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Percolation of interacting diffusing particles
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We explore the connectivity properties of diffusing particles with short-range interactions for di-
mensions d =1,2. We consider both "blind" and "myopic" diffusion rules (for the blind case, the
walker chooses the next step from among all neighbor sites while in the myopic case the walker
chooses from among only the unblocked sites). We show that —for all d —the equilibrium state of
a system of particles diffusing according to the blind rule, at density p, is equivalent to the lattice gas
with interaction parameter J=0 and chemical potential p=2sinh '[[(2p—1) /4p(1 —p)]' I. The
connectivity properties of the blind diffusion system are described by random site percolation in all
dimensions. The myopic diffusion system is more complicated. For d = 1, the equilibrium state of a
system of particles diffusing according to the myopic rule, with particle density p, is equivalent to a
lattice gas with J = —In(2) and @=in(2)+2sinh '[[(2p —1) /2p(1 —p)]' 'I. Also, for d =1, the
number of clusters of size s is approximately n, =pp', & '(1 —p,z)', where p,z p. An approximation
for p,& is given that agrees closely with Monte Carlo simulations. For d =2, the myopic diffusion
system has no mapping to the lattice-gas model. Rather, it undergoes a percolation transition at a
threshold density p, . On the square lattice, p, =0.617+0.004, a value that is higher than the thresh-
old for random site percolation. However, percolation and myopic diffusion appear to be in the
same universality class.

I. INTRODUCTION

Percolation is the paradigm model for all forms of con-
nectivity. In its original form, percolation is a static
model, in which particles are positioned according to
some rule. The simplest rule is random placement, but
more eomplieated rules have also been discussed.

In nature, particles often get where they are by some
natural process such as diffusion. In this paper we ad-
dress the following question. What are the percolation
properties of a system whose particles get where they are
by diffusion?

At first sight, since diffusion is random, one might ex-
pect that the same statistical distribution will arise as for
the original version of percolation; a snapshot of the sys-
tern would reveal clusters described by random site per-
colation, with an infinite connected cluster present if and
only if the density of atoms is at or above the percolation
threshold. However if the particles interact —even by an
innocuous hard-core repulsion —then the foundation for
this intuition breaks down. The "rules" by which the
atoms diffuse can introduce spatial correlations in the po-
sitions of the atoms. We shall find, in fact, that quite
different connectivity phenomena occur depending on the
form of the interaction. Even as small a change as that
between "blind" and "myopic" diffusion is found to have
a marked effect (for the blind case, the walker chooses the
next step from among all neighbor sites while in the myo-
pic case the walker chooses from among only the un-
blocked sites).

Diffusion of interacting particles is certainly of more
than mere academic interest because of its application to
diffusion of atoms in adsorbed monolayers and interstitial
and substitutiona1 alloys. ' Much work has also been
motivated by the study of ionic conduction. Kehr,

Kutner, and Binder have investigated diffusion in three
dimensional lattice gases with both attractive and repul-
sive interactions. Diffusion of particles has also been
studied in the case where motion is restricted to a fractal
substrate. The connectivity properties of interacting
diffusing particles were addressed by Sapoval and co-
workers who investigated the geometry of "diffusion
fronts. " Coniglio and Coniglio and Klein examined the
connectivity properties of the Ising model in the study of
correlated or interacting percolation. This problem was
also addressed by Muller-Krumbhaar.

The "stirred percolation" model of conduction in a mi-
croemulsion' is closely related to the present work. In
that model, blind random walkers representing droplets
of water diffuse on a lattice, and the sites unoccupied by
walkers represent oil, Thus the model system has both
spatial and temporal disorder. Several researchers have
investigated diffusion of a generalized excitation confined
to the water region of the lattice. " In this paper, we
shall instead investigate the percolation properties of the
system, e.g. the cluster size distribution of the water
droplets, and show that they are altered if the droplets
diffuse by myopic, rather than blind, rules.

The dynamic percolation model of Druger, Nitzan,
and Ratner' also addresses the issue of diffusion in a
medium with both spatial and temporal disorder. In that
model, a particle diffuses on a bond lattice. A transition
probability co, , chosen randomly from a probability distri-
bution, is assigned to each bond i. The transition proba-
bilities are "renewed, " or generated randomly again,
periodically with a characteristic time scale ~„„. The
present work is in some sense an example of dynamic per-
colation, where the transition probabilities are deter-
mined not from a probability distribution but via a
diffusion process.
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Our model is defined as follows. On a d-dimensional
hypercubic lattice of linear size L, each site is occupied
by a particle with probability p. Then, one particle is
selected at random and attempts to take a step according
to a diffusion rule to be defined below. Then another par-
ticle is selected, attempts to take a step, and this process
is repeated indefinitely. Periodic boundary conditions are
employed to minimize edge effects. One time unit is
defined as the time in which pL particles are selected, so
that on average each particle has taken one step. In this
process, each particle executes a random walk whose tra-
jectory depends on the environment. A cluster is defined
as in site percolation, such that two particles on nearest-
neighbor sites are said to belong to the same cluster. The
system reaches equilibrium when many successive
"snapshots" of the system show that quantities such as
the mean-square cluster size have attained stable values.

