z*
of the metal:

Z*=Z —I nb(r)dr=Z —f nb(r)dr, (3)

where o represents "convolution product, " and 6; is a
delta function centered on site i. The basic idea of the
theory is to treat separately, site by site, the various terms
in Eq. (5). But the potential —llr&&Z6 is a "strong
scatterer, "having a Friedel sum equal to Z" (we consider
the Friedel sum as being zero at the bottom of the
valence band), and displaces a free-electron density nor-
malized to Z* electrons. It has been shown that this re-
sults in a poor convergence of the multicenter expansion
of the kinetic energy-functional T[g, b n, ], which is

necessary for calculating the total energy of the metal.
Such an expansion would have a much faster conver-
gence if the overlapping part of An were to integrate to
zero, i.e., if the external potential associated with it were
to be a weak-scattering potential (Friedel sum equal to
zero). To overcome this diSculty, the NPA method in-
troduces the following external potential:

V,*„,= —
&& g —Z5;+ g v, —n

1

I I

(6)

where n is the average free electron density in the metal

-=Z
n = =Z'p (7)

(p is the material density) and v, is the so-called "auxili-
ary screening function. " The auxiliary screening func-
tion is chosen in such a way that g, v, n is as sm—all as
possible, and its integral must be Z'. It is approximately
that part of the uniform background n which can be at-
tributed to a single ion. To some extent, it is arbitrary.
In our applications, we chose the simplest form, i.e., that
of a spherical cavity. Other choices where v(r) is a con-
tinuous function of r instead of a step function have been
considered. ' ' The total electron density in the external
potential V,*„,for the "auxiliary" system is

n*=n+gAn;* .

The total screened potential associated with Eqs. (6) and
(8) is

with Z the nucleus charge. The last equality on the
right-hand side is a consequence of the perfect localiza-
tion of the core states within the atomic sphere volume
Q. Clearly, the free-electron density satisfies

An~ r dr=Z* . (4)

The total external potential V,„, acting on the electrons is
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V*=—&&g( —Z5, +v, +b,n,*)
I

V* .I

(9a)

(9b)

G n+g hn, * =G[n]+g G;+ —,'g'G, ,
I I I,J

+— G +. -
1

IJk
i,j,k

(13)

Due to the use of the screening function v, the Friedel
sum associated with V;* and An, * is zero. The NPA is
thus a weak scatterer and the superposition approxima-
tion of the single site densities in the metal is expected to
be quite a good approximation. This minimum scattering
property also allows us to use a cluster-type expansion of
the total energy, as will be seen in the following para-
graph. The calculation of the NPA consists in solving
self-consistently the DFT equations for a single potential
V,

* and a single density An;*. The reduction of the
multiple-scattering problem to a single-scattering prob-
lem is the characteristic feature of the theory of simple
metals. Now the difference between the exact V,„, and its
approximation V,„, is treated in linear response theory,
giving a density change

5n(r)=g m(r —R, ) n. — (10)

The exact density response function of the auxiliary sys-

tem would be rather difficult to calculate. We can re-
mark that n —g, v; is nonzero only near the surface of
the Wigner-Seitz cells, precisely where the electron densi-

ty is most uniform. So we write

,(q) 4rn(r)= Jdq v(q)e
e(q) q'

where no(q) is the uniform electron-gas density response
function, e(q) the dielectric constant, including local-field
corrections, and v(q) the Fourier transform of the screen-
ing function v(r); m(r) carries a charge equal to Z*.
Collecting Eqs. (8) and (10), one finds that the "true" den-
sity of the metal is, from Eq. (1),

G; =6[n + An, "]—6[n ],
G,"=G [n + b,n,*+ b n *]—G, —G —G [n ] .

(14a)

(14b)

+ —,'g (b, n,*+ v) —
&& (b, n *+ v)+ —,'g' t

I,J I,J IJ

(15)

is straightforwardly added to G[n*]. In Eq. (15), we
have used the dot as a shorthand notation for the scalar
product in direct space, i.e.,

f g = Jdr f(r)g(r) .

Finally, the second-order perturbation energy associated
with V,„,—V,*„,is

5E=(n*+ ,'5n )
——o n —g v,

I

where 5n is given in Eq. (10). The contribution depend-
ing on 6n may be easily calculated in reciprocal space.
After some tedious manipulations, which we shall not
reproduce here in detail, the total energy of the system is
obtained as follows:

G,J goes to zero for pairs of sites which are far apart and,
similarly, 6, k vanishes when the distance between any
two of three sites i,j,k is very large. It should be noted
that such an expansion does not require An * to be small
every where compared with n. For simple metals, the ex-
pansion is truncated after the second-order term, con-
sistently with the two-body interaction picture. The elec-
trostatic interaction energy U

U = V,*„, g ( b n + v, )

n(r)=g (An;"+m;) (12a)
E=G[n]+NbE, +N(n —v ) V*

+ 'Nv —o(v, —m—;)—2NZ*4mn—cr+ —,'g'P,
~

. (17).
IJ

=+[nb(r —R; )+AnI (r R; )+m(r —R—
, )], (12b)

since the bound density is insensitive to the first-order
change Vext Vext.

