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Inverse-free-electron-laser beat-wave accelerator
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It has been proposed [J. L. Bobin, Opt. Commun. 55, 413 (1985)] that the presence of a plasma
can, under certain conditions, enhance the accelerating electric field in an inverse free-electron
laser. In this scheme, the beat wave generated by a laser and an undulator is expected to couple to
the plasma oscillations generated by the electron beam streaming through the plasma. We have un-

dertaken an analytical and numerical study of the proposed acceleration scheme. Our results show
that the electric field is dominantly the self-field of the electron beam, and the plasma makes a negli-

gible contribution to the electric field. Based on our analysis, we propose an alternative method of
acceleration that employs a high-current electron beam to generate a beat wave that is subsequently
used to accelerate a higher-energy beam. We show that an accelerating electric field —1 MeV/cm
can be achieved with an electron beam of current density -20 kA/cm . The results of the analyti-
cal study agree well with numerical results from a two-dimensional computer code. The parameters
of a proof-of-principle experiment are presented.

I. INTRODUCTION

The acceleration of charged particles by plasma waves
has been a subject of considerable interest in recent
years. ' The most prominent of such schemes is the plas-
ma beat-wave accelerator (PBWA), which uses two in-
tense collinear laser beams to generate a beat wave at the
plasma frequency in a high-density plasma. When the
difference in the frequency of the two lasers is equal to
the plasma frequency, the amplitude of the beat wave can
grow to a very high value. ' Furthermore, if each of the
laser frequencies is much higher than the plasma frequen-
cy, the phase velocity of the beat wave may be made to
approach c—the speed of light in vacuum. Thus,
charged particles trapped in the troughs of the plasma
waves may be accelerated to very high energies.

Another laser accelerator of considerable interest is the
inverse free-electron laser (IFEL). In an IFEL, energy
is transferred from a laser to a relativistic electron beam
in the presence of the magnetic field of an undulator. In
the rest frame of the electron beam, the magnetostatic
field of the undulator is transformed into an electromag-
netic wave that beats with the laser. In order to ac-
celerate the electrons in the beam, it is necessary to keep
the relative phase of the electrons with respect to the
beat-wave constant. In an IFEL, this synchronism is sus-
tained by varying either the undulator period or the mag-
netic field, or both.

Since plasmas are capable of generating large electric
fields, it may seem advantageous to introduce a plasma in
an IFEL in order to enhance its acceleration possibilities.
This has indeed been proposed by Bobin, and provided
the initial stimulus for the present study. Bobin's idea is
to use the beat wave (of frequency to and wave number k)
generated by a laser (of frequency toi and wave number
kt) and the zero-frequency undulator (of wave number
k„) to accelerate an electron beam in the presence of a

where co and m b are, respectively, the plasma frequen-
cies of the background plasma and the electron beam, ub

is the axial velocity of the electron beam, and yb its
Lorentz energy factor. Bobin reported electric field gra-
dients substantially larger than are attained in an IFEL.

In Sec. II, we develop an analytical nonlinear fluid
theory to examine Bobin's suggestion. Our results indi-
cate that although the total electric field can be high in
an IFEL containing a plasma, this electric field is mainly
the self-field of the electron beam, and the contribution of
the background plasma is very small. Hence, there does
not appear to be any tangible benefit in introducing a
plasma in an IFEL.

In spite of the flaw in Bobin s scheme, an interesting
variant suggests itself. The electron beam, in the pres-
ence of an immobile neutralizing background, is a mov-
ing plasma. At high currents, this plasma can produce
large electric fields under the influence of a laser and an
undulator. This electric field is associated with the beat
wave, which has a phase velocity v~ =coil(kt+k ), and
obeys the dispersion equation

COI

k+k
COPb

YP3bl2(kl+k )

which is the "fast-wave" solution of Eq. (1) with to~ set
equal to zero. [Equation (2) is precisely the dispersion
equation for an IFEL modified by the effect of space
charge. ] We now propose the following variant of the
PB%'A and IFEL, which for reasons that will become ob-

plasma. The beat wave, which obeys the Manly-Rowe re-
lations co=~&, k =ki+k, is required to satisfy the
"two-stream" dispersion equation