We focus on two diffusion rules: the "blind" and
"myopic" rules invented by Mitescu and Roussenq' in
their study of random walks on percolation clusters.
Consider a particle situated on a lattice of coordination
number z. According to the blind rule, the particle first
chooses one of the z possible directions, and if the

nearest-neighbor site in that direction is unblocked, the
particle moves there', otherwise it stays where it was. Let
co(i ~j) be the transition probability per unit time from
site i to nearest-neighbor site j. Then co(i ~j )=1/z for j
unblocked, and co(i ~i ) =b, /z where b; is the number of
blocked nearest-neighbor sites. Transition probabilities
for a blind particle in several configurations are shown in
Fig. 1(a).

According to the myopic rule, the particle chooses
among the unblocked directions with equal probability,
and if all directions are blocked, it does not move. Thus,
co(i ~j ) = 1/u; for j unblocked, where u; is the number
of unblocked neighbor sites. If u; )0, ~(i ~i)=0, and if
u; =0, co(i ~i ) =1. Transition probabilities for a myopic
particle in several configurations are shown in Fig. 1(b).

Majid et al. ' showed that in an exact enumeration
calculation of diffusion on percolation clusters, the blind
rule leads to faster convergence of the diffusion properties
to their scaling laws. However, they showed that aside
from this difference in convergence time, the two rules
lead to the same scaling behavior.

We address a different problem. How do the connec-
tivity properties of particles diffusing on a lattice depend
on the choice of blind or myopic rules? We start by ex-
amining the nature of the two rules. Both the blind and
myopic diffusion rules contain a hard core repulsion, for
in both cases two particles are never allowed to reside on
the same lattice site. The myopic rule, however, has an
additional repulsion, which may be seen by examining the
equilibrium probability distribution of a single particle on
a one-dimensional lattice with jinxed barriers. ' Consider
the one-dimensional lattice shown in Fig. 2. The sites
marked with an x are occupied by fixed barriers. The
equilibrium probability distribution P(i ) may be found by
solving the discrete equation
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Plugging in the blind rule values for the transition proba-
bilities co(i ~j ) yields the solution P(i)=constant for all
unblocked sites i, as shown in Fig. 2(a). In fact, it may be
shown that for the blind rule, Eq. (1) is a discretized ver-
sion of the diffusion equation in equilibrium, d P/dx =0
with reAecting boundary conditions at the barriers imply-
ing that dP/dx =0 at barriers. '

Plugging in the myopic rule values for the transition
probabilities co(i~j) yields a different solution; P(i) is

(a) 1/4 1/4 1/4 1/4

I

i+1
1/2 ~

FIG. 1. (a) Examples of the blind dift'usion rule in one and
two dimensions. The transition probabilities co(i ~j ) are shown
for one walker in each configuration. Where the probabilities
sum to less than unity, there is a finite probability for the parti-
cle to stay at the same site. (b) As above, for the myopic rule.

(b) x
1/6 1/3 1/3

FIG. 2. A one-dimensional lattice with fixed barriers marked
as X, with the equilibrium probability density of a single parti-
cle, according to (a) the blind rule, and (b) the myopic rule.
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constant on all sites away from the barriers, and half that
value on sites next to the barriers, as shown in Fig. 2(b).
That is, myopic particles have a strong repulsion from
the barriers.

II. CONNECTION TO THE ONE-DIMENSIONAL
LATTICE GAS

Here we demonstrate that the equilibrium state of a
one-dimensional system of particles diffusing according
to the blind rule is equivalent to the lattice gas with in-
teraction parameter J =0. We also show that such a sys-
tem with the myopic rule is equivalent to the lattice gas
with J= —ln(2). The lattice gas Hamiltonian may be
written

R ( 1 ~2 ) =—,
' X —,

' =
—,', (4)

R(2~1)
R(1~2) (6)

The lattice gas in equilibrium has, for these two states,

because first the particle on the right is chosen with prob-
ability —,, and it steps to the bottom site with probability
—,. Similarly, the probability of a transition from 2 to 1 is

R (2~ 1 ) =—,
' X —,

' = —„',
because the particle on the bottom is chosen with proba-
bility —„and it steps to the site on the right with probabil-
ity —,'. Thus, detailed balance implies that

—P&=J+ o;o;+,+pg o, , (2) e2p+ J

e2p
(7)

where cr, =0 or 1 is the number of particles at site i.
Here p is a chemical potential, P is the reduced tempera-
ture, and J is an interaction parameter. For J &0 lattice
gas particles tend to clump together, and for J (0 they
tend to stay apart, in analogy with ferromagnetic and an-
tiferromagnetic interactions in the Ising model.