The meaning of the various terms in Eq. (17) is the fol-
lowing. The first one is the energy of a uniform interact-
ing electron gas of density n, the number of electrons per
volume 0=—', ~R ' (R is the average atomic radius of the
material) being Z*:

B. Total energy expansion
G[n ]=NZ*[ „kF+E„,(n ))=NE—O, (18)

To calculate the total energy of the system at zero tern-
perature, we determine first the energy of the "auxiliary"
system in the external potential V,*„,. Then we add the
contribution due to V,„,—V,*„, in second-order perturba-
tion theory.

The electron density n * of the auxiliary system is given
in Eq. (8). Let us consider the functional G[n*] includ-
ing the kinetic and exchange-and-correlation energies. It
has been shown that this functional may be rewritten as
an infinite expansion:

with X the number of atoms, kF the Fermi momentum,
and E„,(n ) the exchange-and-correlation energy density.
The second term AE, is just the energy required to embed
a single NPA (with external charge —Z50+vo at origin)
in the jellium. This energy is the result of a full self-
consistent DFT calculation. Such calculations are now
quite standard in solid-state physics, and often used for
the study of impurities, vacancies, etc. ' The three fol-
lowing terms are single-site terms (the subscript indicates
that the quantities v, V*, and m refer to one single site
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(19a)

where A,~„ is the Thomas-Fermi screening constant, i.e.,
„=4k~/~, and

g(q) 1 dV (tl )= lcm4k, q-0 q 4a
(19b)

where g(q) is the local-field factor entering the dielectric
constant e(q)

which can be chosen at origin, i.e., i =0) brought by the
corrections to the NPA. The first of these terms depends
on the single-site screened Coulomb potential and is easi-
ly calculated as

(n —v ) V* = f n4vrr dr Vo

The two other terms are independent of the NPA density
profile; they are functions of n and Z* only. The quanti-
ty 0., which has the dimension of a surface, is defined by

5n~ if r ~R,
An,*„=-

d+Br +Cr if r R,

(22a)

(22b)

where A, B and C are constants chosen in order to
preserve continuity of An * and of its derivative at r =R„
and keep the correct zero integrated charge of hnI*.

Now, it is assumed that there exists a local model po-
tential that gives An„' in linear response. ' If it is the
case, this model potential is

potential, for distances larger than R, /2 only. ' Thus
the ion-pair interaction does not depend significantly, in
the region of space where it is useful, that is outside the
ionic cores, on the shape of the density inside the cores.
In other words, the pair interaction will not be affected if
we change An within the core, say for radii smaller than a
core radius R, . The advantage of making such a change
is that, by a suitable smoothing of hn&, one can get rid of
the inner-she11 oscillations and obtain a Fourier trans-
form having a much better convergence at large q. Con-
sequently, we shall work with the modified density hn *:

e(q)=1 — [1—g(q)]~0(q) .
4~

(20) tv(q) = bn *(q),E(q)

~o(q)
(23)

g(q) is evaluated in the local-density approximations
(LDA) for the exchange-correlation effects, and is thus
proportional to q and to the derivative of the exchange-
correlation potential with respect to density, i.e.,
dV„, (n)/dn In o. ur applications, we used various ap-
proximations for these exchange-correlation functionals,
as will be shown later. Finally, the last term in Eq. (17) is
the only one which depends on structure. It is expressed
in terms of the pair interaction which has the following
forrnal expression:

P(R,, )=G,, +( —Z5, +An, ') ~ —o( —Z5, +bn,")

and we can check that the assumption is sound if
w(q)q /4mZ* is not significantly larger than 1 for any q.
Introducing this approximation in Eq. (21), and the cor-
responding DFT equation for G;

G„+tv bn*(r —R )+An*(r —R;).—Obn*(r —R~)=01

r

allows the practical calculation of P. We get, with
v =4m/q,

mo(q)
P(q) =(Z') v+ [tv(q) —vv(q)]' .

e(q)

—v.—om
r

(21}
In our numerical calculations, we determined the core ra-
dius R, by requiring that

where G, is the two-center contribution to the kinetic
plus exchange-and-correlation energy in the auxiliary sys-
tem, as defined in Eq. (14b}. As the explicit form of G is
unknown, the calculation of P(R;, ) is subject to further
simplifications described below.