N COP+ Pb

co yb(co —kv& )
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II. ANALYTICAL NONLINEAR FLUID THEORY

The theoretical underpinnings of the PBWA came
from a paper by Rosenbluth and Liu, who developed an
elegant Lagrangian theory to analyze the problem of ex-
citation of plasma waves by two laser beams. The same
results were obtained by Mori from an Eulerian theory.
Here we extend the analytical calculation of Mori to a
system of two cold interpenetrating beams. Each beam
has a particle density n (a=1,2) and moves along the x
axis with speed v . In the presence of a laser and an un-

dulator, the motion of the beams is perturbed by the elec-
tromagnetic (em) fields of the laser:

B,=yB,sin(k, x to, t ), —

COI

El = —z 8& sin( k&x tv& t ), —
ckI

and the undulator,

B„=y8„(sink x ),

(3a)

(3b)

(3c)

vious, is called the inverse free-electron-laser beat-wave
accelerator (IFELBWA). In an IFELBWA, we rely on
the mechanism of an IFEL to bunch a dense but low-

energy electron beam, and then use the electric field gen-
erated between the bunches to accelerate another higher-
energy electron beam. A problem associated with this
concept is that the phase velocity v of the beat wave is
not close to c. The idea, therefore, may appear to be of
little interest for accelerating particles to high energies.
In Sec. III, we show that this is not an insuperable prob-
lem, and propose two methods by which the phase veloci-
ty of the beat wave can be enhanced. We then present re-
sults of a numerical simulation for the IFELBWA. We
conclude in Sec. IV with a discussion of our results.

where BI and 8 are constant amplitudes.
For simplicity, we assume here that all variables de-

pend on x and t only. In this one-dimensional (1D) mod-
el, the dynamics of the plasma Auids is governed by the
momentum equation, continuity equation, and Gauss'
law, given, respectively, by

—+v„P =e E+
C

(4)

Bn
+ (n u„)=0,

Bt Bx

BE„
=4m g e,n

Bx a=1

(5)

(6)

where P =y m v is the relativistic momentum of the
charged particles of rest mass m and charge e,
E=E„x+E1is the total electric field, and B=S„+B1is
the total magnetic field. By using the relation

y =(1—v /c ) ', Eq. (4) can be reduced exactly to
r

VaVa Va X8
I— E+

c2 C

Bv B e
V ax Va+

Bt Bx m y

where n o and vap are constants and are the initial equi-
librium values of n and v, and n, and v 1

are per-
turbed quantities, assumed to be small. We then make
the expansion

(7)
where I is the unit dyadic.

Equations (5), (6), and (7), form a complete set of equa-
tions for unknowns n, v, and E, . To simplify the task
of solving this set of equations, we first write

n n p+n 1
v =v px+v (&)

1 1 p uaovalx+ ual ~ + &aoualx~(

~a ~ao c
+O(e ), (9)

where y p is constant, and a small parameter e is introduced for the purpose of bookkeeping and is to be set to unity
eventually. Note that we have assumed that the quantities v, , n „and E are each of first order in e.

The system described by Bobin is a special case of the system described above, in which one stream is a stationary
plasma, with v o=0. We have assumed that the ions in the plasma do not respond fast enough and simply form a uni-

form neutralizing background. Substituting Eqs. (8) and (9) in (5)—(7) and keeping terms up to O(e ), we obtain the
equations for the perturbed quantities va„n 1, and E,

~va1x Bv
+(u o+ev, „)

ea

mma/aO aXaO

2 2 2 2 2 2 2
~V a1z ~y V ao + V a1 ~ 7 apv apv a1x

EV apVa1 + +
2c

m a'Vao

~ap ap a lx
3ev v,„+e v, +v, j2-

2c c 2

m asap

2 2
Tapv aO

EvapUa1z +E 1
c

Valx Valz
c

(10)
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Valz ~Valz
+(v o+ev l„)

ea U
2 ~2U2 ~2 2 U2 U2

QOB+E i ~ao+Ql +VQOQOQlz
y z 2 QO a 1x 22C J.C

VQOValz E —v Bx alx y

2
Y aOV a 1x

1 —e
C2

2
& Valz

C

Bn , Bn , BU
+(vao+ev l„) +(n o+enal ) =0, (12)

and

E

a=1
4me n, . (13)