To demonstrate the connections discussed above, we
show that the dynamics imposed by the blind and myopic
rules satisfy the detailed balance condition for the lattice
gas with J =0 and J= —ln(2), respectively. Detailed
balance implies that for any two states 1 and 2 of the sys-
tem,

x, R(1~2)=xzR(2~1),
where R (i ~j ) is the rate of transition from state i to
state j, and x, is the weight of state i.

Consider two states of the one-dimensional system of
size 4 with periodic boundary conditions, shown in Fig.
3. For the blind rule, the probability of a transition from
state 1 to state 2 in a single step is

R(2 1)=-,' x!=-,',
because the particle on the bottom is chosen with proba-
bility —,

' and steps to the right with probability —,
'

~ Thus
we find

R(2~1) 1

R(1~2) 2
(10)

This result agrees with the lattice gas value in Eq. (7)
with J= —ln(2). Again, more complicated examples
yield the same result.

We note that both blind and myopic rules conserve
particle number, as particles are never created or re-
moved from the system. The comparisons made above
were for fixed particle number. In general, the density in
the lattice gas model is not fixed, but is determined by J
and p. In one dimension, the average density p in a lat-
tice gas is

The quantities in Eqs. (6) and (7) agree if J =0. Thus, the
blind rule obeys the detailed balance condition for the lat-
tice gas with J=0, at least in this simple example. More
complicated examples yield the same result.

For the myopic rule, we find that

R(1~2)=—,
' X 1 =

—,',
because the particle on the right is chosen with probabili-
ty —,

' and moves to the bottom site with probability 1.
The reverse transition has the rate

1p= —1+
2

p+J
sinh

2

@+J
2

1/2

FIG. 3. A one-dimensional lattice of size 4 with periodic
boundary conditions, with two particles. Two possible states
are shown.

This result comes from the exact solution of the magneti-
zation of the Ising model in one dimension, with suitable
transformations to the lattice gas model. ' This relation
completes the connection between the blind and myopic
diffusion systems and the lattice gas, in one dimension.
Inverting Eq. (11) and plugging in appropriate values of
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FIG. 4. For the general interaction rule, (a) transition proba-
bilities, and (b) equilibrium probability density of a single parti-
cle on a lattice with fixed barriers.

0.01-

J, we find that a one-dimensional system of particles at
density p diffusing according to the blind rule is
equivalent to the one-dimensional lattice gas with

1/2
(2p —1)J =0, p=2sinh
4p(1 —p)

(12)

A one-dimensional system of particles at density p
diffusing according to the myopic rule is equivalent to a
one-dimensional lattice gas with

J= —ln(2),

@=in(2)+2 sinh

' 1/2
(2p —1)
2p(1 —p)

(13)

III. PERCOLATION PROPERTIES: ONE DIMENSION

Because blind rule diffusion is equivalent to the nonin-
teracting lattice gas, its percolation properties are de-
scribed by random site percolation' because the density
at neighboring sites is uncorrelated. Myopic rule
diffusion cannot be described by random site percolation,
however, because neighboring sites are correlated. We
performed Monte Carlo simulations of myopic rule
diffusion, and calculated the cluster distribution n, (p),

We note that in one dimension, both the blind and myo-
pic diffusion rules are special cases of a more general in-
teraction rule with tunable strength J. Under the general
rule, a particle with no occupied neighbor sites has prob-
ability —, to move to each neighbor site. A particle with
two occupied neighbor sites has probability 1 to stay
where it is. A particle with one unoccupied neighbor site
has probability —,'e to move to the unoccupied neighbor
site, and probability 1 —

—,'e to stay at the same site.
These transition probabilities are shown in Fig. 4(a). The
parameter J may take values in the range [—ln2, ~].
The blind rule corresponds to J =0, while the myopic
rule corresponds to J= —ln2. As the notation suggests,
the strength J of the interaction is the same as the in-
teraction parameter J of the equivalent lattice gas. This
equivalence may be demonstrated by detailed balance ar-
guments like those given above. The equilibrium proba-
bility density of a single particle on a lattice with fixed
barriers is shown in Fig. 4(b).