C. Calculation of the pair interaction

The density associated with every ion in the metal is,
Eq. (11b),

an =nb+an~+m .

nb(R, )+ dna'(R, ) =An-, .

i.e., the total NPA density at R, is a fraction of the back-
ground density n. %e checked that a reasonable varia-
tion of k from 0.5 to 1.0 does not affect the results. All
the Fourier transforms were calculated using the fast-
Fourier-transform technique with a 4096-point mesh.
The contribution of the long-range tail (Friedel oscilla-
tions) of the density was carefully taken into account via
an analytical correction in hn*(q). Also, in computing
the pair interaction in direct space, we replaced Eq. (24)
by the equivalent one:

This density is expected to be much better than the one
which would result from a linear response to a model po-
tential for the ion, because it is calculated by solving the
Kohn-Sham equations and is thus valid to all orders in
the potential.

It has been proven elsewhere that the pair interaction
P(R, ) can be expressed as a surface integral in the sym-
metry plane between ions located at R, and R . The in-
tegrand depends on the pressure tensor and Maxwell
stress tensor, calculable with the wave functions and the

(Z')'
P(r) = — erfc(ar )

r

+,fdqe'q'1

(2vr )'
7TO

(w —vv)
E

2

+(Z*) v exp
4a

(25)
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which avoids cancellation of large-r Coulomb tails ob-

tained in a straightforward use of Eq. (24). Finally, the
contribution of the pair interaction to the energy

-4 80.6

NE „,= —,
' g' P(R;, ) (26)

E(Ry)
was calculated on the fcc lattice up to 100 shells of neigh-

bors and the remaining contribution was treated by
means of a continuous integration.

D. Results

-/ 80.c)

We applied the method to Be and Al for which we

have a large number of reference calculations. In the
case of Be, we used the Nozieres-Pines exchange-
correlation formula in order to compare with band-

structure (BS) calculations done with the same exchange-
correlation choice in the linear muffin-tin orbital (LMTO)
technique. At normal density (R =2.315 16 a.u. ), we

found a total energy of —29. 146 Ry, to compare with
—29. 167 in the LMTO-BS model. For Al, also at the
reference density (R =2.9907 a.u. ), the present work

gives —480.952 Ry instead of —480.943 Ry using the
augmented plane waves (APW) band structure method
with the Kohn-Sham (KS) exchange-correlation formu-
la. In Figs. 1 and 2 we extend the comparison to higher
densities in a range where Z* does not change (Z'=2
for Be and 3 for Al). In these figures, the BS curves have
been shifted by a constant energy in order to bring the
minima to coincidence. Thus we can see more directly
the deviations due to increasing the density. The results
are slightly better for Al. We think that the largest devi-
ation in Be is due to more important BS effects where
there is a pronounced depletion in the density of electron-
ic states at the Fermi level because the 2s shell is filled.
But the overall agreement is quite satisfactory when one
notes the very different character of the methods em-
ployed.

E(R )

-29.0—

0.5 1.0
vo
V

FIG. 2. Same as Fig. 1, but for Al Z* =3.

III. EXTENSION TO VERY HIGH DENSITIES

In this section, we consider the phenomenon of "pres-
sure ionization. " When p increases enough, the core lev-
els centered on different sites begin to overlap and to
form energy bands. ' Part of the corresponding electron
density is expected to participate in the response of the
system to external perturbations. As a consequence of
this effect, Z* increases. This induces important varia-
tions in the physical properties of the metal. It has been
shown that these properties, such as the total binding en-

ergy E, the pressure P, and its derivative dP/dp are con-
tinuous when a bound state is pressure ionized (i.e., goes
into the continuous spectrum). ' The NPA total electron
density An* also is continuous, not An& alone. If the
density nb of the bound states has a very long slowly de-
creasing tail (because the highest level is very shallow),
this tail is canceled in hn*, for large r, by an opposite
contribution in Anb'. These considerations prove that Z*
must be related to the total density (at least for large dis-
tances) and not to the scattering states density only.