To solve Eqs. (10)—(13), we make the following
Bogoliubov-Mitropolsky expansions

E, =cocos%, + g e'e;(eo, 4, )

phase of the plasma wave. Relations similar to (15) also
hold for qao and +, except that in the equations for 4
the frequency coaq and wave number kaq take the Place,
respectively, of the "natural" frequency coo and wave
number ko of the plasma wave. Solving Eqs. (10)—(13) is
straightforward but tedious; a detailed derivation of the
solutions is given in Appendix A. We summarize below
the results.

At O(1), we obtain the linear dispersion equation

with

n, =N osinlP „+g e'N„(N p, 4«)
i=1

v„„=u,osin%', „+g e'u„(u, o, % „)
i=1

v„,=q~cos% + g e'q„(q~, % )

w 2=eAlw+e Apw+
dt

(14)

2
COpa =1,,=l y,o(too —v oko)

(16)

of which Eq. (1) is a special case. [Here co

=(4rtn~e /m )'i is the plasma frequency. ] At O(e)
and O(e ), we get

Cl, =C2e =D1, =D2e —0,
F

A „=——cosP,

8%' g
Plo+eBl w+e B2w+ ' ' '

dt

aw 2eClw+e C2w+
BX

~+w
=kp+eD, w+e D2w+

BX

G
A2, = — sing cosP,

eo

F .Bl, =—sinl)),

B2, = sin P+Heo,2

eo

(17)

where 8'stands for any of eo, N~, or u o, and 4, is the where

2 COpa

a=l )'ap(pip VaO"O)

a=1

tp [a Bl(1 v~lc)+a lB—]
4'Vw(~ ovwko)

2
COp QF

0 alll BI 1
a=l 2a )'ap(pip VaOkO)

Vao +a iB
C

3F
2al ap(cop v pkp)

3ko V ap2 2 2 2
cOpae a ko

a=1 ™asap(~o aoko) 1'ao(~o vaoko) rao(~o aoko)
2 5 4 4 2+ 22

9V aO

C4
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Then, from Eqs. (15) and (17), the evolution equations of
the fundamental component of the plasma wave are seen
to be

F 6
eo = ——cosP — sing cosP,

a ep

e P= —sing+ sin /+HeF ~

a e0
0

(19a)

(19b)

ep max
4F
aH

(20)

Based on the results obtained above, we now examine
the acceleration scheme proposed by Bobin. In this case,
we first set v Q=O. As an example, we calculate the elec-
tric field with the parameters given in Ref. 8, namely

yb = 100, A,
&

= 10 pm, a& =3.1 X 10 (corresponding to a
laser intensity of 2.6 X 10' W/cm ), A, =2. 51 cm,
a„=3.5 (corresponding to an undulator field of 1.5 T),
and co 6=2.5X10' Hz. The required plasma density,
which satisfies Eq. (1), is calculated to be 7.8 X 10' cm
The growth rate is given by 1 =1.8X10' V/cm/sec and
the maximum electric field is eo,„=0.84 MV/cm.
However, we note that this electric field contains two
contributions —one because of the density modulation of
the stationary plasma and the other because of the self-

field of the beam. The part contributed from the plasma
given by eo~

= (4ne /ko)X—~O, where X 0 is the
lowest-order modulation in the plasma density. By using
the relations (A5) in the Appendix, it is easy to show that

Equations (19) are very similar to the equations derived
in Refs. 3 and 9, except that we have kept terms propor-
tional to G. Numerical estimates show that in most cases
of interest, G «Hep unless ep is very small. In these
cases, it is reasonable to neglect the terms proportional to
6 in Eqs. (19). Setting G =0, it is then easy to see ' that
the system exhibits phase locking at $=(2n+ 1)n, were n

is an integer, and ep grows linearly in time initially with a
growth rate I =F/a. The maximum amplitude attained
is given by

1/3

high-intensity laser beam to generate a beat wave that
can be used to accelerate another high-energy electron
beam. As in other analyses of beat-wave acceleration
schemes, we will assume for simplicity that the high-
energy beam to be accelerated is essentially a test beam of
very low current, and hence nonperturbing. The ap-
propriate dispersion equation is then given by (2). The
maximum electric field attained is given by Eq. (20), spe-
cialized to the case of one beam.

