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First-principles calculations of shear moduli for Monte Carlo —simulated Coulomb solids
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First-principles calculations of the shear modulus tensor are presented for the bcc crystalline and
rapidly quenched Coulomb solids produced by the Monte Carlo simulation method. The shear
moduli are calculated for temperatures up to the melting conditions, including the effects of thermal
fluctuations. An effective shear modulus appropriate to an approximate "isotropic" body is intro-
duced through averages over directions.

I. INTRODUCTION

McDermott, Hansen, Van Horn, and Buland' first ana-
lyzed nonradial oscillations of neutron stars, modeled as
three-component stars consisting of fluid interiors, solid
crusts, and fluid "oceans. " Novel features in the analyses
were the predictions of the bulk and interfacial modes,
associated with the nonvanishing shear modulus of the
crustal solid, with characteristic periodicity on the order
of milliseconds.

The value of the shear modulus used for the crust was
one of the "Fuchs values" appropriate to the body-
centered-cubic (bcc) Coulomb crystal at zero temperature
and a specific mode of deformation. Generally, however,
the stress-strain relations in solids should be expressed
through tensors of higher order. ' The shear modulus
tensor should depend sensitively on the temperature, as
the melting transition is approached. The value used in
the calculations, ' in fact, corresponded to the largest pos-
sible value in the tensorial shear moduli of the bcc
Coulomb solids. Elucidation of the temperature depen-
dence of the shear modulus tensor has been an outstand-
ing problem in condensed-plasma physics and astrophy-
sics.

In this paper we present a first-principles study of the
shear modulus tensor for Coulomb solids with inclusion
of temperature-dependent effects. The Coulomb solids at
finite temperatures are created by the Monte Carlo (MC)
simulation method in two ways: crystalline ' and
quenched ' simulations. The free-energy increments '

stemming from virtual deformations of the resultant
solids are then evaluated by MC samplings of the
relevant Ewald sums; these evaluations lead to deter-
mination of the temperature-dependent shear modulus
tensors. Finally, we show a way to approximate the solid
as an "isotropic" body by introducing an effective shear
modulus through averages over directions. Application
of the results to analyses of the nonradial oscillations of
neutron stars will be reported elsewhere.

II. MC-SIMULATED COULOMB SOLIDS

We have investigated the microscopic structures of the
Coulomb solids at finite temperatures T by the MC simu-
lation method with the number of the MC particles,
%=1458, distributed in the MC ce11 volume L with the
periodic boundary conditions; n =X/L is the number

density. The Coulomb coupling parameter I and the
ion-sphere radius a are then given by

1"=(Ze) / katTt,

a/L =(3/4m%)' ', (2)

III. ELASTIC-CONSTANT TENSORS

The free-energy increment 6F resulting from the appli-
cation of a strain u, is expressed as

6F——,Sip gI u
ig

u kI (3)

Here S, I,.I is the elastic modulus tensor, the subscripts
i, j, k, and It designate the Cartesian components x, y,
and z, and we adopt the summation convention for re-
peated subscripts. For an isotropic body, Eq. (3) reduces
to

5F——,ku]). +puil uter (4)

The quantities A. and p are Lame coefticients.
The usual elastic constants, c„, (r, s=1,2, . . . , 6), are

derived from the elastic modulus tensor through the

where Ze is the electric charge and kz is the Boltzmann
constant. The thermodynamic melting condition has
been assessed as I =180.

In the crystalline simulations, the particles were placed
initially at the bcc lattice points in the cell, and
(1-2)X10 MC configurations were generated subse-
quently at I =200, 300, 400, or 800. In each case
thermalization was ensured. The final states of the simu-
lations maintain the cubic symmetry of the bcc lattice.

In the quenched simulations, starting with an equili-
brated fluid state at I =160, we applied gradual quenches
in stepwise decreases of the temperature until I =300,
400, or 800 was reached. Each quenched state was ob-
served over a few times 10 MC configurations to ensure
a metastable state. The salient feature in the ensuing
freezing transition was a formation of layered structures
in finite angles with respect to the MC cell axes. ' It has
been concluded ' that the final states of the quenched
Coulomb solids are bcc monocrystalline states with an
admixture of a few imperfections; to a degree the cubic
symmetry has been destroyed. Finally, we have a case of
fluid simulation, in which a quench from I =160 to 200
results in a supercooled fluid state. '
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transformation (ij, kl ) ~(r, s ) of the subscripts
(xx,yy, zz, xy, yz, zx ) ~(1,2, 3,4, 5, 6), such that

crs ~ij, k(

For a solid with cubic symmetry, only three elastic con-
stants remain: c]]=c22 =c33 c]2 =c2& =c23 =c32 =c3&

c ]3 and c44 =c» =c66. %hen such a solid is deformed
without a change in the volume (i.e., g, u, , =0), one finds

6F =
—,'(c1, —c,z )u„+c44uii, uli (1%k ) .