For this reason, we propose the following sharing of
the electron density:

hn =nb+An~

fnb+(1 f )n-b+b. nf* . —

In Eq. (27), f is a "cutting function" defined by
—

1 /pt

!r —R!/pR

(27;j

(28)

I

0.5
I

1.0 1.5
Vp
V

FIG. 1. Variation of the total energy E with compression c
for Be, in the vicinity of equilibrium, at zero temperature.
Z*=2 everywhere in this region.

which is 1 inside the atomic sphere (radius R), 0 outside,
and decreases very fast from 1 to 0 around the sphere ra-
dius. In all our calculations, we used the value p=0.05;
f was never modified and not used for any fitting pur-
pose. The advantage of using this f instead of a pure step
function is that it perturbs much less the large q behavior
of the density Fourier transform. Now, we write
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nb =fnb,
(bnf*)'=(1 f—)nt, +conf*,

(29a)

(29b)

defining the "new" rigid bound states density nb and the
"new" density of responding free states (b,

nf*
)'. Obvious-

ly, the original definitions are recovered if there is no core
overlap. The ionization associated with these definitions
j.s

Z =Z nbdr (30)

and, as the neutrality condition

Z=Z" + 1 b, n dr

still holds, it is easy to establish that

(31)

0= I (b,nf )'dr,

i.e., the integrated charge of the responding electron den-
sity remains equal to zero.

A correct calculation of Z* is crucial because the ma-
terial density p =n IZ* is proportional to its inverse. Er-
rors in Z* would prevent accurate reproduction of the
BS energy curves. This point is illustrated for Be in Figs.
3 and 4. We see clearly that our prescription for identify-
ing the density-dependent Z* allows us to get good agree-
ment with the BS results ' "

up to compression c =40 ap-
proximately. On the contrary, if Z* is calculated from
Eq. (4) [that is, with f =1 in Eq. (29a)], leading to Z* =2,
the energy curve is much too low for compression higher
than c =10, as can be seen in Fig. 4. The results also
show that our definition of Z* leads to an important de-
viation with respect to the BS energy for c ~40. The

10
I «& i I s

20 30 vo 40
V

reason is the following. At c=40, the NPA 1s bound
state goes into the continuum. For c slightly lower, it is
easily established that the 1s electron density, at large r
where the screened total potential is negligible, is of the
form

FIG. 4. Total energy in Be, in the very-high-density range. E
is measured with respect to its minimum at c =1. Solid curve
represents the band structure calculations (Refs. 33 and 34). ~,
present model; +, with terms beyond the NPA in linear
response for ions having the charge Z* calculated in the present
model; ——.—,calculation in the present model, but with a
frozen Z* =2 ionization {no pressure ionization). For compres-
sion higher than 40, the results of the present model begin to
diverge from the solid curve.

n =—exp( 2& Er) .— —
f 2

(32)

If Rl is the value of the atomic sphere radius where the 1s
state disappears, one can write its eigenvalue

E=a(R, —R ), (33)

where a is some constant. As the 1s state is normalized,
A must be proportional to (R& —R )'~, so that just
below the ls ionization limit, the value of Z' (propor-
tional to the charge of the ls state outside the sphere) is
of the form

Z*=2I 1+exp[ —2R Qa(R —RI )]) (34)

~o
V

I

10

FIG. 3. Total energy as a function of compression for Be, in

the high-density region. The value of energy at c =1 has been
subtracted. Solid curve, band-structure calculations {Refs. 33
and 34); Dots, results of the present work.

(in this qualitative derivation, we disregard the effect of
the cutting function f, i.e., we take f =1). Consequently,
the ionization Z * would have an infinite slope dZ*/d p at
the threshold. This tendency is shown in Fig. 5. In fact,
this behavior is physically incorrect and would induce an
anomalous density dependence of the thermodynamic
functions. It reflects clearly the limit of validity of the
model: when the overlap of the core states is too large,
the description of the plasma in terms of rigid single-site
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that the density goes like r and is thus normalizable.
For compressions higher than the limit, a resonant
scattering state is found in the continuum. Its width w

decreases when p continues to increase. A "relevant" pa-
rameter to characterize this resonance could be'

10 yo 15
V

FIG. 8. Total energy in aluminum, at T =0, as a function of
compression. Solid curve, band structure (APW) calculation;
dots, present model; dot-dashed curve, present model with Z*
frozen at its "normal" value Z*=3. Points that are linked to-
gether correspond to the same electron density n,

agreement between our calculated energies and those of
the BS calculation of McMahan and Ross ' is nearly per-
fect. Also, as in the case of Be, a calculation at constant
Z*=3 would give very poor results for c ) 5. In Fig. 9,
we display the evolution with respect to density of the
bound charge (i.e., the amount of charge inside the atom-
ic sphere) for the 2s and 2p bound states. We see that the
2p state goes into the continuum at c =16, but for this
symmetry, the charge remains finite, contrary to the case
of s symmetry. The reason is that the asymptotic behav-
ior of a p wave function at threshold is similar to r, so