0.001-—
0

FIG. 5. The cluster size distribution n, for the myopic
diffusion system in one dimension at density p =0.5 (6 j. Shown
for comparison is the same quantity for random site percolation
with p =0.5 (+).

the number of clusters of size s. A typical cluster distri-
bution is shown in Fig. 5, along with the cluster distribu-
tion for random site percolation at the same density. For
random site percolation, at density p, the cluster distribu-
tion is given by

n, =p'(1 —p ) (14)

For the myopic system in one dimension, we find instead

n, -p, a (15)

n, =p(1 —p, tr) p', ff
' (16)

An estimate of p,z can be made by taking advantage of
the analogy with the lattice gas. The quantity p,z is the
average density on a site with one neighbor that is
definitely occupied. Because the interaction is antiferro-
magnetic, p,~ is normally smaller than p. The approxi-
mate value is found by considering the configurations
shown if Fig. 6 with the weights indicated. Site 1 is occu-
pied with probability 1, and site 3 is occupied with proba-
bility p. Then p,& is the average density on site 2. The
result for the lattice gas is

P+2J+(1 )
P+J

p+(1 —p)+pe"+ +(1—p)e"
(17)

Plugging in the correct values of J and p for the myopic
diffusion system given in Eq. (13) gives a prediction for
p,& as a function of p:

2 p
4e"+2 —p

(18a)

where p,~ p. That is, the cluster distribution drops off
faster with increasing s than in random site percolation at
the same density, and therefore there are more small clus-
ters. Normalization g, sn, =p implies that the full ex-
pression for n, is
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FIG. 7. A comparison of the prediction for p,& given in Eq.
(18) (lower solid curve) with simulation results from (+) one-
dimensional myopic rule diffusion, and ( X ) the equivalent lat-
tice gas. Agreement is best for p«1. Shown also is the
straight line p,&=p.

with

p = ln(2) +2 sinh

' 1/2
(2p —1)
2p(1 —p)

(18b)

This estimate of p,z versus p is plotted in Fig. 7, along
with values from Monte Carlo simulations of both the
myopic system and the equivalent lattice gas. The agree-
ment is surprisingly good. This agreement reflects the
fact that the lattice gas correlation length is short, and
therefore next-nearest-neighbor sites are nearly uncorre-
lated. A better estimate ofp,~ can be found by enumerat-
ing the configurations on a system of length 4, where site
1 is occupied with probability 1 and site 4 is occupied
with probability p, and weighting each configuration as
above.

IV. PERCOLATION PROPERTIES: TWO DIMENSIONS

As mentioned above, the connectivity properties of the
blind rule diffusion system are described by random site
percolation. This result holds in all dimensions; the de-
tailed balance argument given in Eqs. (3)—(7) may be ex-
tended to any dimension with the same result, J=0.
However, the myopic rule diffusion system is more com-
plicated, because the detailed balance argument that gaveJ= —ln(2) in one dimension cannot be extended to
higher dimensions. In fact, there is no mapping to the

FIG. 6. Configurations considered in the approximation of
p,z, shown with their respective weights. The quantity p,& is the
probability that site 2 is occupied, given that site 1 is occupied
with probability 1, and site 3 is occupied with probability p.
The energy used in the weight factor thus depends only on site 2
and its bonds.

lattice gas in two dimensions for any value of J. For this
reason, we cannot use our knowledge of the lattice gas to
determine the connectivity properties of the myopic rule
diffusion system in two dimensions.

Instead, we perform Monte Carlo simulations of myo-
pic rule diffusion on the square lattice. To determine that
the system has reached equilibrium, we wait until the
mean square cluster size has reached a stable value, typi-
cally a few or up to ten Monte Carlo time steps. ' Then
we take "snapshots" of the system once per Monte Carlo
time step and analyze the cluster distribution. Lattice
sizes used range from L =10 to L =200. A sample
configuration for L =20 and density p=0. 5 is shown in
Fig. 8, along with a random site percolation configuration
with density p =0.5. The myopic diffusion configuration
appears to have more small clusters, which reflects the
"anticorrelation" induced by the myopic rule.

We find that the myopic rule gives rise to anticorrelat-
ed site percolation with a percolation transition at
p, =0.617+0.004 on the square lattice, a value which is
definitely higher than the random site percolation thresh-
old p, =0.59275. ' Thus the anticorrelation imposed by
the myopic rule increases the percolation threshold. In-
tuitively, the threshold is higher for particles that repel
one another since the threshold is determined by the link-
ing together of "blobs" by strings of singly connected
sites ("red sites") —any repulsion among the sites serves
to render even more fragile these strings.