The first term on the right-hand side represents a
differential between two compressional deformations.

If the cubic symmetry is destroyed, as in the case of the
quenched solids, more independent elements should ap-
pear. In conjunction with the first term on the right-
hand side of Eq. (6), it is useful to define and introduce

bll =(2C11 Clz C31)/4,

bzz —(2czz cz3
—c,z )/4,

b33 (2C33 C31 Cz3 )/4

The shear modulus tensor is then represented by the ele-
ments b», b22, b33 c44 c55 c66 For an isotropic body, all
of these elements take on the same value that coincides
with the shear modulus p in Eq. (4).
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FIG. 1. A layered con6guration of particles in a MC
quenched Coulomb solid (Ref. 6). The Cartesian axes are
chosen so that the x and y axes penetrate the layer at angles by a
half of the m/2 radians while the z axis is on the layer along one
of the axes for the resultant quasi-bcc structure.

IV. MC CALCULATIONS OF THE SHEAR MODULI

The following steps have been taken in the calculations
of the shear moduli for the MC-simulated Coulomb
solids. Since the crustal matter under consideration is
virtually incompressible owing to the high Fermi pres-
sure of dense electrons, we choose deformations which in-
duce no changes in volume elements to the desired
second order in the infinitesimal displacement e [cf. (b)
below].

(a) For the crystalline-simulated solids, we choose the
Cartesian axes along the MC cell. For those solids pro-
duced in the quenched simulations, we perform rotational
transformations of the coordinate axes so that the resul-
tant Cartesian axes coincide with those close to the sym-
metry axes defined in terms of the layered structures.
Figure 1 displays an example of such Cartesian axes
chosen along a layer of particles (with interstitials B ) for
a quenched solid.

(b) In each case of the Coulomb solids, the following

Dz. (x,y, z) (y, z, x), to D, .

D3 (x,y, z).~(z,x,y), to D1 .

D4. Q =Q
xy yx

p2
Q Zz 4

D5: (x,y, z)~(y, z, x), to D4 .

D6 (x,y, z)~(z, x,y), to D4 .

(8)

where r denotes the position vector of the pth MC parti-
cle. The potentials in (8) are defined and calculated as

In these deformations, an elementary volume is kept in-
variant up to order e, so that the derivatives dv/de and
d v Ide [cf. (d) below] may be calculated through Ewald
sums without changing the MC cell volume ( =L ). The
deformations D, and D4 are depicted in Figs. 2(a) and
2(b).

(c) Let v be defined by

)=— g 4[r (ui )
—r (ui )]+Uv(ui ),

2m
cos ta'(ui ).r(ui )

L

+ exp[ errata'(ui )i ]-
@(r(u, ))=—g ~[ta'(ui )[z

t&0

a+-
L

Na
Uo(ui )=

2L

+ erfc[3/errata'(u ) —r(u )/L i]
)ta'(u, )

—r(u, )/L i

+ exp[ —~ita'{ui )~ ] ~a +" erfc[&n ita'(ut )i]
fta'(u, )/z . 2L, , = „/ta'(u, )/

t&0 t&0

3Na
2L

(9)

(10)
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(a) (b) (e) The shear moduli are finally obtained as
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FIG. 2. Schematic views of the deformations: (a) D) ', (b) D4.

j(ul ) (~jk+ujk )uk (12)

the vectors a'(u, ) orthogonal to aj(ul ) are then defined
as (i' Ak)

a'(ul )=aj(ul ) Xa"(ul ),
and the error function complement is

erfc(x)=1 — — exp( t )dt—.2 x

(13)

(d) In each case of the deformations
D (I =1,2, . . . , 6), we calculate the MC averages:

'2

(d& (15)

where d lde=(Bu; /Be)(BIBu,j). In the absence of
thermal fiuctuations (i.e., T=O), only the first term on
the right-hand side remains in Eq. (15).

Here t is an integer, uI are the elements of the strain
tensors specified in (b),

r (ul ) (5'k + u'k )rk

with 5;k representing Kronecker's delta, the unit Carte-
sian vectors a' are analogously transformed as

bid =(5fl —fz —f3)1'9
b„=(5f, f—, f—)y9,

b33 =(5f3 —fl —f2)i9,
C44 f4& C55 f5& C66 f6

(16)

We have accordingly evaluated the shear moduli at
different values of I in the various cases (crystalline,
quenched, and fiuid in Sec. II) of Coulombic systems.
The results are listed in Table I. We observe significant
dependence of the shear moduli on temperatures and on
the modes of deformations.