the ratio of the width to the Fermi energy. As long as the
energy c„of the resonant state is lower than cz, and x is
much smaller than 1, the resonant state keeps a bound
character, at least for distances not too large. Obviously,
this resonant state contributes to some extent to the total
ion bound charge and must not be counted as a pure free
state (otherwise, Z" would have a discontinuity at
threshold}. The appearance of resonant states indicates
the limit of the domain of applicability of the present
technique. The treatment of metals where such states do
exist is a difficult problem in pseudopotential theory. The
models that have been proposed up to now, for instance
for transition metals, ' ' lead to complex calculations,
which are outside the scope of the present study. Fur-
thermore, it seems that there is no guarantee that the
pair-interaction picture is correct in these systems. Thus
we shall not push our model to densities where reso-
nances do occur. For plasmas, we shall restrict its appli-
cation to p-T regimes where the plasma may be con-
sidered as simple, " in the sense of "simple metals, " i.e.,
where the continuum states are mainly free-electron-like.
Fortunately, the width of the resonances is increased by
the temperature so that the problem may become much
less crucial in high-temperature plasmas.

In Fig. 10, we display the evolution of Z* with
compression up to c = 16; comparison with the ionization
obtained in a standard manner in Thomas-Fermi theory
is also shown, with considerable discrepancies. The pair
energy E „, is shown in Fig. 11, and the pair interaction
P(R) at normal density in Fig. 12. This interaction was
calculated with Kohn-Sham exchange (no correlation) in
order to be consistent with the BS calculations used as a
reference for Al. We checked that our calculated P(R)

N
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At

o
C

0

0
l

E 0.5-
C

At

~ i I I I I I I I I I I I I l i a i I

5 10 15 20 vo/v

FIG. 9. Electron bound charge contained in the atomic
sphere, for the 2s and 2p states of Al, as a function of compres-
sion at T =0. The 2p state is pressure ionized at c = 16.

3 I ~ ~ i a I

10 15 ~v 20
V

FIG. 10. Ionization Z* of Al, at T=O, as a function of
compression. Also shown is the Thomas-Fermi ionization (dot-
dashed curve). The latter is obtained as the product of the
atomic volume by the Thomas-Fermi electron density on the
surface of the atomic sphere.
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FIG. 11. Pair-interaction energy in Al at T =0.

comes into very good agreement with other similar calcu-
lations when correlation effects are added in the
LDA. ' ' The pair interaction at high density, c =15, is
shown in Fig. 13, where it appears that the range of the
potential is much shorter due to a stronger screening.
Both curves are displayed in the region of r values where
the first shells of neighbors are located.

The evidence from the results presented in this section
lends support to our definition of Z* in terms of the NPA
bound and free densities, provided that the electronic
structure of the condensed system remains simple. In
this respect, the model can deal with partially delocalized
s and p bound states, but cannot treat their complete
transition to the continuum. The definition of Z* can be

0.0

I I I i I I I I I I I i I I I

2 3 R(a.u.)
FIG. 13. Same as Fig. 12, but for compression c = 15.

straightforwardly extended to any temperature. If the
temperature is raised, at a density where the model works
for T =0, there is no reason to believe that it wi11 not be
applicable since the DFT bound eigenvalues decrease,
leading us to a more localized bound charge; the temper-
ature eftect is smooth at constant density. Even if new
bound states do appear, their population will in general
be small enough to avoid any sudden change in the elec-
tronic structure.

CC

O
IV. HIGH-TEMPERATURE PLASMAS

A. Extension of the model to finite temperatures

R (a.u.)

FIG. 12. Pair-interaction potential in Al at T =0, and for the
reference density. The arrows indicate the positions of shells of
atoms. KS exchange, no correlation.

Assuming that p and T are such that the plasma elec-
tronic structure is simple, there is no major difFiculty in
extending the DFT calculation of the NPA to finite tem-
perature T. The Mernim-Kohn-Sham equations, ' '

defining an "average" neutral pseudoatom, are solved
self-consistently using techniques which are now stan-
dard. ' We will not describe these numerical tech-
niques in detail here, but only emphasize some points. At
finite T, the free spectrum is no longer bounded by the
maximum energy c. „=cF, the Fermi energy, but is