As mentioned earlier, the phase velocity of the beat
wave, U =co&/(kl+k„, ), is not usually close to c. We
now propose two possible methods to enhance v . In the
first method, we simply choose the laser frequency and
the undulator period such that ki [ = (co& /c —

cozb /
y~bc )' ]+k =co&/c. The second method, which is

more suitab1e if high-intensity microwaves are used in-

stead of a laser, involves using a wave guide. In this
method, the phase velocity of the beat wave is manipulat-
ed by changing the size of the wave guide. In the proof-
of-principle experiment described in Sec. IV„we use this
method.

In order to evaluate the potential of the IFELBWA, we
consider an example. We consider a relativistic beam of
current density of 20 kA/cm, which gives co b=6. 3
X10' Hz, with the beam energy y b=78.3. The undula-

tor parameters are taken to be A. =2.4 cm, a =3.2.
The radiation frequency which satisfies Eq. (2) is

col =1.7X10" Hz, and we take a& =0.09 (corresponding
to a radiation intensity of 1.8 X 10 W/cm ). Then the
calculated maximum field gradient is e0,„=0.9
MeV/cm. Since the growth rate is I =4.9 X 10
MeV/cm/sec, the distance over which eo,„ is attained is

5.4 cm.
We now describe numerical simulations of a proof-of-

principle experiment in support of the IFELBWA con-
cept. Since the electron dynamics is similar to that of an
IFEL, existing FEL codes, with minor modifications, can
be employed to do the simulations. Here we report the
results from our single-frequency two-dimensional (2D)
code. This code solves the equations of motion of test
particles,

Np
epp 2 eQ

Q)p

(21)

which is much smaller than ep because usually co «cop.p
In fact, this conclusion can be anticipated from the fol-
lowing simple physical argument. Since the stationary
plasma has zero equilibrium velocity, the electrons in this
plasma do not respond much to the magnetic field of the
undulator. In other words, the stationary plasma couples
very weakly to the beat of the laser and the undulator,
which primarily acts to bunch the electron beam.

lala
sin%

Vx Pj

2Q)p v
2

((cos4)sin+ —(sin%)cos4, ),
~tc

d%,' =k., +k,
dx

1+a —2a a&cosW2 1 /2

1—
7j

dP
dx

(22)

(23)

III. INVERSE FREE-ELECTRON LASER
BEAT-WAUK ACCELERATOR

'We now study the possibility of using a low-energy
electron beam in the presence of an undulator and a

and the wave equation,
22,g ~p~w exp[ i(4 P)]— —

I
&~

]- t
C

(24)
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with the cylindrical wave-guide boundary conditions.
Here the subscript j identifies individual test particles,
the angular brackets denote ensemble average of the
quantities enclosed, and +j is the phase of the jth test
particle with respect to the radiation wave. Note that 4
is the counterpart of the phase 4, in the Quid model. A
detailed description of the code can be found in Ref. 11.
Whereas we describe the radiation field in 2D by includ-
ing the radial variation, the electron beam is described in
1D under the approximation that the space-charge field
has only an x component. The local maximum accelera-
tion field is measured by the second term on the right-
hand side of Eq. (22), i.e.,

2
p Vx0

(E ),„=max ((cos%')sin+J
COI C

Undulator period k.

Undulator length (the second section)
Ro
R;
Radiation wave number kI
Radiation amplitude a&

Lower-energy
electron-beam parameters

Initial energy
Current density J
Beam radius rb

Higher-energy
electron-beam parameters

Initial energy
Current density

2.65 cm
60 cm
0.75 crn
0.35 crn
70cm '

0.034

600 keU
8400 A/crn2

0.2 cm

3.58 MeU
]0-' A/cm'

TABLE I. Parameters of the proof-of-principle experiment.