At T=O (i.e., I = ~ ) the shear moduli are calculated
from the first term of Eq. (15). The bcc crystalline values
so calculated are also in Table I; for the face-centered-
cubic (fcc) crystal, we find b„=b22=b»=0. 02066 and
C44=c»=c66=0. 1852 in units of n(Ze) la. These are
identical to the Fuchs values cited in Ref. 2.

V. EFFECTIVE SHEAR MODULUS

Though the elastic properties of crystalline solids are
known to be anisotropic, it is sometimes convenient and
useful for practical purposes if an effective shear modulus

p ff may be introduced approximately in the sense of Eq.
(4). We have approached this problem from two direc-
tions: by performing the directional averages of f4 in Eq.
(15) over all the rotations of the Cartesian axes, and
through averages of the dispersion relations for the trans-
verse shear modes with respect to the polarizations and
the directions of propagation. (See the Appendix for the
latter approach. ) Both naturally have led to the same ex-
pression, which is

pgff
= [2(b „+b 22 + b 33 ) +3(c44 +c„+c66 ) ]/ I 5 (18)

The values of p, ff are likewise entered in Table I.
It is instructive to note that the values of p, ff for the

quenched solids remain approximately the same as those
with the corresponding bcc crystals, although the shear
moduli of the former solids deviate considerably from the
cubic-symmetry values of the latter. Analogous observa-
tion can be made also between the bcc and fcc crystals at

TABLE I. Elements of the shear modulus tensor [in units of n(Ze}'/a ]. In the Cases column, C denotes crystalline, Q quenched,
and F fluid. The numbers in the parentheses denote possible errors in the last digits. Only the common values are entered when b's

or c's are equal.

800
800
400
400
300
300
200
200

Case

C
C

C

Q

C

bi)

0.053(2)

0.059(3)

0.053(1)

0.024 54
0.024(2)

—0.007(1)
0.025(2)

—0.009(3)
0.025(3)
0.025(2)
0.019(3)

—0.004(16)

0.057{1)

0.062(3)

0.014(3)

C44

0.181(2)

0.170(2)

0.141(3)

&ss

0.1827
0.174(1)
0.171{2)
0.167(1)
0.169(l)
0.157{4)
0.167(2)
0.12(1)
0.05(2)

&ee

0.133(1)

0.121(4)

0.149(3)

jeff

0.1194
0.114(2)
0.111(2)
0.110(2)
0.107{4)
0.104(4)
0.104(3)
0.08(1)
0.03(2)
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T=O. The reason for these may be attributed to the rela-
tive insensitivity of Coulombic Ewald sums such as Eq.
(8) to details of the microscopic particle configurations
after averages over directions are carried out. We recall
in these connections that the internal energies of Coulom-
bic systems, involving analogous Ewald sums, are ap-
proximately the same for the bcc, fcc, and even isotopic
ion-sphere configurations.

The values in Table I suggest a possibility that the su-
percooled fluid at I =200 may sustain a nonvanishing
shear modulus of small magnitude. A definite conclusion
on this issue, however, should be deferred until the na-
ture of the equilibrium ensemble of the MC
configurations generated in the supercooled fluid state is
more carefully assessed.

VI. CONCLUDING REMARKS

We have thus presented an accurate evaluation of the
shear modulus tensor for perfect and imperfect Coulomb
solids, including the effects of thermal fluctuations for
temperatures up to the melting conditions. All the values
of the shear moduli calculated here are new, except for
the bcc and fcc cases without thermal fluctuations, where
the conventional Fuchs values have been available.

The effects of the fluctuations on the elastic constants
were formulated by Squire, Holt, and Hoover' for a clas-
sical ensemble of particles interacting through a central
potential. Fluctuation effects in the screened metallic
systems were subsequently studied. " The present theory
treats the cases of the long-range Coulomb interaction,
where volume fluctuations should be avoided in the
Ewald sums.

In a separate contribution, we have shown how the
new values of the effective shear modulus would influence
predictions on the nonradial oscillation spectra of the
neutron stars. It has also been commented that the new
values for the shear modulus may be important for inves-
tigations of the glitch phenomena in pulsars. These will

make outstanding future problems in condensed-matter
astrophysics.
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APPENDIX

In this appendix, we describe a derivation of Eq. (18)
through directional averages of the dispersion relations
for the shear waves. Let u be a displacement vector so
that the strains are written as

1 8tt; t) ttl
Qij

'+
2 t)r, dr,

Its equations of motion are then given by

8 tt, BQ; t)Q.
=-'s, , +

a;ar, ar, ar,

(Al)

(A2)

Averages of pco lk over the directions of k and a (polar-
izations) with the constraint a k=0 yield Eq. (18).

where p is the mass density. Assuming plane-wave dis-
placements u; =a;exp(iktrt i cot) and—multiplying (A2)
by a; (with the summation convention), we find

(A3)
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