infinite. Practically, we restrict the full quantum-
mechanical calculation of the wave functions to energies
lower than c „=cz+7kT, and compute a correction for
the remaining part of the spectrum using a restricted
Thomas-Fermi (TF) approximation. The maximum or-
bital angular momentum l,„ is still fixed to 10, but here
also a correction for higher values of l is obtained in the
TF approximation. Corrections to energies associated
with these corrections to the electron density are also
computed.
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At finite temperatures, the basic thermodynamic func-
tion of the Mermin-Kohn-Sham scheme is the Helmholtz
free energy F. Still using the superposition of densities
given in Eq. (8), together with the cluster expansion trun-
cated after second order term, Eqs. (13) and (14), the free
energy is straightforwardly expressed similarly to Eq.
(17), with G[n]=NFO now being the free energy of the
uniform interacting electron gas, and bF, the free energy
of embedding the NPA in the jellium of density n, instead
of b,E, . Of course, the response function to be used in the
calculation of m and P is now the RPA response function
at finite temperature. The exchange-correlation effects
are described by Ichimaru and Tanaka's analytic fit of
f„,(n, T), and the local field factor entering the
dielectric constant is calculated consistently. The result-
ing pair interaction is now density and temperature
dependent. The last term entering the finite-T counter-
part of Eq. (17) is the free energy of the ionic component
of the plasma, F~„,. The hypernetted-chain (HNC) equa-
tion is solved to obtain the pair correlation in the plasma.
In the calculations reported here, no bridge term was in-
cluded in the integral equation, but the effect of such a
correction will be investigated in the future. Owing to
the T dependence of P, F „,must be calculated using a
coupling-constant integration. In the specific case of the
pure HNC equation, such an integration may be avoid-
ed, ' but it cannot in the case where corrections are in-
cluded. In order to keep our numerical code as general
as possible, we decided to actually perform this integra-
tion. Thus, for a given interaction P(r;n, T), we solved
the HNC equation with potentials A,P for a number of
values of A, in the range 0 to 1, each of them giving a pair
correlation function g(r; A, n, T). Then. , F „„is, per ion,

F „„(n,T) =
—,'P J dA, Jdr g(r;A, , n, T)$(r;n, T) . (35)

0

In practice we used ten values of A, between 0 and 1, fol-

lowing the law A=, (n /10), n = 1, . . . , 10.
For clarity in the analysis of the results, let us give the

expression of the total Helmoltz free energy, collecting all
the terms mentioned just above. Per ion, we have

F=Fo+AF. +F +Fp

with, as in Eqs. (17) and (19),

(36)

F, = ( n —vo) Vo + —'v —o ( vo —m o ) ,' Z—'—4am rr . (37)

Numerical results for these terms are presented below.

B. Results

We performed calculations of the free energy of Be
plasmas at compressions c = 1 and 10 approximately, for
temperatures up to 100 eV. In Tables I and II we give
the results. These tables include neither the ideal part of
the ionic free energy at finite T, nor the zero point motion
energy at T=0. At normal material density (Table I),
the electron density n is 0.03848 a.u. and the Fermi tem-
perature is 14.84 eV. As the temperature is increased at
constant volume, n increases because Z* does, so that
n =0.068 12 a.u. at T=100 eV (TF =21.72 eV). In this
range of temperatures, the standard coupling parameter
I =(Z*) IkTR goes from 18.81 for T=2.5 eV to
I =1.47 for T=100 eV, covering a wide domain of
strongly coupled plasmas, These quantities Z* and I are
displayed in Fig. 14. Looking at the various contribu-
tions to the free energy, we see that Fo is that one which
shows the largest amplitude of variation. Nevertheless,
in the low-temperature range T& TF, it is clear that an
accurate calculation of all the terms is required to get the
correct total F, owing to cancellations between the vari-
ous components. In Fig. 15, we show the pair interaction

P in Be at normal density and for T =0, 2.5, and 5.0 eV.

TABLE I. Free energy in Be at the reference density pa= 1.9436 g cm as a function of temperature. The electron density param-
eter is r, = 1.837 when Z* =2. Fo is the contribution of Z* electrons in a uniform interacting electron gas. AF, is the free energy for
embedding the NPA. F„,,„ is the Helmholtz free energy of the ionic subsystem. F, is defined in Eq. (37). The total free energy (sum
of the four previous contributions) is F, from which the experimental energy of the Be'+ ion at T=O has been subtracted
[E(Be'+ ) = —27. 311 Ry]. Units are rydbergs.

T (eV)

0.0
2.5
5.0
7.5

10.0
12.5
15
20
25
30
40
50
60
80

100

18.81
9.40
6.27
4.70
3.77
3.16
2.47
2.14
1.99
1.87
1.82
1.76
1.63
1.47

Z*

2.000
2.000
2.000
2.000
2.000
2.002
2.008
2.048
2.135
2.255
2.526
2.781
3.000
3.329
3.541

Fo

+0.129
—0.012
—0.403
—0.993
—1.737
—2.605
—3.580
—5.841
—8.553

—11.757
—19.613
—29.179
—40.178
—65.479
—93.877

—29.330
—29.360
—29.416
—29.469
—29.511
—29.544
—29.570
—29.607
—29.605
—29.545
—29.244
—28.734
—28.060
—26.437
—24.790