—( sin+ )cos~p, )
mc

(25)

Q) I copb

pb k 3/'2
O y, b kO

(26)

is satisfied, where ko =k, +k and kI = ( coI /c —k i )
'

The length of this section is chosen to be long enough to
bring the FEL into saturation. The electron beam and
radiation are then coupled into the second section where
the radius of the wave guide is reduced to R; so that the
IFEL dispersion relation (2) is satisfied. The wave guide

which is to be compared with eo,„calculated analytical-
ly. To simulate the IFELB%'A, the test particles are di-
vided into two groups. One group has lower initial ener-

gy and serves as the driver. The other group has higher
initial energy and is to be accelerated. Both groups of
particles are distributed uniformly in phase between —a
and m.

The proof-of-principle experiment we simulate is de-
picted schematically in Fig. 1. Since the FEL is a good
source of microwave radiation, we divide the system into
two sections. The first section is taken to be an FEL.
The radius of the wave guide (Ro) in this FEL section is
chosen so that the FEL dispersion relation,

can have a continuous adiabatic taper in order to
enhance the phase velocity of the beat wave as the
higher-energy electron beam is accelerated. Here we
choose a uniform wave guide for simplicity.

The parameters used in the simulations are listed in
Table I and are close to those of the Columbia FEL facili-
ty. ' At the end of the first section, the saturated radia-
tion amplitude is seen to be aI-—0.03. The maximum
electric field calculated from Eq. (21) is then e0,„=0.5
MV/cm and the growth rate is I = 1.5 X 10
MV/cm/sec, which predicts that it takes about 10 cm for
the beat wave to grow to eo

Figure 2 shows a plot of the acceleration field (E„),„
in the accelerating section obtained from the numerical
simulation. %e see that the maximum acceleration field
is about 0.5 MV/cm and it takes about 14 cm for the
wave to grow to such an amplitude. Thus the numerical
simulations are in good agreement with the analytical re-
sults reported in the previous paragraph. The energy dis-
tribution of the higher-energy electron beam at the end of

1.4

ne r g y Beam

Wave guide

/////////////////////////++X II X I I X I II X I I I X I I I X Y I X I X I9 I i

Lower- Energy Beam

Wiggler

1.2-

1.0
I

E
0.8

0.6

0.4

0.2

0.0

FEL Section ~IFELBWA Section

0 10 20 30 40 50 60

x (cm)

FIG. 1. Schematic diagram of the proof-of-principle experi-
mental setup.

FIG. 2. Accelerating electric field amplitude as a function of
x calculated from computer simulations.
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1,2

1.0

O 0.8

Cl

0.6
C7

0.2

0 10 20 30 40 50 60

FIG. 3. Energy distribution of the higher-energy electron
beam at the end of the accelerating section. Note that most
electrons are accelerated to energies y -40-48.

the 60-cm accelerating section is plotted in Fig. 3. We
note that most of the particles in the test beam have been
accelerated to about 23 MeV; some of the electrons are
even accelerated up to 29.6 MeV, corresponding to an
average acceleration rate of 0.43 MeV/cm, which is again
close to the predicted maximum value.

IV. CONCLUSIONS

This study was prompted by the suggestion in Ref. 8

that the introduction of a stationary plasma can enhance
the accelerating capability of an IFEL. We have
developed an analytical nonlinear theory using the Eu-
lerian multiAuid equations to investigate that suggestion.
However, our conclusions do not support the results of
Ref. 8. We find that the electric field produced is dom-
inated by the self-field of the electron beam, and the back-
ground plasma makes only a very small contribution to
the total field. We believe that the effect of the electron
beam is not correctly taken into account in the nonlinear
calculations of Ref. 8, ad the electric field generated is
therefore ascribed erroneously to the presence of the plas-
ma. Our conclusions suggest that there is no virtue in in-
troducing a stationary plasma in an IFEL.