It is difficult to accurately estimate critical exponents
from Monte Carlo simulations in small systems. Howev-
er, we attempt to show that our simulation results are
consistent with the critical exponents of random site per-
colation. We calculate two exponents: v and y. We
define m(p) as the fraction of equilibrium configurations
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FIG. 8. Small sample configurations of the myopic diffusion
system with L =20 and p=0. 5, and random site percolation
with p =0.5. Clusters of size 1 are circled, with periodic bound-
ary conditions used. The myopic diffusion system appears to
have more small clusters than the random site percolation sys-
tem.

10-

5
0.56

I I

0.58 0.60
I

0.62 0.64
I

0.66

FIG. 10. A plot of system size L vs p20(L) and p80(L).
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where v and v' refer to the connectedness length singular-
ity above and below p„respectively, and pro( ~ )

that have a spanning cluster at a given particle density p.
(A spanning cluster must reach from the upper boundary
of the lattice to the lower, with periodic boundary condi-
tions connecting only the right and left boundaries. ) In
Fig. 9 m(p) is plotted for system sizes L =10, 20, 40, 80,
and 160. As L increases, m(p) approaches a step func-
tion. We define p2o and p8O as the particle densities at
which 20%%uo and 80% of configurations span; ' these
quantities are plotted in Fig. 10. From finite size scaling
theory, we expect

=pso(~)=p, . Choosing p',""'=0.617 to make v=v' as
closely as possible, we plot the quantities in Eq. (19) in
Fig. 11. Also plotted is a straight line with slope—v= ——', , the value for random percolation in two di-

mensions. ' While agreement is not exact, one may con-
clude that the somewhat scattered data are at least con-
sistent with this value. This method of measuring v how-
ever has the drawback that p, must be known. Another
method is to plot L versus pso(L) —pro(L), as shown in

Fig. 12. Again, the scatter is large. Shown for compar-
ison is a straight line with slope —1.4. We conclude that
for the myopic rule diffusion system v=1.4+0. 1, which
is consistent with the random percolation value v= —', .

Better agreement, however, is found for the exponent
describing the divergence of the mean square cluster size
S(p) —= (s n, ). This quantity scales as'

10003
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g~~~x H

0 A~~:~A~ ~
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FIG. 9. Shown is ~i(p) for (6 )L = 10, ( X )L =20, ( )L =40,
(R)L =80, and (g)L=160. The approach to a step function
with increasing L can be seen.

FIG. 11. Shown is system size L vs p, —
p&0 and p8o

—p, . The
value of p, was chosen in order to make the two lines as close to
parallel as possible.
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FIG. 12. A plot of system size L vs p80(L) —p2&(L). Shown
also is a line with slope —1.4.

C+(p p) p—&p
S(p)- '

C—(p p) p)p (20)

FIG. 13. A plot of mean-square cluster size S(p) vs ~p
—p, ~.

Also shown are lines with slope —y= —
—,', , the exponent for

random site percolation. The data appear to be consistent with
this value.

S(p) versus ~p
—p, ~

is plotted in Fig. 13, with p, =0.617.
Shown also are straight lines with slope y =

—",, , the value
for random percolation in two dimensions. ' Here the
simulation results appear to agree very well with this
value. Thus we have found no indication that myopic
rule diffusion in two dimensions is in a different universal-
ity class than random site percolation.

V. CONCLUSION

We examined the connectivity properties of systems of
diffusing, interacting particles with the blind and myopic
diffusion rules. We find that the blind rule case is
equivalent to the lattice gas with J=O in all dimensions.
Because the density on neighboring sites is uncorrelated,
the connectivity properties of blind rule diffusion are de-
scribed by random site percolation. The myopic case in
one dimension is equivalent to the lattice gas with param-
eters J and p as given in Eq. (13). Because the lattice gas
correlation length is short when J is small, we can ap-
proximate the cluster distribution as n, =pp', tr

' (1—p, tr),

where n, is the number of clusters with s particles, and

p,z &p is the average density on a site next to an occu-
pied site. An approximation for p, tr is given in Eq. (18),
and this prediction agrees surprisingly well with Monte
Carlo simulations of both myopic rule diffusion and the
equivalent lattice gas. Myopic rule diffusion in two di-
mensions undergoes a percolation transition at a critical
density p, =0.617+0.004 for the square lattice, about
3%%uo larger than for random site percolation. The ex-
ponents v and y for this system appear to be consistent
with those of random percolation in two dimensions.
Thus we conclude that the two systems are in the same
universality class.
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