0.048
0.031

—0.010
—0.069
—0.139
—0.218
—0.306
—0.509
—0.748
—1.023
—1,686
—2.485
—3.404
—5.527
—7.916

FPatr

—0.014
0.263
0.409
0.546
0.686
0.831
0.979
1.308
1.691
2.135
3.183
4.401
5.748
8.703

11.849

—1.856
—1.767
—2.109
—2.674
—3.390
—4.225
—5.166
—7.338
—9.904

—12.879
—20.049
—28.686
—38.583
—61.429
—87.423
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TABLE II. Free energy in Be at the density p=18.62 gcm ' (c=9.58), as a function of temperature. The electron-density pa-
rameter is r, =0.8529 when Z =2.088. The various contributions are the same as in Table I. In the total energy F, the energy of the
isolated Be'+ ( —27.311 Ry) has also been subtracted. Units are rydbergs.

T (eV)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
20.0
25.0
30.0
40.0
50.0
60.0
80.0

100.0

43.52
21.76
14.51
10.88
8.71
7.26
5.48
4.45
3.82
3.12
2.76
2.55
2.28
2.10

2.088
2.088
2.088
2.088
2.088
2.088
2.089
2.095
2.112
2.142
2.235
2.352
2.475
2.705
2.901

3.838
3.807
3.712
3.556
3 ~ 338
3.060
2.728
1.911
0.925

—0.210
—2.936
—6.302

—10.361
—20.385
—32.868

AF,

—29.878
—29.895
—29.913
—29.935
—29.967
—30.004
—30.047
—30.157
—30.318
—30.540
—31.174
—31.982
—32.874
—34.679
—36.317

—2.096
—2.094
—2.106
—2.130
—2.162
—2.201
—2.250
—2.372
—2.532
—2.731
—3.224
—3.826
—4.509
—6.069
—7.823

Fpair

2.261
2.926
3.180
3.382
3.571
3.729
3.879
4.185
4.503
4.847
5.666
6.627
7.679

10.021
12.540

1.436
2.055
2.184
2.184
2.091
1.895
1.621
0.878

—0.111
—1 ~ 323
—4.357
—8.172

—12.754
—23.801
—37.157

These are displayed in the region of first neighbors. Even
in this range of temperatures smaller than TF, there is a
significant change in the shape of the interaction, with an
important damping of the Friedel oscillations as the tem-
perature is raised.

The structural contribution F „, in the fluid phase
varies quite smoothly between 2.5 and 20 eV and it is
tempting to extrapolate to T=0 in order to compare
with the value calculated in the solid phase. But this is
not possible for the following reason. Calculations for
the one-component plasma (OCP) (Refs. I —4) and the
screened OCP (Refs. 5 and 6) show that F has an infinite
derivative with respect to T at zero temperature. As a
similar behavior may be expected in our model also, any
extrapolation is hazardous. We conclude that the present
results do not allow us to determine which phase is the
most stable at low temperature. A complete determina-
tion of the phase diagram would require a more detailed
study of the low-temperature domain, including the effect
of the bridge function in the fluid phase, and a full treat-
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ment of vibrations in the solid phase. Such a study is out-
side the scope of the present paper devoted to plasmas.

In Table II, we give the various free-energy com-
ponents at c =9.58. This compression corresponds to a
free-electron density n =0.3848 a.u. at T =0, that is ex-
actly 10 times that of Table I. Here the electron gas is
strongly degenerate (TF =68.9 eV) in a large part of the
domain of temperatures studied. The coupling constant
I reaches a value of 43.5 at 2.5 eV and is still I =2. 10 at

20

Be
vo

Z

10-

0
2

100

FICs. 14. Ionization of Z* and ion-ion coupling constant I in

Be, at normal density, as a function of temperature.

R(a.u.)

FIG. 15. Change in the pair interaction potential, for Be at
normal density, when the temperature is raised form 0 to 5 eV.
Solid curve, T =0; dot-dashed curve, T=2.5 eV; dotted curve,
T =5 eV.
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T=100 eV. At the highest density (Table II), the ioniza-
tion Z* is higher at low temperature (pressure ioniza-
tion), but lower at high temperature than at normal den-
sity. The reason is that for a given T ) 30 eV, the 1s level
population is larger because the Fermi energy is
significantly higher and the 1s eigenvalue not very
different. Table II shows a free energy F at low tempera-
ture (2.5~ T~7. 5 eV), which increases with T. For-
tunately, this does not imply that the entropy of the fluid
is negative, because F does not contain the ideal contribu-
tion. With that contribution included, I' becomes monot-
1c.