The calculations presented in this paper indicate that a
moving plasma can be the source of a strong electric field
in the presence of an undulator and a laser. This has led
us to propose the IFELBWA, which may be viewed as a
variant of the PBWA. Whereas in a PBWA two lasers
are used to generate a beat wave in a stationary plasma,
in an IFELBWA a laser and a magnetostatic undulator
generate a beat in a moving plasma, which is the relativis-
tic electron beam in an IFEL. We should also emphasize
the similarities and differences between an IFEL and an
IFELBWA, since the essential components of both are
similar. The phase velocity of the beat wave generated is
the same in an IFEL and an IFELBWA. In an IFEL,
this beat wave is used to trap the electrons and accelerate
the beam by varying the undulator parameters in such a
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APPENDIX A

In this appendix, we give a detailed derivation of the
solutions of Eqs. (10)—(13) by the Bogoliubov-
Mitropolsky method of averaging. Substituting the ex-
pansions (14) and (15) in Eqs. (10)—(13) and comparing
coefficients of e"s, we obtain, to O(e ),

e eo
(U&pkp cop)Q&pcosC &+

=
3

cos% e
Pl P o

(Al)

pcopcosg + n p k p ll pcos%

+kpN pU pcos+ „=0, (A2)

2

epkpsin+, +4lr g e N psin+ „=0, (A3)

and

way as to cause the beat wave to propagate slightly faster
than the beam. In an IFELBWA, the beam is a moving
plasma, and the electric field generated between its
bunches is used to accelerate another higher-energy elec-
tron beam. Of course, in order to be effective at higher
energies, it is necessary to enhance the speed of the beat
wave in an IFELBWA. In the paper, we suggested
methods by which this enhancement may be accom-
plished.

The IFELBWA is not sensitively dependent on beam
quality for its effectiveness. All that is necessary is that
the beam be of sufficiently good quality to get the IFEL
mechanism in place. A weakness of the idea is that the
density of the beam is constrained by the maximum
current, and this limits the available plasma density to a
value several orders of magnitude smaller than can be
available to a PBWA. Altogether, the IFELBWA should
be viewed as an idea which compliments the IFELA and
the PBWA in many aspects, and provides an interesting
test bed to evaluate many physics issues pertaining to the
PBWA. As in the case of the PBWA, there are some ad-
ditional questions that need to be addressed. These in-
clude the possible generation of instabilities when the
current of the higher-energy beam becomes significant,
multifrequency effects due to the emission of radiation
through the FEL mechanism, sideband generation and
particle detrapping, 2D effects, and effects of higher har-
monics. Related technical challenges include the genera-
tion of electron beams of sufficiently high current, and
the development of beam-injection techniques.
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c
q ocos+ ~= — [a cosk x+a Icos(k&x —curt)],

Vao

(A4)

2 Ct)pa

a=1 yao(~o ko" 0)
(A6)

where a =e 8/(m c k) is the normalized vector poten-
tial of the laser or the undulator. By comparing the
phase and amplitudes on both sides of Eqs. (Al) —(A3),
we arrive at the following results:

+au +an +e

e ep
Qap =

m y o(v oko cuo)

Furthermore, because of the relations (A5), there is only
one independent linear phase and amplitude, which we
arbitarily choose to be +, and ep for convenience. There-
fore, we need to consider only the case 8'=eo in Eqs.
(15) in the text.

To 0 ( e ), Eq. (13) becomes

Be,
C] cos% epD i sin% + kp =477 g e N i . (A7)

e a —1

eo=—
a=1

4~e Np
ko

n apkp~ ao

COO kp Uap

(A5)

C1, =D1, =0 . (A8)

We shall see later that in order to suppress the secular
growth of the plasma wave, e, and g, 4~e N, should
be independent of the fundamental phase component +, .
Therefore, Eq. (A7) is satisfied only when

Eliminating u p and N p from Eqs. (A5) yields the linear
dispersion equation

Then, the coefficients of e' in Eqs. (10) and (12) can be
written as

BQ
(kpu o

—cuo) + A, „sin+, +u BO,„c so+, +kpu osin+, cos+„
8%,

and

e e,
2Tapma P p

y~aOCOS+aq ao& apepS& +eCOS+e Uap/ap zCOS+e

C c C
(A9)

aNa1 + au-1
(kpu p cup) +n pkp +2kou pN psin P, cosP, + A „,sin%', +B,„N pcosq =0

e e

(A 10)