The only calculation including the structural F „„with
which we can try to compare our results for Be is the
Monte Carlo calculation of Hubbard and DeWitt. These
authors treated the case of a mixture of hydrogen and
helium ions interacting via Coulomb potentials linearly
screened with the RPA dielectric constant at zero tern-
perature. They give a fit of their results for the internal
energy and Helmholtz free energy. We can use this fit,
applied to the case of pure He, to mimic our Be results
when Z* is not too different from 2. (Their fit contains
explicitly the ion charge Z*.) But we must add a correc-
tion to their results, before comparison, for taking into
account the effect of core electrons in Be. To estimate
that correction, we assume that the electron-ion interac-
tion in Be can be modeled by an Ashcroft empty core
model potential with a core radius R, =0.5 a.u. To first
order in the pseudopotential, the correction to the excess
free energy is

A z+
oF,„,=n j . 4rrr dr,

o r

which gives oF,„,=0.24 Ry at po (Z' =2) and 2.52 Ry at

10PO (Z*=2.088). We must also say that the numerical
fit of Hubbard and DeWitt is based on Monte Carlo runs
covering a given domain of densities and temperatures,
and that we used the fit in part outside that domain. In
our calculation, the excess free energy to consider is

6F,„,=b,F, +F, +Fp„,—E(Be +),

where the energy of the Be free ion is subtracted. Re-
sults are shown in Table III for temperatures where the
comparison is possible, that is, temperatures much small-

er than the Fermi temperature. Substantial differences
are apparent. We think that the main causes are (i) the
difference in electron screening (linear in Ref. 5, non-
linear in the present work), which gives quite different
displaced electron densities around the ions, and (ii)
core othogonalization effects: we have made a crude
first-order correction to the results of Ref. 5, but these
effects are still not included in the pair interaction, which
is likely very different from ours. More meaningful com-
parisons would be very useful. Similar calculations for Al
plasmas are currently in progress and will be reported in
a subsequent publication, together with more information
on other important thermodynamic functions, such as
internal energy and pressure.

V. CONCLUSIONS

We tried to show that the NPA picture of liquid simple
metals may be extended for describing plasmas in ranges
of densities and temperatures where their electronic
structure remains "simple. " The main new features of
the model when applied to plasmas are (i) the
temperature-dependent self-consistent calculation of the
electron charge density (for liquid metals, the electron
density at zero temperature is in general used), (ii) the
determination of a density and temperature-dependent
ionization state Z*, (iii) the calculation of the pair in-

teraction for every p Tplasma s-tate, and (iv) the compu-
tation of the ionic part of the Helmholtz free-energy us-

ing the HNC equation (in liquid metals, use is often made
of a reference system).

When applied to the solid phase at zero temperature,
the model reproduced quite well the total energy curve
E(p) for Be and Al, in the range of densities where it
might be expected to work. This supports the reliability
of the prescription made for calculating Z'(p, T) Re-.
sults for the pair interaction potentials P(r), and for the
various contributions to the Helmholtz free energy, are
presented for a number of p-T conditions in the Be plas-
ma.

Future work has to be done in the following directions.
First, it will be useful to test the influence of corrections
to the HNC equation (Bridge terms). For the cases
presented here, we think they will not be too large be-
cause the screening of the interaction is strong so that,

TABLE III. Comparison between excess free-energy results of the present work and those of
screened OCP theory for helium, applied to the case of Be with a pseudopotential correction in first or-
der. Our value of Z* is used in the formula of Ref. 5 for the excess free energy derived from the
screened OCP Monte Carlo simulation. Units are rydbergs.

P P()
Present

work
Screened

OCP

p =9.58p()
Present

work
Screened

OCP

0.169
0.337

—1.755
—1.706

—3.372
—3.185

0.036
0.072
0.109
0.144
0.182
0.218

—1.752
—1.528
—1.372
—1.247
—1.165
—0.468

—4.945
—4.715
—4.513
—4.316
—4.116
—3.915
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even for the highest I values which have been met, the
"effective" coupling is much smaller than for an OCP
with the same I . Second, we would like to compare our
results with those obtained by others who use linear
screening theories. But we think that this comparison
may be relevant only if linear theory is applied to pseudo-
potentials (or model potentials) for metals, and not to
bare electron-ion Coulomb interactions. Finally, a lot of
work remains to be done to provide comprehensive re-
sults for the equation of state of these plasmas. The
internal energy and pressure have to be computed. Each
of these thermodynamic functions includes a part which
can be calculated directly because the free energy hF, has
stationary properties with respect to hn and the Kohn-
Sham eigenstates. But another part has to be calculated

by taking explicit derivatives with respect to T or p (for
instance, the part coming from the T-p dependence of
Z'). Further studies along these lines, which will require
very substantial computations, are currently in progress.
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