Here the relation between N p Q p and ep, as well as that between A, „,B „,A, „,B,„and A 1„B„are given by
Eqs. (A5). Using these relations, we solve Eqs. (A7), (A9), and (A10) and obtain an equation for e „which is

3' 9aoep U 0 ko

8%', =t 2y (cu —k u ) c y~(v k —cu )

a=1

2
2COpa

(Al 1)

cu [a IB +a 8&(1—u pic)]
sin(%, —P)+ g ( A „sin%, +eoB„cos+,),

2yao(coo ko" o) a= i yao(kouao coo)

where P=—4, —(k +ki )x+cptt is the phase difference between the plasma wave and the beat wave. In order to elimi-
nate secular growth of e„we require that the coefficients of sin%, and cos%, on the right-hand side of Eq. (Al 1) be
zero, which gives

F
A „=——cosP,

(A12)
8„=—sing,

where

a=1

cp [a B,(1—u olc)+a IB ]

Yao( 0 0 ao)
(A13)

2 COpa

a= 1 yao(&o kouao )
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The solution of Eq. (All) is

e&=
2 2 2

~pa a 0

2m r 0(cdp kpU 0 )

UaO ko
2+ 2

raO(uaOkO Cdp)
sin2+, . (A14)

Similarly, comparing the coefficients of e in Eq. (Al 1) yields

e v oeosin+,
[a cosk x +a icos(kix edit )]

m cr 0(uapkp cd())
(A15)

Having solved the first-order equations, we next proceed to look at the coefficients of e . To avoid secular growth, we
must also have

C =D =0.2e 2e

Comparing the coefficients of c in Eqs. (10), (12), and (13), we obtain three linear equations for u l, N l, and el.

(A16)

C)ll al

ae,
eae2 1 Qa)+ (Bl, +kpu~sine, )

m y~(u pkp
—cdp) cdo ua—o"o c)e,

1, au. l+
~o v oko ~eo

eaeo&a&+
m. y 0(~0—u oko)

ea
( Al, sine, +epB&,cose, )

1?1 r~(cdp U pkp )

3vao ko 3e vouoe,+ cos%, + sin%',
c y 0(u oko —cdo) m c r p(cdp v pko)

eaMa&+ 8 sink x+Bi 1 — sin(kix edit)—
m cr~ cdp

—u~kp) C

1

2
Xao

3eu e 2
U

2

+ a ao0
2m r pc (cdp U pkp) c

2~ ao atL) ai Uao+ u 0(ki+k )+kic
2 Cdp Vapko C

~a0

2
a ia „,cos(e, —p)cose,

sin(e, —$)sine, , (A17)

a+.2 BN ) A), BX ) kon ou 0 a&.,+ (Bl, +kpu psine, ) + + sine,ae, 0
—~k, ae, ,—.,k, " ' " ' Be, —.,k,

e noko
l ( Al, sine, +eoBl,cose, )+

m y p(cdp
—

U pkp)

ko
(u 0N, +N ou, )cose, ,

~o Uaoko
(A18)

and

Be2 4~e

ae ~ ke a=1
(A19)

(A20)

Using Eq. (A17) in Eq. (A18), solving for (c)N l )/(c)e, ), and then substituting the result in the derivative of Eq. (A19)
gives an equation for e2. This equation can be written in the form

G+1 el=2a Al, + singcosg sine, +ep Bl, —
Qgp2 eo

where the + sign indicates additional terms containing dc, second harmonic, and third harmonic contributions, and

3Fa. a
a r 0( cdo u ~k 0 )

3kovao 9v~
C4

Cd&+ Vao +a 18„+
=l 2a r~(cdo —u~kp)'

2 2 2 2
cop e ko.=l 8am.'r.'0(~0 U~ko)' —r~(~0 u.oko)' c—'r~(~0 U~ko)—

(A21)

Again, to exclude the secular growth of e2, we must require the coefficients of sin%', and cos%, on the right-hand side of
Eq. (A20) to be zero. Namely,
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G
A~, = — sing cosP,

eo

G
B&,= 2

sin P+Heo .
eo

Thus, we have solved for the fundamental components of Eqs. (10)—(13) in the text, up to the order of e

(A22)
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